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Microplane Model M7 for Plain Concrete. I: Formulation

Ferhun C. Caner
1
and Zden�ek P. Ba�zant, Hon.M.ASCE

2

Abstract:Mathematical modeling of the nonlinear triaxial behavior and damage of such a complexmaterial as concrete has been a long-standing

challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit

finite-element programs for concrete structures that computes the stress tensor from the given strain tensor and some history variables. The micro-

plane models, which use a constitutive equation in a vectorial rather than tensorial form and are semimultiscale by virtue of capturing interactions

among phenomena of different orientation, can serve this goal effectively. This paper presents a new concrete microplane model, M7, which

achieves this goal much better than the previous versions M1–M6 developed at Northwestern University since 1985. The basic mathematical

structure of M7 is logically correlated to thermodynamic potentials for the elastic regime, the tensile and compressive damage regimes, and the

frictional slip regime.Given that the volumetric-deviatoric (V-D) split of strains is inevitable for distinguishingbetween compression failures at low

and high confinement, the key idea is to apply the V-D split only to themicroplane compressive stress-strain boundaries (or strain-dependent yield

limits), the sum of which is compared with the total normal stress from themicroplane constitutive relation. This avoids the use of the V-D split of

the elastic strains and of the tensile stress-strain boundary, which caused various troubles in M3–M6 such as excessive lateral strains and stress

locking in far postpeak uniaxial extension, poor representation of unloading and loading cycles, and inability to represent high dilatancy under

postpeak compression in lower-strength concretes. Moreover, the differences between high hydrostatic compression and compressive uniaxial

strain are accurately captured by considering the compressive volumetric boundary as dependent on the principal strain difference. The model is

verified extensively in the companion paper. DOI: 10.1061/(ASCE)EM.1943-7889.0000570. © 2013 American Society of Civil Engineers.

CE Database subject headings: Constitutive models; Inelasticity; Cracking; Damage; Concrete; Algorithms; Mathematical models.

Author keywords: Constitutive modeling; Inelastic behavior; Cracking damage; Yield limits; Softening; Concrete; Numerical algorithm;

Thermodynamic potentials; Unloading.

Introduction

In 1938, the great G. I. Taylor proposed a new type of hardening

plasticity model in which the constitutive law is expressed in terms

of not tensors but vectors of stress and strain, acting on a generic

plane of arbitrary orientation in the material. Based on this idea,

Batdorf andBudianski (1949) developed the so-called slip theory of

plasticity with the following key features:
1. The stress vectors on plastic slip planes are statically con-

strained to the continuum stress tensor, i.e., they are obtained

as the tensor projections onto the slip plane.
2. The plastic strain vectors obtained, on all the slip planes, from

the stress vectors according to the plastic constitutive law are

superposed to yield the continuum plastic strain tensor; and
3. The plastic strain tensor thus obtained is added to the elastic

strain tensor calculated according to the elasticity constants

from the stress tensor.

This approach has by now led to the most powerful constitu-
tive models for hardening plasticity of polycrystalline metals,
broadly called the Taylor models (Butler and McDowell 1998;
Rice 1971; Hill and Rice 1972; Asaro and Rice 1977; Brocca and
Ba�zant 2000).

When generalizations to inelastic phenomena other than plastic
slip (e.g., the cracking damage) were attempted, the term slip plane
became inappropriate, and the more general term microplane was
coined (Ba�zant 1984) to denote a generic plane of any orientation
within the material on which the constitutive model is formulated as
a relation between the stress and strain vectors. The reason for the
prefix micro- is that, unlike the inelastic strain tensor on the con-
tinuum level (called the macrolevel), the normal and shear com-
ponents of an inelastic strain vector on a microplane allow for an
intuitive representation of microstructural phenomena such as
microcracking and microslipping with friction. In tensorial models,
a relation between J2 and I1 is regarded as internal friction, but in
reality, the frictional slip occurs on specific planes, which only
vectorial modeling can capture.

A dual alternative to the static constraint assumed in the Taylor
models is the kinematic constraint, which means that the strain vector
on a microplane is assumed to be a projection of the strain tensor. The
static and kinematic constraints cannot hold simultaneously—only one
or the other.

As it turned out, around 1980, the Taylor model with a static
constraint was found to be unstable in the presence of softening
damage, such as the distributed cracking in concrete. The instability
is caused by the localization of softening inelastic strain into a single
microplane and additive (or series) coupling of elastic strains on the
tensorial level. The problem was remedied in 1983 (Ba�zant and Oh
1983, 1985; Ba�zant 1984) by the following three modifications,
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which represent the salient characteristics of the microplane con-
stitutive models for materials with damage:
1. The static constraint must be replaced with a kinematic

constraint;
2. Instead of superposition, the continuum stress tensor must be

calculated from the stress vectors on all the microplanes by
means of the principle of virtual work; and

3. The elastic strains cannot be superposed on the macrolevel
(i.e., continuum tensorial level) but must be part of the
constitutive law on the microplanes.

The principle of virtual work gives the stress tensor components
as integrals over a unit hemisphere whose normals represent all
possible microplane orientations. This integral is in computations
approximated according to some of the optimal Gaussian integration
formulas for a spherical surface, which replaces the integral by a
weighted sum over a finite number of microplanes. Accuracy
demands the number of microplanes to be at least 21, although
preferably at least 37 of them should be used to reduce numerical
errors in far postpeak (Ba�zant and Oh 1986). Because the micro-
planes sample all possible orientations without bias, the principle of
frame indifference is satisfied—for a finite number of microplanes
only approximately but in the limit case of an integral exactly.

