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ABSTRACT: The paper presents an improvement of the microplane model for concrete-a con~titutive model 
in which the nonlinear triaxial behavior is characterized by relations between ~e stress and stram c<?m~onents 
on a microplane of any orientation under the constraint that the strains on the nucroplane are the .proJection~ of 
the macroscopic strain tensor. The improvement is achieved by a ~ew conce~t: the stress~strain boundane~, 

which can never be exceeded. The advantage of this new concept IS that vanous boundanes and the el~tic 
behavior can be defined as a function of different variables (strain components). ~us, wher~as f<;>r compression 
the stress-strain boundaries are defined on the microplanes separately for volu~etric ~d .devlatonc compon~nts, 
for tension an additional boundary is defined in terms of the total normal str~~s. This IS .necess~ to .ac~eve 
a realistic triaxial response at large tensile strains. F?r mic~plane shear, a fnc~on law WI~ coheSion IS mtr<?
duced. The present model is simpler than the prevIous mlcroplane model. Fmally, the nucroplane model IS 
generalized to finite, but only moderately large, strains. Verification and calibration by test data are left to a 
subsequent companion paper. 

INTRODUCTION 

Although the last two decades have witnessed a major prog
ress in the formulation of the nonlinear triaxial constitutive 
relations of brittle heterogeneous materials such as concrete, a 
fully realistic model has remained an elusive goal. The present 
paper presents a new formulation intended to make a major 
advance toward that goal. Among the various possible ap
proaches, such as plasticity, continuum damage mec~anics, 
fracturing theory, plastic-fracturing theory, or endochronIc the
ory, a particularly powerful and versatile approach to concrete 
(as well as soils and other materials), which trades simplicity 
of concept for an increase of numerical work lef~ to the com
puter, is the microplane model (BaZant 1984). ThIS model rep
resents a generalization of the initial idea of Taylor (1938), 
who proposed characterizing the constitutive behavior of pol~
crystalline metals by relations between the stress and stram 
vectors acting on planes of all possible orientations within the 
material and determining the macroscopic strain or stress ten
sors as a summation (or resultant) of all these vectors under 
the assumption of a static or kinematic constraint. 

Taylor's idea was soon recognized as the most realistic way 
to describe the plasticity of metals, but the lack of computers 
in the early times prevented practical application. Batdorf and 
Budianski (1949) were first to extend Taylor's idea and de
velop a realistic model for plasticity of polycrystalline metals, 
still considered among the best. Many other researchers sub
sequently refined or modified this approach to metals (Kr(}n~r 
1961; Budianski and Wu 1962; Lin and Ito 1965, 1966; Hill 
1965, 1966; Rice 1970). Extensions for the hardening inelastic 
response of soils and rocks were also made (Zienkiewicz and 
Pande 1977; Pande and Sharma 1981, 1982; Pande and Xiong 
1982). 

In all the aforementioned models, it Was assumed that the 
stress vector acting on various planes in the material, called 
the slip planes, was the projection of the macroscopic stress 
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tensor. As shown later (BaZant 1984), this constraint, which is 
a static constraint, prevents the model from being generalized 
for postpeak strain softening behavior or damage. It was re
alized that the extension to softening damage requires replac
ing the static constraint by a kinematic constraint, in which 
the strain vector on any inclined plane in the material is the 
projection of the macroscopic strain tensor (BaZant 1984). The 
kinematic constraint makes it possible to avoid spurious lo
calization among orientations such that all the strain softening 
localizes preferentially into a plane of only one orientation. 

In all applications to metals, the formulations emanating 
from Taylor's work and Batdorf and Budianski's work were 
called the slip theory of plasticity (in several applications that 
exist for rock, the term multilaminate model was used). The 
terms "slip theory," however, became unsuitable for the de
scription of damage in quasi-brittle materials. For example, the 
inelastic behavior of concrete on the microscale does not phys
ically represent slip, whether plastic or frictional (except under 
extremely high confining stresses), but mainly microfracturing. 
For this reason, the neutral term "microplane model," appli
cable to any physical type of inelastic behavior, was coined 
(BaZanl 1984) (although a nondescriptive term such as "Tay
lor-Batdorf-Budianski model," perhaps with the names of fur
ther contributors, could also be used). The term "microplane" 
reflects the fact that the material properties are characterized 
by relations between the stress and strain components on 
planes of various orientations imagined to characterize the mi
crostructure of the material. The tensorial invariance restric
tions need not be directly enforced in the constitutive relations, 
which is a simplifying feature of the microplane formulation. 
They are automatically satisfied by superimposing in a suitable 
manner the responses from the microplanes of all orientations. 
As introduced for the microplane model (BaZant 1984), this is 
done by means of a variational principle (principle of virtual 
work). 

The present study focuses on concrete. The microplane 
model of concrete was first devised for tensile fracturing (Ba
fant and Ob 1983, 1985; BaZant and Gambarova 1984), and 
later for nonlinear triaxial behavior in compression with shear 
(BaZant and Prat 1988a, b). These new models differed from 
the previous models by using the kinematic (rather than static) 
constraint for the microplanes (BaZant 1984). Because the tan
gential material stiffness matrix for these models may lose 
positive definiteness (due to postpeak strain softening as well 
as lack of normality), a nonlocal generalization was developed 
to prevent spurious excessive localization of damage in struc
tures and spurious mesh sensitivity (BaZant and Of bolt 1990; 
Of bolt and BlUant 1992). An explicit formulation and efficient 
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numerical algorithm for the microplane model of BaZant and 
Prat (1988a, b) was recently presented by Carol et al. (1992). 
It was also shown that the microplane model with a kinematic 
constraint can be cast in the form of continuum damage me
chanics in which the damage variable, representing the reduc
tion of the stress-resisting cross-section area fraction in the 
material, is a fourth-order tensor, independent of microscopic 
material stiffness characteristics (Carol et al. 1991). An effi
cient implementation of the microplane model for concrete in 
dynamic explicit finite element programs was proposed by 
Cofer (1992) and Cofer and Kohut (1994), for both coarse and 
fine meshes. 

Although the microplane model of BaZant and Prat (1988a, 
b) was initially thought to perform adequately for postpeak 
softening damage in both compression and tension, Jirasek 
(1993) found from numerical experience that, in postpeak uni
axial tension, excessively large positive lateral strains develop 
at large tensile strains. He then showed that this unrealistic 
behavior was caused by localization of tensile strain softening 
into the volumetric strain, while the deviatoric strains on the 
strain softening microplanes exhibited unloading. It was rec
ognized that this localization of tensile softening damage into 
one of the two normal strain components in tension (that is, 
the volumetric one) was an inevitable consequence of sepa
ration of normal strains into the volumetric and deviatoric 
parts. However, this separation was previously shown neces
sary (BaZant and Prat 1988a, b) for correct modeling of triaxial 
behavior in compression as well as for achieving the correct 
elastic Poisson's ratio. The problem was first remedied by re
moving tensile strain softening from the model of BaZant and 
Prat (1988a, b) and coupling this model in series with that of 
BaZant and Oh (1983, 1985), which describes tensile strain 
softening but behaves elastically in compression. However, 
such a remedy seems an artifice. Also, it does not allow an 
explicit algorithm and is computationally inefficient. 