The microplane models can be regarded as semimultiscale
models (Ba�zant 2010), because they capture the orientation inter-
actions ofmicroscale inelastic deformations. They do not capture the
distance interactions, which is attributable to lumping the inelastic
phenomena into a single continuum point. Consequently, the mi-
croplane models fulfill only half the goal of the now-fashionable
multiscale models. However, in the case of strain-softening damage,
the existing multiscale models cannot capture the distance inter-
actions either. The reason is that they miss the effects of the lo-
calization instabilities on the microscale caused by microcrack
interactions and fail to predict the size of the fracture process zone
(or the characteristic length, serving as a localization limiter).

The development of microplane models was initially hampered
by their greater demand for computer power compared with the
classical tensorial models. However, this disadvantage has since
evaporated. The computers that exist today can handle systems of
tens of millions of finite elements using the microplane model.

Since 1983, a series of progressively improved microplane
models labeled M0, M1, M2, . . ., M6 have been developed for
concrete, and other microplane models have been developed for
clays, soils, rocks, rigid foams, and fiber composites (prepreg lam-
inates and braided) (Ba�zant et al. 2000; Cusatis et al. 2008; Caner
et al. 2011). Model M0 used loading surfaces in terms of both the
normal and shear components on a microplane, analogous to the
theory of plasticity, but that was soon found to be an unnecessary
complication.ModelM1 (Ba�zant andOh 1983, 1985) was limited to
tensile cracking damage. Models M2–M6 were able to model in-
elastic behavior in compression and, crucially, could distinguish
between the case of no confinement or weak enough confinement,
which leads to strain softening in compression, and the case of
strong enough confinement, which does not. This was achieved in
M2 (Ba�zant and Prat 1988a, b) by splitting the microplane normal
strain into its volumetric and deviatoric parts and by imposing on
each part [see Ba�zant et al. (1996) for M3 and Ba�zant et al. (2000)
and Caner and Ba�zant (2000) for M4] separate strain-dependent
strength limits, called the stress-strain boundaries.

The volumetric-deviatoric split, however, brought about other
problems—especially, excessive lateral expansion and stress locking
in far postpeak uniaxial tension and unrealistic unloading and re-
loading. The expansion and locking problems were mitigated in M5
(Ba�zant and Caner 2005a, b) by a series coupling of separate
microplanemodels for compression and for tension. InM6 (Caner and

Ba�zant 2011), this was achieved by a continuous transition to no split
at increasing extension but at the price of compromising the large-
scale numerical computations, the unloading and loading cycles, and
the simultaneous tensile and compression softening in different
directions.

Also, in view of the split of microplane strains, it was thought to
be desirable (in M4, though not M6) to enforce the macro–micro
equilibrium separately for the volumetric and deviatoric stress
components. However, this unnecessary hypothesis caused the
deviatoricmicroplane stresses at all themicroplanes ofM4not to have
a zero volumetric resultant on the macroscale, which had to be
corrected by an iterative loop. Abandoning the volumetric-deviatoric
split altogetherwas attempted inmicroplanemodelM2’ byHasegawa
and Ba�zant (1993a, b), but the modeling capability proved to be
inferior to that of M3 and M4.

All these problems are overcome in the present model M7. The
key idea is to abandon the volumetric-deviatoric split for the elastic
part of microplane strains and for the tensile stress-strain boundary
while retaining it for the compressive normal and deviatoric stress-
strain boundaries, which are then summed for comparison with the
total normal stress. It will be shown that this idea endows the con-
crete microplane model with a much better and broader modeling
capability than the previous microplane models.

Numerous advantages of microplane models were reviewed in
Brocca and Ba�zant (2000) and Ba�zant et al. (2000). One advanta-
geous feature that has generally been overlooked in constitutive
modeling but that should be emphasized is that the microplane
model automatically captures the vertex effect, i.e., the fact that
deformation increments that are parallel to the current loading
surface in the stress space are not elastic but inelastic, as experi-
mentally demonstrated in Caner et al. (2002). This effect comes into
play when the principal stress and strain directions rotate against the
material, which is a typical occurrence, especially under dynamic
loads. Tensorial models with one or a few loading surfaces cannot
capture this effect as a matter of principle. Why can the microplane
model?—Because it effectively represents multisurface plasticity
with several vectorial limit surfaces at each microplane.

Another important advantage is that, in the vectorial component
form on a genericmicroplane, it is easy to take into account the strain
dependence of the yield limit. In tensorial form, it would be pre-
posterously complex to do that.

It must also be stressed that the microplane model provides only
the constitutive (or stress-strain) relation. Because of postpeak soft-
ening, in practical applications, it must be combined with some lo-
calization limiter, such as the nonlocal or crack band models. In this
way, M7 provides the stress-separation relation for a cohesive crack,
enhanced by the effect of shear and longitudinal compression along
the crack, and also gives a realistic transitional size effect (Ba�zant and
Yu 2011).

Finally, it is worth noting that the constitutive relations pre-
scribed on themicroplanes, which are lumped into a singlematerial
point in the microplane models, can also be used in an explicitly
mesoscale model on planes of various orientations separating the
neighboring aggregates embedded in a cement mortar matrix. This
is done in the lattice discrete particle model (LDPM), which
evolved from the initial attempt in Cusatis et al. (2003). Inevitably,
there are similarities between the constitutive relations of micro-
plane models and those of LDPM. In the latest, simultaneously and
independently developed version of the LDPM (Cusatis et al. 2011b,
a), the compressive normal boundary is constructedwithout using any
separate deviatoric and volumetric boundaries, and the boundary on
the normal strains is defined as a function of both the volumetric
and deviatoric strains. In this sense, there is a partial analogy with one
basic idea of model M7, which is not to calculate any separate
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volumetric and deviatoric stress components and use the sum of the

compressive volumetric and deviatoric boundaries as a boundary

imposed on the total compressive normal stress on the microplanes.

Basic Relations for Kinematically
Constrained Microplanes

Unlike the classical tensorial constitutive models, the microplane

constitutivemodel is defined by a relation between the stresses and

strains acting on a generic plane of any orientation in the material,

called the microplane. The basic hypothesis, which was shown in

Ba�zant (1984) to be necessary to ensure the stability of the postpeak

strain softening (andwhich leads to a robust explicit algorithm), is that

the strain vector ɛN on the microplane [Fig. 1(a)] is the projection of

ɛ, i.e., ɛNi
5 ɛijnj, where ni are the components of the unit normal

vector n of the microplane, with the subscript i referring to the global

Cartesian coordinates xi ði5 1, 2, and 3Þ. The authors also introduce
orthogonal unit coordinate vectorsm and l, of components li and mi,

lying within the microplane [Fig. 1(a)]. Taking the projections of

vector ɛN onto ni, li, and mi, one gets the normal and shear strain

components and the shear strain resultant

ɛN ¼ Nijɛij, ɛL ¼ Lijɛij, ɛM ¼ Mijɛij (1)

ɛT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ɛ
2
L þ ɛ

2
M

q

(2)

where

Nij ¼ ninj, Lij ¼
�

linj þ ljni
��

2, Mij ¼
�

minj þ mjni
��

2 (3)

The subscript N refers to the normal direction ni; subscripts L and

M refer to the shear directions li andmi; and subscript t refers to the

shear resultant. Repetition of subscripts implies summation over

i5 1, 2, and 3. A vector mi may, for example, be chosen to be

normal to the x3-axis, in which case m1 5 n2ðn
2
11n22Þ

21=2
, m2

5 2n1ðn
2
1 1 n22Þ

21=2
, m3 5 0, but m1 5 1 and m2 5m3 5 0 if

n1 5 n2 5 0. A vector m1 normal to x1 or x2 may be obtained by

permutations of the indexes 1, 2, and 3. The orthogonal unit vector

is generated as l5m3 n. To minimize directional bias, vectorsm

are alternatively chosen to be normal to the x1-, x2-, or x3-axes. To

model softening damage in compression (though not in tension),

it is helpful to define the deviatoric normal strains ɛD on the

microplanes

ɛD ¼ ɛN 2 ɛV , ɛV ¼ ɛkk=3 (4)

where ɛV 5 volumetric strain (or mean strain), which is the same for

all the microplanes (whereas ɛD is not).
In general, it is impossible for both the stress and strain vectors on

the microplanes to be the projections of the stress and strain tensors.

Therefore, the static equivalence, or equilibrium, between the stress

vectors on all the microplanes and the stress tensor must be enforced

variationally based on the principle of virtual work (Ba�zant 1984),

which may be written as

2p

3
sijdɛij ¼

ð

V

ðsNdɛN þ sLdɛL þ sMdɛMÞdV (5)

where V 5 surface of a unit hemisphere centered at the material

point; and 2p=35 its volume. This equation means that the virtual

work of continuum stresses (or macrostresses) within a unit sphere

must be equal to the virtual work of the microplane stress com-

ponents (or microstresses) regarded as the tractions on the surface of

the unit sphere. The integral may be regarded as orientational ho-

mogenization of the contributions from planes of various orientations

within the material, as depicted in Fig. 1(b) [for a detailed physical

justification, see Ba�zant et al. (1996)]. Substituting dɛN 5Nijdɛij,

dɛL 5 Lijdɛij, and dɛM 5Mijdɛij and noting that the last variational

equationmust hold for any variation dɛij, one gets the following basic

equilibrium relation (Ba�zant 1984):

Fig. 1. (a) Microplane strain vector and its components; (b) system of discrete microplanes; (c) microplane strain components
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sij ¼
3

2p

ð

V

sijdV� 6
P

Nm

m¼1

wms
ðmÞ
ij (6)

sij ¼ sNNij þ sLLij þ sMMij (7)

In numerical calculations, this integral is approximated by an opti-
mal Gaussian integration formula for a spherical surface (Stroud
1971; Ba�zant and Oh 1985) representing a weighted sum over the
microplanes of orientations nm, with weights wm normalized so that
P

mwm 5 1=2 (Ba�zant and Oh 1985, 1986). The most efficient
formula that still yields acceptable accuracy involves 21microplanes
[Ba�zant and Oh 1986; Fig. 1(b)], although to get better accuracy in
far postpeak softening, 37 microplanes are currently preferred. In
finite-element programs, the integral given in Eq. (6) approximated
by a sum must be evaluated at each integration point of each
finite element in each time step. The values of N

ðmÞ
ij , M

ðmÞ
ij , and L

ðmÞ
ij

for all the microplanes m5 1, . . . , Nm are common to all the inte-
gration points of all finite elements and are calculated and stored in
advance.