A better remedy, free of these shortcomings, will be pre
sented here, based on the new idea of stress-strain boundaries 
(BaZant 1993) proposed at a recent conference (BaZant et al. 
1994a). The formulation will also be extended to finite strains, 
heeding all the restrictions of continuum mechanics of solids. 
Verification and calibration by test data are relegated to a sub
sequent companion paper (BaZant et al. 1996), in which it will 
be attempted to develop a systematic approach to the identi
fication of material parameters and to filter out from the test 
data the effects of postpeak strain localization in test speci
mens and the size effects. 

MICROPLANE FORMULATION APPLICABLE 
TO CONCRETE 

In the classical approach, the constitutive model is defined 
by algebraic or differential relations between the components 
(II) and EI} of the stress and strain tensors, based on the theory 
of tensorial invariants. In the microplane approach, the con
stitutive model is defined by a relation between the stresses 
and strains acting on a plane of arbitrary orientation within 
the material. The orientation of this plane, called the micro
plane, is characterized by the unit normal. n of co~ponents ?I 
(indices i and j refer to the components m Cartesian coordi
nates Xi)' The basic hypothesis, which makes it possible ~o 
describe strain softening in a stable manner (BaZant 1984), IS 

that the strain vector eN on the microplane [Fig. l(a») is the 
projection of the macroscopic strain tensor Eij. So ~e com
ponents of this vector are ENI = E/jnj' The normal stram on the 
microplane is EN = nIEN1, that is 

(la,b) 

where repeated indices imply summation over i = 1,2, 3. The 

246 / JOURNAL OF ENGINEERING MECHANICS / MARCH 1996 

(b) (e) 

~ __ ~~/yleld limn) 

, , 
StraJn.space ......... 
plasticity. or ~ ....... __ 

Fracturtng theory --.... 

FIG. 1. (a) Strain Components on General Mlcroplane; (b) DI
rections of Mlcroplane Normals (Circles) for System of 21 MI
croplanes per Hemisphere; (c) Classical Tensorlal Theories and 
Present Theory 

mean normal strain, called the volumetric strain Ev , and the 
deviatoric strain ED on the microplane, are defined as follows: 

(2a,b) 

To characterize the shear strains on the microplane [Fig. 
l(a)], we need to define two coordinate directions M and L, 
given by two orthogonal unit coordinate vectors m and 1 of 
components ml and II lying within the microplane. We may for 
example choose vector ml to be normal to axis Xj, in which 
case ml = n2(nr + nD- lfl

, m2 = -nl(nr + n~)-lfl, and mj = 0, 
but mj = 1 and m2 = m3 = 0 if nl = n2 = O. Alternatively, to 
get a vector mj normal to axis Xl or axis X2, we carry out 
permutations 123 --+ 231 --+ 312 of the indices in the preceding 
formulas. The other coordinate vector It within the microplane 
is obtained as the vector product, I = m X n. To minimize 
directional bias of m and I among microplanes, we alternate 
among choosing vectors m to be normal to axis Xh X2, or X3' 

The magnitudes of the shear strain components on the mi
croplane in the directions of m and I are EM = ml(Eijnj) and EL 

= It (E/jnj ). Because of symmetry of tensor E/j' the shear strain 
components may be written as follows (BaZant and Prat 1988): 

(3a,b) 

in which the following symmetric tensors were introduced: 

(4a,b) 

The stress components on the microplane cannot in general 
be equal to the projections of the macroscopic stress tensor (Ii) 
if the strains represent the projections of E/j' Thus, static equiv
alence or equilibrium between the macrolevels and microlevels 
must be enforced by other means. To this end, consider now 
a small representative volume of the material, given by a small 
cube of side Ah. A pair of two parallel sides corresponds to a 
microplane labeled by subscript N, and the other two pairs of 
parallel sides correspond to orthogonal microplanes labeled by 
subscripts P and Q. The strain vectors on these microplanes 
may be assumed to have the meaning defined by AuNIAh = 
eN, AUplAh = ep, and AuQIAh = AeQ' in which AUN' Aup, and 
AUQ are the differences in the displacement vector between the 
opposite sides of the cube in the directions labeled by N, P, 
and Q, The equality of the incremental virtual work of stresses 
within the representative volume on the macrolevel and the 
work of stresses on the three microplanes representing the 
sides of the cube implies that Ah3(1/j8E/j = Ah2(C7N'8AuN + 
C7p'8Aup + C7Q,8AuQ), where 8 denotes the.var~ations. The 
strain vectors eN, ep, and eQ include the contributIOns of elas
tic deformations as well as displacements due to cracking (and 
possibly also to frictional plastic slip). The cracking or o,ther 
inelastic deformation happens randomly on planes of various 
orientations within the material, and the macroscopic contin
uum must represent these strains statistically, in the average 
sense, Therefore 



(5) 

in which the integral represents averaging over all spatial ori
entations; dO = sin 9 d9 d«l>, where 9 and «I> = spherical angles 
and 0 = surface of a unit hemisphere (whose surface area is 
211'); and UN = (UN' UM, UL)' EN = (eN' EM, EL)' etc. Now, ob
viously, JouN·8.1UN dO = Joup·8.1up dO = Jouo·.1uo dO. 
Consequently, the variational equation (5) becomes 

211' <T1I8£q = raN' 8EN dO = r (<TN8EN + <TM8EM + <TL8Ed dO 
3 Jo Jo 

(6) 

This equation was introduced in Ba!ant (1984) directly, as the 
condition that, for any variation 8EII, the virtual work of macro
stresses within a unit sphere must be equal to the virtual work 
of micros tresses representing tractions on the surface elements 
of the sphere. 

According to (1) and (4), 8EN = NII 8EII, 8EM = M II 8EII , and 
8EL = LI)8£q. Substituting this into (6), we obtain 

(4; <Til - 2 L SII dO) 8ell :;: 0 (7) 

in which we introduce the notation 

(8) 

Since (7) is a variational equation, which must be satisfied for 
any variation 8EI)' the expression in parentheses must vanish. 
This yields 

(9) 

in which l: .. w .. = 0.5 per hemisphere and the last expression 
represents an approximate numerical evaluation of the integral 
over the hemisphere; subscripts IJ. refer to a chosen set of 
integration points representing orientations defined by unit 
vectors n}"'> and shown by the circled points in Fig. l(b); w", 

= integration weights associated with these points; and super
scripts (IJ.) label the values corresponding to these directions. 
While the integral over 0 represents integration over an infi
nite number of microplanes, the discrete approximation rep
resents summation over a finite number of microplanes. The 
flow of calculation between the macrolevel and microlevel is 
explained by Fig. 2. 