The most general explicit constitutive relation on the micro-
plane level may be written as

sNðtÞ ¼ F t
t¼0½ɛNðtÞ, ɛTðtÞ�, sLðtÞ ¼ Gtt¼0½ɛNðtÞ, ɛTðtÞ�,

sMðtÞ ¼ Ht
t¼0½ɛNðtÞ, ɛTðtÞ�

(8)

where F , G, and H 5 functionals of the history of the microplane
strains at time t; and ɛTðtÞ5 shear strain resultant with components
ɛM and ɛL. The functionals G and H are the same except that they
give different projections on axes L and M.

Elastic Behavior and Material Damage for Unloading

When the normal microplane strains ɛNm
are not split into their

volumetric and deviatoric parts, ɛV and ɛDm
, with independent elastic

constants for each, the normal and shear stiffness constants EN and
ET on the microplanes under a kinematic constraint are [Bazant and
Prat 1988a, Eq. (22); Carol and Ba�zant 1997, Eq. (32)]

EN ¼
E

12 2n
, ET ¼ EN

12 4n

1þ n
(9)

whereE5Young’s modulus on the macrolevel; n5 Poisson’s ratio;
andEN 5K=3 whereK is the bulkmodulus. Because bothEN andET

must be nonnegative, only Poisson’s ratios in the rangen2 ½21, 0:25�
can be reproduced.

This range of n is sufficient for concrete, for which n� 0:18,
but would not suffice for some other materials with n2 ð0:25, 0:5�,
such as metals, ceramics, polymers, or ice. For those, one easy
remedy, mentioned in Ba�zant and Oh (1985), is to make the
microplane model coupled in parallel with an isotropic volumetric
elastic element that is subjected to the same strain tensor ɛij and has
a finite bulk modulus K9 but zero shear modulus G95 0 (Fig. 2).
Because, for such a coupled model, the bulk and shear moduli are
~K5K1K9 and ~G5G1G95G, Poisson’s ratio is (Fung 1968,
p. 130)

~n ¼
3Kð1þ G=G9Þ2 2G

6Kð1þ G=G9Þ þ 2G
(10)

which tends to 0.5whenG9/G→ 0. Any Poisson’s ratio up to 0.5 can
thus be reproduced (without a volumetric-deviatoric split).

In the present modeling of concrete, the coupling of such a par-
allel element is not necessary, and so, it is not made here. Never-
theless, n5 0:18 could also be obtained with such coupling when
EN and ET are tuned to give less than 0.18 without the coupling. It
seems that the present modeling capability would not be enhanced
by such coupling, but this is one point that may be worth checking
further (especially for a material with n less than, but close to, 0.25).

In microplane models M1 and M2, the tangential microplane
stiffness was varied as a function of strain. However, beginning with
modelM3(Ba�zant et al. 1996), it appeared simpler to introduce strain-
dependent strength (or yield) limits, called stress-strain boundaries.
Within the boundaries, the response is elastic, with constant micro-
plane elastic stiffness EN and ET .

The fact that the stress-strain boundary is reached at different
microplanes at different moments of loading is what causes both the
prepeak and postpeak macrolevel stress-strain curves to vary their
slope gradually, as observed in experiments. Similarly, during
macroscopic unloading, different microplanes return from the
stress-strain boundary into the elastic domain at different moments,
which again causes the unloading curves to change unloading slope
gradually, with a progressively decreasing slope as the unloading
proceeds. Similar comments apply to reloading.

Energy Dissipation

Thermodynamically sound constitutive models must obviously
satisfy the condition that the density of the dissipation rate must be
nonnegative. In microplane models, this criterion could easily be

Fig. 2. Microplane system coupled to an element with infinite volu-

metric stiffness, making possible any thermodynamically admissible

value of Poisson ratio (in the present model for concrete,G95‘, i.e., the

coupled element is rigid, and the strain in the microplane model is the

total strain)
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satisfied by requiring the dissipation rate on each microplane
to be nonnegative. However, there are three problems with this
requirement.
1. The dissipation rate on each microplane being nonnegative is

only a sufficient condition, not a necessary one; only the
combined dissipation rate on the microplane system must
be nonnegative, which means that the dissipation can be
negative on some microplanes.

2. Purely elastic unloading on the macrolevel is not realistic, and
so, the effect of damage attributable to material stiffness loss
must be known. Depending on the future unloading path, one
can judge the current energy dissipation rate to be positive or
negative.

3. On the macrolevel, the unloading path is complex and curved,
because different microplanes start unloading at different
times rather than simultaneously.

Is it important to distinguish between sufficient and necessary?
It is. Previously, in Ba�zant et al. (2010), an automatic correction in
each loading step of a microplane model was developed to satisfy
the dissipation criterion on each microplane separately, which is
a sufficient, though not necessary, way to satisfy the dissipation
inequality. But such a correction was subsequently found to be far
too stringent, making it impossible to fit most test data.

The density of the energy dissipation increment may be written
as dD5 dW 2 dU where dW 5sijdɛij is the work of stress on the
strain increments and U is the density of recoverable stored energy.
Unfortunately, the value of U cannot be defined at the current state,
because in a general microplane model, it depends on the stress-
strain histories for loading and future unloading, the latter being
unknown in advance.

To illustrate the difficulty, consider [similar to Ba�zant et al.
(2010)] one tensorial component of the stress and strain only and
a general stress-strain diagram with strain softening, sðɛÞ, as shown
in Fig. 3. An infinitesimal strain increment dɛ from point 1 to point 2
leads to material damage that causes (in the presence of continuing
damage) the unloading path to change from curve 14 to curve 23.
Curve 64 is a rigid-body shift of 23 to the left. Because dɛ is in-
finitesimal, 51 is also infinitesimal. So, thework given by the triangle
1251 is second-order small, infinitely smaller than the cross-hatched
areas, and thus negligible. Area 23462 is the inelastic work incre-
ment dW 5sdɛ99 representing the inelastic (or plastic) part of energy
dissipation. Area 4564 is the decrement of stored energy, dU ð, 0Þ,
which represents the energy dissipation attributable to damage.
The total energy dissipation increment is dD5 dW 1 ð2dUÞ and is
represented by the combined cross-hatched area 456234. So, in this
one-component setting (Fig. 3), a sufficient requirement of non-
negative energy dissipation would be that the combined (cross-
hatched) area 23452 be nonnegative.

But for the microplane system as a whole, this condition cannot
be evaluated in the current state, because the shape of the future
unloading paths 154 and 26 is not known, as different microplanes
transit to unloading at different times, giving a curved unloading
path (which is the actual behavior of concrete). This contrasts with
the classical plastic or damage theories in which the unloading
behavior is known and simple—either a straight line of elastic
unloading or a straight line through the origin or a combination of the
two.

This is one difficulty. Another is that a realistic check for non-
negative dissipation must include multiaxial stress paths, such as
a closed loop consisting of normal stress increment, shear stress
increment, normal stress decrement, and shear stress decrement
returning to the original zero stress tensor.

An example of such a loop was given in Carol et al. (2001) for
microplane model M2, with the conclusion that energy dissipation
could be negative. However, the unloading path was considered in
that example to be a straight line always pointed to the origin, which
is unrealistic and is not the way model M2 has been used. If the
unloading in that example is assumed to follow a constant elastic
stiffness, no problem occurs for M2.

For the present model M7, computations have been run for some
similar closed loops, and no negative dissipation has been found, but
a general dissipation check forM7, covering all the possible loops, is
a challenge.

Microplane Stress-Strain Boundaries and
Numerical Algorithm

Damage corresponding to the orientation of a given microplane is
characterized by compressive volumetric and deviatoric boundaries
sb
V andsb

D and by the tensile normal boundarysb
N . If the boundary is

exceeded in a finite load or time step, the stress is reduced to the
boundary keeping the strain constant, as illustrated for sN in Fig. 4.

Rather than explaining the boundaries first, it will be more ef-
fective to do so after presenting the computational algorithm. The
algorithm for each load or time step uses the values of increments
Dɛij for the current step and the values of ɛ

o
ij and s

o
ij for the end of the

previous step. The subscript 0 is attached in E0 and EN0 to denote
the original (initial, undamaged) values of E and EN , whereas the
superscript o labels, when necessary, the values at the beginning of
the current step (which is also the end of the previous step).

At each integration point of each element in each load or time step
of an explicit finite-element program, there is a loop over all the

Fig. 3. Dependence of energy dissipation in strain-softening materials

on the unloading behavior

Fig. 4.Vertical return to stress-strain boundary at constant strain when

the boundary is exceeded by elastic stresses in a finite load step
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microplanes in which the new stress tensor sij at the end of the

current step is computed as follows:
1. First, evaluate the microplane strains from Eq. (2) and the

microplane strain increments as

DɛN ¼ NijDɛij, DɛM ¼ MijDɛij, DɛL ¼ LijDɛij (11)

2. Calculate the volumetric strain at the end of the previous

step, its increment, and the volumetric strain at the end of

current step

ɛ
o
V ¼ ɛkk=3, DɛV ¼ Dɛkk=3, ɛV ¼ ɛ

o
V þ DɛV (12)

3. Evaluateɛe 5 h2so
V=EN0i [where hxi5maxðx, 0Þ5Macauley

brackets], and get the corresponding value of the volumetric

stress-strain boundary

sb
V ¼ 2Ek1k3e

2ɛV=k1a (13)

where

a ¼
k5

1þ ɛe

�

ɛ
o
I 2 ɛ

o
III

k1

�c20

þ k4 (14)

in which ki ði5 1, 2, and 3Þ 5 adjustable scaling parameters

whose numerical values will be discussed later, and ɛoI and ɛ
o
III

5 maximum and minimum principal strains at the beginning

of the step.
4. Calculate the deviatoric strain components on the microplane

DɛD ¼ DɛN 2DɛV , ɛ
o
D ¼ ɛN 2 ɛ

o
V , ɛD ¼ ɛ

o
D þ DɛD

(15)

and the value of the compressive deviatoric stress-strain

boundary (which is negative)

sb
D ¼ 2

Ek1b3

1þ
�

h2ɛDi=ðk1b2Þ
	2

(16)

where

b2 ¼ c5g1 þ c7, b3 ¼ c6g1 þ c8, g0 ¼ fc09 =E0 2 fc9=E

(17)

g1 ¼ eg0 tanhðc9h2ɛV i=k1Þ (18)