Formulation of an optimal numerical integration formula 
over the surface of a hemisphere is not a trivial matter. The 
problem has been studied extensively by mathematicians, and 
Gaussian integration formulas of various degrees of approxi
mation have been developed. One sufficiently accurate for
mula, which consists of 28 microplanes (Le., 28 integration 
points) over a hemisphere, is given by Stroud (1971). A more 
efficient and only slightly less accurate formula, involving 21 
microplanes, was developed by Balant and Oh (1986), who 
also studied the accuracy of various formulas in terms of rep
resentation of postpeak strain softening, for which the errors 
of numerical integration get manifested most. The orientations 
of the normals to the microplanes in the 21-point formula 
(which evaluates the integral exactly for all polynomials up to 
degree 9) represent the radial directions to the vertices and 
centers of the edges of a regular icosahedron, shown in Fig. 
l(b). Fewer than 21 microplanes cannot give sufficient accu
racy (Balant and Oh 1985). To write an efficient computer 
program, the values of NC;>, MC;>, and LC;> should be calculated 
in advance for all the microplanes and stored in memory. The 
values of w'" and n~"> must also be stored in advance. 

,------, Kinematic constraint 
Micro-Strains 

EN,Ev,Eo,EL ,EM 

on each microplane 

Macro-Strain 

Eij 

---.. Classical 

models 

• 
Micropfane 

constitutive 

relation 

Micro-Stresses 

<rt.J,a",~,ct,<\1 .. Macro-Stress 

aij on each microplane 

'-----~ Principle of virtual work 

FIG. 2. Flow of Calculation In Mlcroplane Model (Present Pa
per) and In Classical Models 

MICROPLANE STRESSES AND VOLUMETRIC· 
DEVIATORIC SPLIT 

Calculation of the microplane stresses in (8) from the mi
croplane strains is a problem of constitutive modeling, which 
we now address. Material isotropy will be ensured in two 
ways: by using a uniform unit weight, independent of orien
tation nit in the integral over 0 in (9); and by using the same 
stress strain relation for microplanes of all orientation n/. The 
elastic responses of the material modeled by the microplane 
system may be characterized on the microplane level in the 
rate form as follows: 

(lOa,b) 

(lOc,d) 

Note that the relation UN = EN€w is valid only if Ev = ED' Ev, 
ED, and ET = elastic moduli on the microplane level, same for 
all the microplanes. As shown in Ba!ant and Prat (I988a, b), 
the microplane moduli are related to the macroscopic Young's 
modulus E and Poisson's ratio v as follows 

E - _E_. E - 5E . E - .. 1;' (lla c) 
V-I _ 2v' 0 - (2 + 31J.)(1 + v)' T - .-..0 -

in which IJ. :;: a parameter that may be chosen or can be op
timized so as to match the given test data best. Ba!ant and 
Prat (I988a, b) stated relations equivalent to (11), using pa
rameter 'Tl = EDIEv instead of IJ.. They also found the range of 
'Tl-values giving optimum fits of test data for concrete, and this 
range corresponds to IJ.-values close to 1. Therefore, for the 
present calculations, we choose IJ. = I, or ET :;: ED' As tran
spires from Carol et al. (1991), the value IJ. :;: 1 is also com
ceptually appealing, because it makes it possible to character
ize damage by a fourth-rank tensor that is independent of the 
material stiffness properties. This will be discussed further. 
(Another special case, which, however, is not realistic for con
crete, is Ev = ED or IJ. :;: (1 - 4v)/(1 + v); in that case <TN = 
ENEN' with EN = Ev, which corresponds to the case of no 
volumetric-deviatoric split.) 

One reason for splitting the normal strain at the microplane 
into the volumetric and deviatoric normal components is that 
a general model ought to be capable of giving any thermo
dynamically admissible Poisson's ratio (between 0.5 and -1). 

That this is indeed so can be checked by eliminating IJ. from 
(11) and solving for v, which yields v = (5Ev - 2ED - 3ET)/ 
(WEv + 2ED + 3ET). This equation shows that it is possible 
to obtain any thermodynamically admissible value of Pois
son's ratio; that is, -1 s v s 0.5. From this equation it is 
further clear that, for the case of no split, which corresponds 
to the case Ev = ED :;: EN, one would have v = (3EN - 3ET)/ 
(12EN + 3ET), which implies that the Poisson's ratio would 
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FIG. 3. (a-d) StressoStraln Boundaries for Mlcroplane; 
(e) Friction Law for Mlcroplane 

be restricted to the range from 0.25 to -1. Although this range 
would suffice for concrete, the microplane model in principle 
could not be realistic if it were restricted to Poisson's ratios 
less than 0.25. 

It may also be noted that if the shear stiffness is neglected 
(ET = 0 or .... = 0) and no volumetric-deviatoric split is used 
(aN = E~w), which was assumed in the initial model of BaZant 
and Dh (1983, 1985) for tensile fracturing, the Poisson's ratio 
is restricted to the value v = 0.25. However, such a restriction 
is not realistic, and besides, the elastic as well as inelastic shear 
strain on the microplane level appears to be important for cor
rect modeling of the effect of confining pressure on compres
sion failure. 

In analogy to multiaxial Hooke's law, which may be written 
as all = E'(ElI + V'~2 + V'E33) (where E' and v' = constants). 
one could introduce for each microplane the relation aN = 
EN(fw + V'ENM + V'ENL ). This could be written as aN = E~EN 
+ V/EIa'). in which EIa' = (ENM + ENL)/2 = (2Ev - EN)/2 = Ev -

(EoI2); here, EIa" called the lateral strain (Hasegawa and BaZant 
1993), is invariant with respect to rotations of the K and M 
directions about normal N. At first one might think that the 
lateral strain might be the most appropriate variable to describe 
the confinement effect in compression loading on the micro
plane level; however, from the foregoing relations it is clear 
that this is really equivalent to formulating the inelastic be
havior on the microplane in terms of ED and Ev, which is 
simpler. 

The main reason for the volumetric-deviatoric split with in
dependent moduli Ev and ED (BaZant and Prat 1988a. b) is the 
absence of stress peak for the hydrostatic compression test and 
the uniaxial-strain compression test [see the tests of BaZant 
et al. (1986)], while at the same time the loading by uniaxial 
compressive stress or other compressive loading with uninhib
ited volume expansion exhibits a stress peak followed by post
peak strain softening. Without the aforementioned split, com
pressive loading with restricted volume expansion (hydrostatic 
compression and uniaxial strain) would, incorrectly, exhibit a 
peak stress and postpeak strain softening. 

In the initial proposal of microplane model with strain soft
ening (BaZant 1984), the stress-strain relation for the normal 
and shear components of stresses and strains of the micro
planes had the form of flow rule of incremental plasticity, 
based on subsequent yield surfaces and loading potentials for 
the microplane. However, subsequent studies have shown that 
this was unnecessarily complicated. As it turned out (BaZant 
and Prat 1988a, b), one can assume, for the case of virgin 
loading, a total algebraic stress-strain relation on the micro
plane level; that is, av, aD, aM, and aL can be assumed to be 
functions of Ev, eo, eM, and EL. Further, it turned out that each 
stress component can be considered to depend only on the 
associated strain component, with the exception of shear stress 
aM (or aL), which must depend not only on EM (or ed, but 
also on av. Without this cross dependence, which reflects in-
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ternal friction, it is not possible to model standard triaxial tests 
at high confining pressures. 

NEW CONCEPT: STRESS-STRAIN BOUNDARIES 

The main reason for the new concept of stress-strain bound
aries is the modeling of triaxial behavior in tension. But there 
are further reasons. In the previous microplane model for com
pressive triaxial behavior (BaZant and Prat 1988a, b), the 
stress-strain relations for the microplane were smooth curves. 
However, difficulties arose in the handling of the transition 
from reloading to virgin inelastic loading in the quadrants of 
negative stress-strain ratio. and complicated rules were needed 
(Hasegawa and BaZant 1993; Dibolt and BaZant 1992). Also, 
the modeling of cyclic loading was more difficult. These dif
ficulties, too, are avoided by the new concept. 

The condition that the response may not exceed the speci
fied boundary curve aN = fN(fw , av) makes it easy to ensure 
continuity at the transition from elastic behavior, defined sep
arately for volumetric and deviatoric components, and the 
strain-softening damage behavior in tension, defined without 
the volumetric-deviatoric split (BaZant 1993). It would be too 
complicated to devise stress-strain relations that would de
scribe such transitions without any discontinuity. 

The stress-strain boundaries, shown in Fig. 3, are defined 
as follows: 

aN = FN(EN, av); av = -Fv(-Ev); aT = FT(aN) (l2a-c) 

aD = -FD(-ED); aD = F~(ED) (l2d,e) 

in which aT stands for either (1M or aL. The reason for writing 
the minus signs is that functions FN, Fv , Fo, F;, and FT are 
defined as positive-valued functions of positive arguments. 
Function FT defines only the boundary for positive stresses 
[Fig. 3(b)], and the other boundary for negative stresses is 
symmetric. The dependence of aT on aN characterizes friction 
on the microplane, as well as the fact that a widely opened 
rough crack offers less resistance to shear than a narrow rough 
crack. The boundary for compressive aD is provided by Fo 

(for ED < 0). The tensile boundary FN for EN > 0 does not 
suffice to prevent tensile ED from becoming unreasonably large 
(particularly in triaxial tests at very high pressures), and there
fore an additional tensile boundary for aD needs to be provided 
by F;. 

Note that despite path independence on the microplane 
level, the macroscopic material response to various non pro
portional loading paths is path dependent. This is because 
many combinations of loading and unloading are possible in 
each loading step. 

Experience shows that, for sufficient accuracy, a system of 
at least 21 microplanes must be associated with each integra
tion point of each finite element [BaZant and Dh (1985, 1986); 
used in BaZant and Dlbolt (1990)]. The number, however, can 
be reduced in the case symmetries such as plane stress, plane 
strain, or uniaxial stress. In each loading step, an explicit com
putational algorithm can be formulated as follows. First the 
new values of macrostrains E/} are calculated at each integration 
point from the new (incremented) values of nodal displace
ments. Then, for each integration point, the new values of EN, 

Ev , ED, EM, and EL are calculated for all the microplanes from 
(1)-(3). Using these values, the following new stress values 
are calculated for each microplane: 

at = a~ + Ev(Ev - E~); 

a~ = a~ + ET(EM - E~); a1 = ai + ET(EL - E0; 

a~ = max[at, - Fv(Ev)] 

(l3a-c) 

(14a--c) 
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FIG. 4. (a-b) Vertical and Radial Scaling (Affinity Transfor
mations) of Stress-8traln Curves; (c) Meaning of Ductility r 

O'~ = O'~ + max[O'h, - FD«-ED»]; 

O'N = min[O'~, FN«EN), av)] (I5a,b) 

Superscripts i denote the previously calculated initial values at 
the beginning of the loading step, and absence of a superscript 
means the new values; superscripts e denote the elastically 
calculated new stress values; (x) = max(x, 0) = positive part 
of x (this symbol, called the Macauley bracket, is used so that 
functions FN , ••• , FT could be defined for only the positive 
values of strain arguments); and av = O'~, but if the load step 
is iterated it helps accuracy to take av as the value of O'v 

obtained in the previous iteration. After sweeping through all 
the microplanes f.L = I, ... , N m' one evaluates 

(16) 

Then, for each microplane one can calculate 

O'v = min(O'~, crv) (17) 

For Ev - E~ > 0 

For Ev - E~::;; 0 

After sweeping again through all the microplanes, all the new 
values of the microplane stresses at the end of the loading step 
are known, and the macros tresses can then be calculated from 
(8)-(9). The inelastic parts of the new macrostresses must 
subsequently be modified according to a suitable nonlocal for
mulation (unless the crack band approximation is used). But 
this subject is beyond the scope of the present paper. 

Note that, except for av, the foregoing algorithm gives the 
new stresses as explicit functions of the new strains. No equa
tions need to be solved. This is important for computational 
efficiency. Experience shows that taking av = O'~ is normally 
sufficient for good accuracy, and then no iterations are needed 
and all the stress calculations are explicit. 

The stress-strain boundary may be regarded as a strain-de
pendent yield limit. Such an idea could hardly be introduced 
in the classical macroscopic formulation of plasticity (based 
on stress invariants), because the boundary would be a surface 
in an I8-dimensional space of all 0' jJ and EjJ components. The 
microplane concept makes the idea of strain-dependent yield 
limit feasible-simple, in fact-because there are only a few 
stress and strain components on the microplane level. The 
strain-dependent yield limit may be illustrated by the curve in 
Fig. I(c). The classical (stress space) plasticity is in this figure 
represented by the horizontal line for the yield limit. Now note 
that plastic metals have also been satisfactorily described by 
strain-space plasticity, which corresponds to the vertical line 
in this figure. Obviously a general curve should allow a better 
description because it is a combination of stress-space and 
strain-space plasticity theories. 