5. Calculate the new (end of step) value of ɛN 5 ɛV 1 ɛD, and

retrieve the stored positive and negative normal strains of

maximum magnitudes reached so far, ɛ01N and ɛ
02
N (history

variables). Then, denoting EN0 5E=ð12 2nÞ, calculate the

current damaged value of the normal microplane elastic

modulus

EN ¼ EN0e
2c13ɛ

0þ
N f ðzÞ for so

N $ 0 (19)

but

EN ¼ EN0 if so
N .EN0eN and so

NDeN , 0 (20)

EN ¼ EN0




e2c14jɛ02N j=ð1þc15ɛeÞ þ c16ɛe

�

for so
N , 0 (21)

In Eq. (19), f ðzÞ5 ð11 az2Þ21
in which z5

Ð

hdeV i and
typically a5 0:1 has been employed to extend the validity of

the model to many load cycles, with virtually no effect for the
first few cycles (K. Kirane and Z. P. Ba�zant, personal com-
munication, 2013). When unloading occurs on the micro-
planes with normals in the direction of the maximum principal
tensile strain, the response inevitably will intersect the initial
elastic loading path. This is because of the damage to (or
reduction of) the elastic stiffness. The condition in Eq. (20)
makes sure that, after the intersection, the unloading proceeds
with the initial elastic slope toward the origin, instead of
continuing to follow the original unloading path even after the
intersection. Following the original unloading path after the
two paths intersect would be incorrect, because it would cause
negative dissipation during load cycles.

Now, calculate the elastic normal microplane stress

se
N ¼ so

N þ ENDɛN (22)

6. For sb
N . 0 and with the notation EN0 5E=ð12 2nÞ, calculate

the value of the tensile normal boundary

sb
N ¼ Ek1b1e

2hɛN2b1c2k1i=½2c4ɛesgnðɛeÞþk1c3�

where b1 ¼ 2c1 þ c17e
2c19hɛe2c18i (23)

7. Enforce the vertical drop of stress at constant strain to the
stress-strain boundary for normal stress

sN ¼ max
�

min
�

se
N ,s

b
N

�

,sb
V þ sb

D

	

(24)

8. If the normal stress-strain boundary has been exceeded,
store the overall maxima of normal microplane strain as
ɛ
01
N and ɛ

02
N .

9. Calculate the approximate average value of all the normal
microplane stresses as the current volumetric stress

sV �
1

2p

P

Nm

m¼1

wmsN (25)

10. Retrieve the stored previous microplane shear stresses in the
L- and M-directions, so

L and so
M . Then, evaluate ET from

Eq. (9) and

ŝo
N ¼ hETk1c11 2 c12hɛV ii (26)

Now, calculate the shear boundary

sb
t ¼

h

�

c10
�

ŝo
N 2sN

�

21 þ ðETk1k2Þ
21

i21

for sN # 0

(27)

sb
t ¼

h

�

c10ŝ
o
N

�

21 þ ðETk1k2Þ
21

i21

for sN . 0 (28)

11. Then, calculate the shear response with return to the boundary

se
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

so
L þ ETDɛL

�2
þ
�

so
M þ ETDɛM

�2
q

(29)

st ¼ min
�

sb
t ,
�

�se
t

�

�

�

(30)

sL ¼
�

so
L þ ETDɛL

�

st=s
e
t (31)

sM ¼
�

so
M þ ETDɛM

�

st=s
e
t (32)
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12. Now, calculate the stress tensor sij using the sum over all the
microplanes in Eq. (6) with Eq. (7), and finally, update the
variables sV , sN , sL, sM , ɛ

01
N , and ɛ

02
N .

The parameters ki and cj are empirical and are of two kinds:
k1, . . . , k5 are free and easily adjustable, and c1, . . . , c20 arefixed and
hard to adjust. Both kinds are discussed in the companion paper.

As a result of delaying the value of sV by one step, the foregoing
algorithm can exhibit, in regard to the influence of sV , only first-
order convergence on refining the loading step. A second-order
convergence could be achieved by iterating each loading step once
(similar to the Runge-Kutta algorithm) and using for sV the average
value obtained in the first iteration of the step.

Discussion of Stress-Strain Boundaries,
Algorithm, and Scaling

In the present model M7, the tensile deviatoric boundary used in
M3–M6 is no longer needed. Model M7 employs only four types of
stress-strain boundaries:
1. Normal, imposed only on tensile strains [Eq. (23), Fig. 5(a)];
2. Volumetric, imposed only on compressive strains [Eq. (13),

Fig. 5(b)];
3. Deviatoric, imposed only on compressive strains [Eq. (16),

Fig. 5(c)]; and
4. Plastic-frictional, imposed on the resultant magnitude of the

shear stresses and dependent on ɛN (which represents friction)
as well as ɛV [Fig. 5(d)].

WhensN exceeds the boundary, it is dropped to the boundary at
constant ɛN . When the resultant sT exceeds the boundary, it is
dropped to the boundary while keeping both ɛN and ɛV constant
(which is a vertical drop in Fig. 4). The new boundary value of shear
stress sb

t is then transferred into components sL and sM in the
proportion of the original shear stress vector components augmented
by elastic shear stress increments in the step [Eqs. (31) and (32)].