CONSTITUTIVE CHARACTERIZATION OF MATERIAL 
ON MICROPLANE LEVEL 

By fitting of various types of test data for concrete, the 
following functions, characterizing the constitutive properties 
of the material, have been identified: 

Fv(-Ev) =f~ exp ( - k~~); f~ = Eklk4 (20a,b) 

FD(-ED ) =f~ (1 - k~:J -I; f~ = Eklc4 (ED::;; 0) (21a,b) 

F;(ED) = c,f~ (1 - kED )-1 (ED ~ 0) (2Ic) 
I C2C, 

FN(EN, O'v) =f~ [1 + (:~Yrl; 

C = Cl + (-;vav
); f~ = Ekl 

FT(O'N) = (Eklk2 - k3 0'N) 

(22a-c) 

(23) 

in which kh ... , k, = adjustable empirical constants, which 
take different values for different types of concretes; and 
Ch ••• , C, = fixed empirical constants that can be kept the 
same for all normal concretes. They have the values Cl = 5, 
C2 = 6, C3 = 50, C4 = 130, and c, = 6 [among the data fitted in 
the companion paper (BaZant et al. 1996), parameter c, affects 
only the fit of the standard triaxial tests at very high pressures]. 
In the absence of sufficient test data, it is recommended that 
the adjustable parameters be taken with the following refer
ence values: kl = 72 X 10-6

, ~ = 0.1, k3 = 0.05, k4 = IS, and 
k, = 150. The value of Poisson's ratio has been considered v 
= 0.18. Except for E, all the parameters are dimensionless. 

The macroscopic Young's modulus is a parameter whose 
change causes a vertical scaling transformation (affinity trans
formation) of all the response stress-strain curves. If this pa
rameter is changed from E to some other value E', all the 
stresses are multiplied by the ratio E'IE at no change of strains 
[Fig. 4(a)]. Parameter kl describes radial scaling transforma
tion with respect to the origin. If this parameter is changed 
from kl to some other value k;, all the stresses and all the 
strains are multiplied by the ratio kUkl [Fig. 4(b)]. 

The aforementioned reference values of material parame
ters, along with E = 58,000 MPa, yield the uniaxial compres
sion strength f; = 42.4 MPa, as calculated by simulating the 
uniaxial compression test by incremental loading. The strain 
corresponding to the stress peak has been found to be Ep = 
0.0022. Now, if the user needs a microplane model that yields 
the uniaxial compressive strength f't and the corresponding 
strain at peak e:, one only needs to replace the reference val
ues of parameters kl and E by the following values: 

k* = k~' E* = Eft ~ 
11£/ f:E: (24a,b) 

Table I shows the values of f; and f: for some typical val
ues of material parameters ("R" in Table 1 refers to the 
reference values stated above). It also gives the corresponding 
ductility, which is defined as r = £pEIj' and represents the ratio 
03104 in Fig. 4(c) (f' is f~ or f:). The smaller r, the steeper 
the post-peak softening. The transformations according to (24) 
do not change the ratio r. 

The aforementioned reference values of material parameters 
yield the following ratios: 

f: fix: f~ O'r Tr 
Fe = 0.082; f; = 1.17; Fe = 0.069; f; = 0.07; Fe = 0.3 

(25a-e) 
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TABLE 1 Strength Ductlllt, and TYpical Material Paramet . • • era 

Tests E k1 (10-1) k2 k:. 
(1 ) (2) (3) (4) (5) 

Hognestad 8,200 59 R R 
van Mier 58,000 58 0.6 0.12 
Petersson 60,000 75 R 0.4 
Bafant 6,000 117 R R 
Green 5,100 135 R R 
Balmer 3,500 65 R 0.4 
Bresler 5,600 80 0.2 R 
Kupfer 5,500 56 R R 
Launay 5,100 40 R 0.3 
Sinha 4,000 60 0.6 0.3 

. " " P f. f Note. R means reference values, rc - e':EI/co and r, - efEl/, . 

in which!: = uniaxial compressive strength;!: = uniaxial ten
sile strength;!~c = biaxial compressive strength;!~ = pure shear 
strength; CIr = residual stress for very large uniaxial compres
sive strain; and Tr = residual stress for very large shear strain 
at CIv = O. The transformations according to (24) do not change 
these ratios. These ratios can be changed only by adjusting 
material parameters other than E and k l • 

Parameters k4 and k, can be determined exclusively from 
the data on hydrostatic compression tests. Taking the logarithm 
of (20a). the equation can be reduced to a linear regression 
plot. and thus parameters k4 and k, can be obtained by fitting 
the data on the hydrostatic compression test alone. separately 
from all the other parameters (because the value of Ev for hy
drostatic compression is the same for all microplanes and ED 

= EM = EL = 0 for all microplanes). The softening tail in uniaxial 
compression can be lengthened by increasing C2 while reduc
ing kl a little. and for tension by reducing k3 while reducing 
k\ a little. The ratio of the tensile to compressive strength can 
be increased by reducing C4 or k3• The ratio of the strength in 
pure shear to the uniaxial compressive strength can be in
creased by increasing k2 while reducing C4 or k3 a little. 

Eq. (23) for shear represents a linear friction law with co
hesion and friction angle [Fig. 3(e)1. which is a physically 
reasonable and simple way to handle inelastic response in 
shear (the cohesion stress is given by Ek\k2• which is the fric
tional stress at CIN = 0). The stress-strain boundaries [Fig. 3(d)] 
in the plane (Er. CIT) are horizontal. which means they degen
erate into a yield condition. unlike (20)-(22). The frictional 
concept is particularly appropriate for describing the shear re
sistance of concrete that has been reduced by large strains to 
loose gravel. 

If the present microplane is applied to extremely high pres
sures. as for example in impact problems, it seems that the 
straight line in Fig. 3(e) should be extended to the left by the 
curved dashed line approaching a horizontal. This would bring 
about a drop of friction (and dilatancy), known to exist at very 
high pressures. A possible simple formula could be CIT = 
«Ek\k2 - k3CIN)/(1 - CINIkt,» with additional parameter k6 • 

The value of k6 can be chosen large enough so that this for
mula would be very close to the straight line for the tests used 
to calculate the present model. 

Dilatancy due to frictional shear deformation need not be 
introduced into the microplane frictional shear law. The mi
croplane model automatically exhibits shear dilatancy due to 
the normal strains on microplanes inclined to the direction of 
shear slip (Ba!ant and Gambarova 1984). 

The dependence of c on CIv spoils the possibility of a com
pletely explicit calculation of CIU from given Eu. If this depen
dence were omitted, the correct ratio of biaxial to uniaxial 
compression strengths could not be obtained. The reason is 
that biaxial compression differs from uniaxial tension only by 
a hydrostatic stress state, and, to distinguish properly between 
these two stress states, C cannot be independent of CIv· 
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Ie.. 
(6) 

R 
R 
R 
12 
R 
R 
R 
R 
R 
R 

lea f~ 'a f: 
(7) (8) (9) (10) 

R 4.83 3.7 0.40 
R 42.0 3.0 4.75 
R 43.8 3.7 3.73 

175 7.11 3.8 0.58 
125 7.00 3.8 0.58 
300 4.10 2.1 0.19 
R 4.51 3.8 0.37 
R 3.10 3.7 0.26 
R 5.03 3.0 0.32 
R 4.10 2.3 0.31 

GENERALIZATION TO MODERATELY LARGE 
FINITE STRAIN 

" (11 ) 

3.2 
2.2 
3.2 
3.5 
3.4 
3.4 
3.3 
3.4 
3.5 
2.1 

Generalization to finite strain is both a tensorial invariance 
problem and a constitutive problem. The generalization is ac
complished by replacing the small strain tensor Eu in the pres
ent model with the finite strain tensor Eu. The transformation 
tensor Fu must be supplied as input to the constitutive 
subroutine. 