In contrast to the present model, in previous microplane models
M4–M6 the shear boundary was applied separately to each component
sL and sM , and the dependence of the components sL and sM on the

choice of coordinateswas countered in the overall sense by selecting the
coordinates randomly on each microplane. This approach was moti-
vated empirically by the fact that it led to a more realistic, large enough
ratio of biaxial to uniaxial compressive strength. However, it now
appears that imposing the boundaries on the components was needed
because of adverse effects of the elastic volumetric-deviatoric split. In
the present model without such a split, the biaxial strength is simulated
correctly despite imposing the boundary on the shear resultant. Thanks
to applying the boundary on the shear resultant, the directional de-
pendenceof the response is removedcompletely, evenat themicroplane
level. (Previously, it was removed only statistically in the mean, by
alternating the in-plane coordinate directions over all the microplanes.)

The crucial innovation compared with models M3–M6 that
greatly enhances the modeling power is that in compression the
volumetric and deviatoric boundaries, rather than being used to limit
sb
V and sb

D separately, are used [in Eq. (24)] only to limit sN by the
sumsb

N 5sb
V 1sb

D. By contrast with the precedingmodelsM3–M6
in which the volumetric-deviatoric split of microplane normal stress
was introduced in the elastic behavior and generally did not hold in
the inelastic range, in the current model this split applies only in the
inelastic range. This innovation makes it possible to dispense with
the volumetric-deviatoric split of the elastic deformations, which led
in M3–M6 to problems with the tensile response, such as excessive
lateral expansions andnormal stress lockingat far postpeakextensions.

Although this innovation first transpired heuristically, it logically
follows from the hypothesis that the elastic and damage potentials,
U and C, have the form introduced in Eqs. (33) and (35), in which
C depends on both ɛN and ɛV separately while U depends only on
ɛN . Indeed, Eq. (42) implies that the sumsb

V 1sb
D ought to appear in

Eq. (23) for the normal boundary.
Introducing the volumetric-deviatoric split only for the damage-

controlling normal boundary, and not for the elastic behavior, has
made it possible to get rid of the tensile deviatoric boundary, which
had to be used in M4–M6 to avoid two related problems in far
postpeak extension under uniaxial stress: (1) excessive lateral ex-
pansion, and (2) axial stress locking, which means that the axial
stress does not reach zero at very large tensile strain and may even
begin to rise. Such problemswere traced inM4 to the nonuniqueness

Fig. 5. Stress-strain boundaries used in model M7: (a) normal boundary; (b) deviatoric boundary; (c) volumetric boundary; (d) plastic-frictional

boundary
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of the subdivision of elastic normal strain into its elastic volumetric
and deviatoric parts. InM4, it could happen that the postpeak normal
stress would be reduced to zero while both the volumetric and
deviatoric parts were large, of opposite signs, and cancelling each
other. It was this feature that caused both the excessive lateral ex-
pansion and stress locking.

The volumetric stressso
V as a parameter for the normal boundary

in Eq. (23) has been useful for data fitting, particularly to ensure
that the postpeak compression under uniaxial stress would not be too
steep. The use of sV , of course, destroys full explicitness in cal-
culating the normal stress from the strain. Thus, the value of so

V

needs to be computed from the microplane stress values obtained at
the end of the previous step, or the current step must be iterated to
estimate the average so

V for the current load step.
A further feature different from M4 (but introduced already in

M6) is the use of the maximum principal strain difference ɛI 2 ɛIII

as a parameter for the volumetric boundary. This difference does
no work on the volumetric stress sV and thus does not represent a
kinematic variable of the volumetric boundary (which is why it is
absent from the potentials in the Appendix. From the thermodynamic
viewpoint, the fact that the difference ɛI 2 ɛIII does zerowork during
volume change makes its role similar to the role of nonworking
normal stress or normal strain during nondilatant frictional slip.

The difference ɛI 2 ɛIII is needed to distinguish weakly confined
or unconfined compression, which terminates with strain softening
(as under compressive uniaxial or biaxial stress), from highly
confined compression, which does not (as in uniaxial strain and
hydrostatic compression). Of course, the use of ɛD helps to make the
same distinction, as in M4, but ɛD alone is not enough.

Another useful new feature of M7 is that the use of the principal
strain difference as a parameter of the volumetric boundary [Eqs. (13)
and (14)] helps to distinguish the behaviors of low-strength and
normal-strength concretes. Because this difference is zero under
hydrostatic (or volumetric) compression and nonzero, with growing
magnitude, under confined compression, it also helps to distinguish
between the hydrostatic compression and the perfectly confined
uniaxial compression (or uniaxial strain). In models M3 andM4, this
important distinction could not be made, in general.

The plastic-frictional boundary [Fig. 5(d)] at small compression
sN has a steep slope, indicating a high frictional effect. At zero sN ,
the boundary allows transmission of nonzero sT , representing co-
hesion. The shear resistance sT vanishes at finite tensile stress, the
value of which depends on ɛV [Fig. 5(d)]. When ɛV � 0, the co-
hesion vanishes. The effect of ɛV disappears under large enough
compressive sN . At very large compressive sN , the boundary has
almost no slope. This means that, under high confinement, concrete
becomes perfectly plastic, a fact that has been established by tube-
squash tests (Ba�zant et al. 1999; Caner and Ba�zant 2002). This
feature is, for instance, important for energy dissipation under the
nose of a penetratingmissile, where extreme pressures may develop.