However, there is an ambiguity: one has infinitely many 
possible finite strain expressions to choose from. The simplest 
choice is the Green-Lagrange strain tensor 

where Fu = Ui.j + 8u; ul.j = gradient of displacements UI; and 
the subscripts preceded by a comma denote partial derivatives. 
These derivatives represent the derivatives with respect to the 
initial coordinates Xi of material points (Lagrangian coordi
nates); i.e., UIJ = aUilaXj' 

An important question arises for constitutive laws such as 
the present one, for which the strain tensor Eu needs to be 
decomposed into volumetric and deviatoric finite strain tensors 
Evu and EDu' At finite strain, EkJ;13 does not give the volume 
change exactly, and so generally EVI} :1= EkJ;13 (this is so for any 
choice of finite strain tensor). But for applications involving 
high pressures, the volume change must be calculated exactly. 

The importance of correct volumetric-deviatoric split may 
be illustrated by an example. Consider the case FI.1 = 0.50, 
F2.2 = 1.25, F3•3 = 1.55, and F2.\ = -0.55, with all other FiJ = 
O. In this case, we obtain from (26): Ell = -0.2238, ~2 = 
0.2813, E33 = 0.7013, and E\2 = ~\ = -0.3438, with all other 
EI} = O. The trace is Eu = 0.7588. The relative volume change 
(VO + AV)/Vo = det F - 1 = -0.0313, which is very different 
from EkJ;. 

The volumetric-deviatoric split for Green-Lagrange finite 
strain Eij has recently been analyzed by BaZant (1994b). Let 
us now briefly review this analysis. It is helpful to begin by 
recalling the derivation of Eij' Let XI and XI = initial and final 
coordinates of material points, and consider a line segment dX; 

transforming to dx,. The strain tensor Ell is defined by setting 
dxkdxk - dXkdXk = 2ElldXldXj . Substituting XI = XI + UI, dxk = 
xkJdXl (where Xk,1 = aXklaXI), one gets 

2£lIdXl~ = xt.,dX,xt.jdXj - dX,dXj 

(27) 

Since this must hold for any dX
" 

and Xk.1 = aXklaXI = 8k1, one 
has 2EII (8k/ + uk,/)(8~ + UkJ) - 811 ::: Uk; + UkJ + Uk,/Uk,j' which 
yields (26). 

Proceeding similarly, we now imagine that a small material 
element is first subjected to a strictly volumetric (isotropic) 



expansion (i.e., same expansion in all directions), in which 
point X, moves to ~ = X, + u: and line segment dX, transforms 
to line segment d~. Second, the element is transformed by 
deformation at no change of volume, followed by rigid body 
rotation (in which the volume change is also zero). In the 
second transformation, the point at coordinates ~ moves to X, 

= X, + u,' and segment d~ transforms to dx,. Let the volume 
change be characterized by engineering (or Biot) strain £0 de
fined so that d~ = (1 + £o)dX,. The relative volume change 
is (VO + AV)IVo = J = det F/} = (1 + £0)3, where J = Jacobian 
of transformation from X, to X,; VO = initial volume of small 
material element; and A V = its volume increase. Therefore 

(28) 

Let us now denote u7 = X, - ~ = displacements during the 
second transformation with zero volume change. Noting that 
a~/a~ = 811 = Kronecker delta, we may write dxk = d(~ + 
uZ) = [a(~ + un/a~]d~ = (Bli + auZla~)d~" Now, upon sub
stituting d~ = (1 + £o)dX

" 
we get dxkdxk = (8l1 + auZ/ 

a~)d~(81;/ + auZla~)d~, or 

dxktixk = (8/} + 2d/})(1 + £o)2dX,dX, (29) 

in which 

_ 1. (au;' + au;' + auZ au:) 
d/} - 2 a~, a~ a~, a~ (30) 

represents the Green-Lagrange finite strain tensor for the de
viatoric transformation taken alone. The total change of length 
of the line segment may now be expressed as follows (Bafant 
1994b): 

(31) 

= [(1 + £o)2(8/} + 2dq ) - 8q ]dX,dXJ (32) 

= {[(l + £0)2 - 1]8q + 2(1 + £oidq]dX,dX, (33) 

= 2(£vq + £Dq)dX,dX, (34) 

in which we denoted 

1 
eV=£o+2~ (35a-c) 

Comparing the first and last expressions in (31-34), we find 

£Dg = £q - £vq (36) 

Here ED/} = additive deviatoric finite strain tensor; and Ev/} = 
Green-Lagrange volumetric finite strain tensor, which is the 
same as the Green-Lagrange finite strain tensor for the initial 
volumetric transformation taken alone. 

The basic requirements for Ev/} and eD/} to be volumetric and 
deviatoric tensors is that Ev/} must vanish for purely deviatoric 
deformation (£0 = 0) and ED/} must vanish for purely volumetric 
deformation (u;' = 0). These requirements are obviously sat
isfied. However, ED/} is not a purely volumetric strain measure 
because it depends on £0. This dependence is nevertheless 
practically unimportant because concrete cannot undergo vol
umetric strains more than about 3% [which is the normal strain 
value at extreme hydrostatic pressure equal to - 300,000 psi; 
see Bahnt et al. (1986)]. Consequently, £0 cannot change the 
value of EDq by more than about 6%, and for typical pressures 
not more than about 0.5%. 

An interesting point to note is that det A/}, in which [A/}]2 = 
[8/} + 2£D ], is generally not 1. The reason is that tensor A/} 
looks as ilie transformation tensor corresponding to ED/} only 
formally. To check the volume change corresponding to EDIj' 

one needs to calculate it by the multiplicative decomposition. 
The new result in (35)-(37) (Bafant 1994b) shows that, for 

the Green-Lagrange strain tensor, an additive decomposition 

into volumetric and deviatoric finite strains is possible. This 
additive property is advantageous for constitutive laws with 
the volumetric-deviatoric split and for our microplane model 
in particular. The additive split can also be achieved for other 
finite strain tensors [for example, Biot strain tensor or the log
arithmic (Hencky) strain tensor; e.g., Bafant and Cedolin 
(1991), section 11.1), but is more complicated. The logarith
mic strain tensor is the only case for which the additive vol
umetric-deviatoric split is pure (Bafant 1994b, 1995), i.e., 
eD/} is independent of £0, but as has already been explained, 
this is unimportant for concrete. 

The logarithmic strain tensor, however, has the advantage 
that it is the only strain measure for which the difference 
etc - Eta of the finite strains at states B and C referred to 
natural state A is the finite strain e~c at state C referred to state 
B. This fact greatly simplifies the generalization of small-strain 
constitutive relation to very large strains. For the Green-La
grange finite strain tensor, the proper generalization of a small
strain constitutive relation to very large finite strains, of the 
order of 100%, has been found next to impossible to figure 
out [because of the quadratic terms in (26)]. For this reason, 
the present generalization to finite strain must be restricted to 
moderately large finite strains of the order of 10%. It is 
planned to extend the formulation to very large strains of con
crete, of the order of 100%, by using the logarithmic strain 
tensor (BaZant 1994b) (deviatoric strains of such magnitude 
can occur under extremely large hydrostatic pressures). 

Because of the additivity of volumetric and deviatoric strain 
tensors in (36), the microplane normal strain eN can be split 
as follows: 

(37) 

(although Ev i: Eu/3). The calculation of stress tensor a/} from 
the microplane stresses s/} according to (9) remains valid. 

If the finite strain tensor used as the input of the constitutive 
model is the Green-Lagrange strain, the output is the so-called 
second Piola-Kirchhoff (2PK) stress tensor. But often the 
stress tensor used in the equations of motion or equilibrium 
of the structure is the Cauchy stress tensor S/} (also called the 
true stress, representing the actual forces acting on a small unit 
cube cut out from the deformed material) 

(38) 

See, for example, Eqs. 11.2.9 and 11.2.13 in Bafant and Ce
dolin (1991). 

A change in the choice of finite strain tensor is manifested 
by a change of the associated objective stress rate (Bafant and 
Cedolin 1991, Eq. 11.3.19). But this, in tum, has been shown 
equivalent to a change in the tangential stiffness moduli of the 
material (Bafant 1971; BaZant and Cedolin 1991, Eq. 11.4.4). 
Therefore, a change in the choice of finite strain tensor must 
be equivalent to a certain change in the functions describing 
the constitutive properties (Bafant 1994b). Any finite strain 
tensor e may be expressed as e = G( e), where G = a tensor
valued function of Green-Lagrange strain tensor E of compo
nents Eu. Most generally, function G may be defined by the 
polar decomposition of tensor 

3 

i'k = Gq(e) :: 2: g[£(I)]nj'>n~1) (39) 
1-1 

where nj" = direction cosines of the principal axes of tensor e 
(and also of e); ~" = principal Green-Lagrange strains; and 
g(E) = any continuous monotonically increasing function such 
that g(O) = 0 and g'(O) = 1. Eq. (39) is analogous to the ex-
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pression given by Ogden (1984) and Rice (1993) in tenns of 
the principal stretches A(I) = VI + 1£(0' As recognized by Hill 
(1968), the stress tensor a that is conjugate to e must be de
fined by a:8e = U:8E. This variational equation, which re
quires that the work of the conjugate stresses a on any strain 
variation must be the same for any choice of finite strain ten
sor, may be rearranged as [a:(aelaE) - 0"]:8E = O. This im
plies that [ ... ] = 0, or 

_ aG(E) 
0" = 0":-

ae 
(40a,b) 

Here, ilA:l and GA:I = components of tensor a and G; and the 
colon refers to a doubly contracted tensorial product. Now, the 
small-strain constitutive law, which we write as G = cp(E), 
defined by tensor-valued function 'P, can be generalized by (1) 
reinterpreting the small (or linearized) strain as finite strain e, 
representing anyone of the possible finite strain tensors; an~ 
(2) at the same time reinterpreting stress 0" as the stress u 
conjugate to e. Thus the constitutive law generalized to finite 
strain takes in general the fonn a = cp(e). So, according to 
(40) 

aG(e) 
0" = cp[G(e)]: -- = f(e) 

ae 
(41) 

Function f must asymptotically coincide with cp for small 
strains (i.e., up to linear tenns in IOu). 

So we see that the constitutive law given by tensor-valued 
function cp that relates some strain tensor Eu to its conjugate 
stress tensor ill} must be equivalent to the constitutive law 
given by a certain other tensor-valued function f relating the 
2PK stress tensor (Ii) to the Green-Lagrange strain tensor Ei). 
Therefore, it is necessary to consider transfonnations of the 
constitutive law that are approximately equivalent to the trans
fonnation from cp to f due to other possible choices of the 
finite strain tensor. 

The 6 X 6 matrix of the components of fourth-rank tensor 
aG(E)/aE can be calculated for any choice of finite ~tr~n (B~

zant 1994b), but it is not easy and we better aVOid 1t. It 1S 
better to define function f(E) directly. It is convenient to do so 
as an implicit function of Green-Lagrange strain e, in the fonn 
f(E) = cp["'(E)] where cp defines, as before, the small strain 
constitutive law, and "'(E) is an arbitrary tensor-valued func
tion of E such that the linear tenn of its Taylor series expansion 
coincides with E, i.e., "'(E) ... E up to linear tenns. Thus func
tion "'(E) represents the combined effect of replacing E by 
G(E) and applying the transfonnation aGlae in (41). . 

In the context of the microplane model, the transfonnatlon 
according to function", may be more conveniently introduced 
on the microplane level, i.e., as transfonnations "'N(EN) and 
"'r(Er) for the microplane nonnal s~ai~.EN an? the micropl~e 
nonnal strains lOr == EM and Er = EL' L1m1ting th1S transfonnatlOn 
to tenns up the third order in Taylor series expansion, we may 
carry out the replacements 

[ 
p + (2p + q)EN ] 

EN ~ I\!N(EN) = fw 1 + 1 + 2EN EN (42a) 

1 + (r)E~ 
Er ~ I\!r(Er) = Er 1 + (-r)E~ (42b) 

in which EN E (-0.5, 00); Er E (-00, 00); and p, q, and r := 
additional empirical constitutive parameters for the general1-
zation to large strains, which can be detennined only by ~tt~ng 
large-strain data. They should not be so large as to .s1gmfi
cantly alter the response within the range of small stram data. 
Because for the case of volumetric strain tensor Eu = 8uEv (or 
ED = 0),' the transfonnations of EN and Ev must coincide, it is 
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also necessary to make the replacement Ev ~ IjIN(Ev), where 
IjIN = same function as in (42a). After that, one may calculate 
ED = Ew - Ev. 

For small EN and Er, (42a) and (42b) are equivalent, up to 
the third-degree tenns in EN and Er, to 

I\!N(EN) ,.,. EN + pE1 + qE~ and I\!r(Er) .... Er + rE~ (43a,b) 

The fonns in (42a) and (42b), however, are preferable. They 
have been set up so as to satisfy the following conditions for 
arbitrarily large strains: (1) function IjIr(er) must never be neg
ative, and indeed, by virtue of using ( ... ), (42b) is nonneg
ative, while (43b) for q < 0 becomes negative for sufficiently 
large Er; (2) function IjIN(EN) must approach - 00 for EN ~ 
-112 because in that case a finite line segment in the direction 
nonnal to the microplane gets compressed into a point. Note 
also that the quadratic tenn must be absent from function I\!r 

because this function must be anti symmetric (otherwise shear
ing in one direction would give a different response than 
shearing in the opposite direction). 

Functions F v , FD , FN, and Fr in (20)-(23) have been se
lected in a fonn that is not unreasonable for large strains. Al
though FN vanishes for EN ~ 00 and FD for ED ~ 00, function 
Fv provides increasing resistance to large volume decrease a?d 
function Fr provides frictional shear resistance of the matenal 
depending on the magnitude of compressive (IN' This appr~x
imately describes the behavior of gravel-like rubble, to Wh1Ch 
concrete may be reduced at very large shear strain. 

Even when concrete is intersected by a continuous crack, 
the microplane model provides resistance to shear along the 
plane of the crack, depending on strain and stress nonnal to 
the crack. This is due to the fact that a shear along such a 
crack is accompanied by compressive strain in 450 inclined 
direction, and those strains are resisted by the microplane 
model. This resistance further causes the microplane model to 
exhibit dilatancy due to shear of cracks (BaZant and Gamba
rova 1984). 

CALCULATION OF FINITE STRAINS FROM VELOCITY 
GRADIENTS AND SPINS 

In large explicit finite-element progr~s ~or finite str~in, 

typically the variables available at the begmmng of ~ach t1me 
step are the defonnation rate tensor Di) and the spm tensor 
WI}. From this, the velocity gradient tensor LI} = Di) + Wu' To 
calculate Ei}, one needs the transfonnation Fu = 81}. + UiJ = 
ax/ax, where Xi and Xi = initial and current coordmates of 
materi-:U point (Xi = Xi + ui ); and LI} = av/ax} = ax/ax} =. aUi 
lax}, where Vi = XI = UI = material point velocity. Now, FI} = 
ax/ax} = av/ax} = (aV;laXk)(aXkla~) = L/lcFI;J. Therefore, the 
increment of Fu during the time step At is 

(44) 

with first-order accuracy in At if Lik and F I;J refer to the begin
ning of time step. After updating Fi} ~ Fl}. + AFI!, one can 
calculate the new total Green-Lagrange fimte stram as 101} = 

~~-~~ . 
If the step is iterated and LikFI;J are reevaluated on the bas1S 

of the first iteration for the middle of the time step, then the 
accuracy in At is of the second order. Second-order accuracy 
in At can also be achieved during first iteration if the accel
eration gradient Li} = avJa~ (or [) and W) at the beginning 
of the time step is calculated by the finite-element program. 
In that case one can use, with second-order accuracy in At, 
AFI} = LikFI;JAt + Pu(At2/2) where Pu = [(aV;laXk)(aXklaX)] = 
(aV;laXk)(aXklaX}) + (axkla~) with aXklaX} = (avklaxm)(axml 
ax}), and so 

AFu = LlkFI;JAt + (LlkLkmF"" + LlkFI;J)(At
2
/2) (45) 



Note that, at constant velocity, Llk vanishes but the tenn Llk 

LbnF"II remains. Thus it might be useful to keep this tenn even 
if the value of Llk at the beginning of the time step is 
unavailable. 

SUMMARY 

The microplane model simplifies constitutive modeling be
cause the stress-strain relation on the microplane level involves 
only a few stress and strain components, which have a clear 
physical meaning. The passage from elastic response to soft
ening damage defined in tenns of different variables is sim
plified by the concept of boundaries in the stress-strain space. 
The development of the general theoretical concept in this pa
per will be followed in the subsequent companion paper (Ba
Zant et al. 1996) by comparisons with test data and a procedure 
to filter out unwanted localization from test data. 

APPENDIX I. SMOOTH TRANSITION TO 
BOUNDARY CURVES 

If we simply assume the response anywhere within the 
boundaries to be elastic, as given in the rate fonn by (10), the 
stress-strain path for the microplane will exhibit a sudden 
change of slope because the response cannot exceed the 
boundary curve. This kind of microplane behavior will cause 
rather abrupt changes of slope of the stress-strain relation on 
the macrolevel, although not as abrupt as on the microplane 
because different microplanes reach the boundary at different 
moments of loading. Experiments do not show such abrupt 
slope changes. Therefore, a remedy is desirable. 

The sudden transition from elastic response to the response 
along the stress-strain boundary causes the peaks of the stress
strain curve to be rather sharp (as seen in Fig. 3 of BaZant 
et al.). The peaks can be smoothed out by introducing a tran
sition curve between the elastic straight line and the boundary 
curve. The transition curve, however, cannot be defined as a 
simple function of strains because the elastic lines and bound
ary curves are functions of different components. A helpful 
idea is to define the transition implicitly, in tenns of (1) the 
elastic stress value (1' for a given strain E; and (2) the boundary 
curve value (1b, both corresponding to the same strain E. When 
~ » 0" > 0, the transition curve must nearly coincide with 
0"; when O'h « (10, it must nearly coincide with ~; and when 
0" = O'h, it must lie the farthest below both curves. These re
quired properties can be achieved by the following fonnula 
for the transition curve: 

~ + 0" + 81 ( rI' - a' - 81) 
T(O", (1b) = 2 - 80 In 2 cosh 28

0 

(46) 

where 0" = O'h, 0';", or (1~; O'b = (1~, O'~, or O'~; and 81 and 80 

= constants, which could be chosen as 1)1 = 0.1010 sign (O'h) 

and 1)0 = 0.2410 sign (O'h) with fo = tv, ft, or fr. For the vol
umetric boundary, no transition curve needs to be introduced 
because the slope change is mild. 

For 81 = 0, the transition curve would approach the elastic 
curve and the boundary curve asymptotically at :too (this may 
be easily checked by noting that, for large lxI, 2 cosh x = 
explxl). But the response near the origin of stress-strain space 
must be exactly elastic. Therefore, the left-side asymptote of 
the transition curve needs to be shifted up by distance 8,. This 
causes the transition to intersect the elastic curve. By choosing 
a small enough 8" the slope change at the intersection can be 
made small and acceptable. 

Transition curve (46), however, complicates the computa
tional algorithm in finite-element applications and doubles the 
number of stress variables that need to be stored. At the same 
time, the sharpness of the peaks of stress-strain relations is not 
important for most applications, compared to the magnitude 

of the peak and the area under the postpeak stress-strain curve. 
For this reason, (46) has not been included in the finite-ele
ment program. 

Instead of (46), another fonnula of similar properties could 
also be introduced: T(O", O'b) = {u b + u' + 81 - [(O'b -

u' - 8,)2 + 8~JII2}/2. This fonnula would be faster to execute 
computationally. However, it approaches the elastic and 
boundary curves too slowly, much slower than (46). 
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