The b-coefficients in boundary Eqs. (16), (17), and (23) take
empirically into account the transition from low-strength concrete to
normal-strength concrete. Let fc09 be the chosen reference strength in
compression. For fc95 fc09 , one has the deviatoric boundary for the low-
strength concrete, forwhich the volumetric boundary depends strongly
on the deviatoric strain, and for fc9� fc09 , one has the deviatoric
boundary for normal-strength concrete, for which this dependence is
mild. This distinction is important for low-strength concretes, because
such concretes exhibit a much stronger dilatancy during shearing. As
the strength increases, the dilatancy diminishes, and it probably totally
disappears for very high strength concretes,which are extremely brittle
and fail by smooth cracks and with small fracture process zones.

The current formulation without a volumetric-deviatoric split of
elastic strains, as given by Eqs. (19)–(21), leads to realistic

unloading and reloading responses for both tension and com-
pression. To explain why it does, consider unloading that starts
when the axial tensile strain is in the postpeak softening regime. On
themicroplane level, only thosemicroplaneswhose normals form a
sufficiently small angle with the maximum principal strain di-
rection have reached the postpeak regime, and thus, a reduced
unloading stiffness is prescribed only for those [Eq. (19)]. The
microplanes whose angle with this direction is sufficiently large
still remain in the elastic regime, and so, they unload with the high
slope of the initial elastic stiffness. Consequently, the unloading
slope is not the same for all the microplanes even if the normal
stress is positive on all the microplanes, and a certain compromise
slope gets manifested on the macroscale. Different microplanes
switch from loading to unloading at different times. This causes the
start of unloading on the macroscale to be curved, with a positive
curvature.

As the macroscale unloading proceeds from tension to com-
pression, the transition from positive to negative microplane stress
occurs at different microplanes at different times. This again causes
the slope of unloading on the macroscale to increase gradually,
causing the macroscale single-point simulation of this transition to
be smoothly, and negatively, curved.

In finite-element simulations of test specimens, a random mesh
has been used, except when it proved too difficult to mesh the
specimen with a random mesh, as in the vertex effect simulations.
The randomness causes different elements to exhibit the loading-
unloading and tension-compression transitions at different times
even if the stress and strain fields are uniform. As a result, the
transitions in the load-unload cycles of whole specimens become
even more smooth [see Fig. 4 and the fits in the companion paper
(Caner and Ba�zant 2013)].

Closing Comment

The present paper developed the theoretical formulation. The cali-
bration and verification of model M7 for concrete and the formu-
lation of conclusions fromboth parts of this study are relegated to the
companion paper (Caner and Ba�zant 2013).

Appendix. Potentials for Elastic, Cracking Damage,
and Plastic-Frictional Behaviors

The basic form of a simple microplane model can be obtained by
assuming that the density of the dissipative potential of the contin-
uum is a sum of corresponding potentials associated with the in-
dividual microplanes (Carol et al. 2001; Ba�zant et al. 2010).
However, for a realistic but complex microplane model such as the
present one, the dissipative potentials on themicroplanes are difficult
to formulate and have not been presented in previous studies of the
preceding models. Therefore, instead of attempting the standard
thermodynamic approach with a single dissipative free-energy
potential (Jirásek and Ba�zant 2002, Chapter 23), it will merely be
shown that it is possible to formulate separate potentials on the
macrocontinuum level whose derivatives yield the stress-strain
boundaries on the microplanes. The existence of such potentials
implies certain symmetry properties that are important for numerical
analysis. These potentials may be written as follows:

U ¼
P

Nm

n¼1

wnUnðɛNn, ɛTnÞ (33)
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P ¼
P

Nm

n¼1

wnPnðɛNnÞ (34)

C ¼ CV ðɛV Þ þ
P

Nm

n¼1

wnCnðɛNnÞ (35)

F ¼
P

Nm

n¼1

wnFnð _ɛTn; sNn, ɛV Þ ¼
P

Nm

n¼1

wnsTnðsNn, ɛV Þ _ɛTn (36)

where the overdot denotes the rate with respect to the loading pa-
rameter or time; U 5 elastic potential density (or Helmholtz
free energy per unit mass); P 5 tensile damage potential density;
C 5 compressive damage potential density; F 5 frictional-plastic
potential density; P, C, and F 5 dissipation potentials whose
differentiation gives dissipative stresses of two different types; and
C and F 5 stress-strain relations for movement along the damage
and frictional boundaries. The transition between the elastic regime
and the damage or frictional regime is decided by the inequalities
appearing within the computational algorithm.

The expression sTmðsNm
, ɛV Þ means that frictional stress sTm is

a function of both the microplane normal stress sNm
and the volume

change ɛV . SincesNm
does nowork on slip, it cannot be derived from

the slip potential and represents a friction controlling parameter
rather than an independent variable (Ba�zant and Cedolin 1991,
Section 10.7). The reason why sNm

and ɛV (or sV ) do no work is that
the microplane slip is considered to occur at no normal strain,
i.e., with no dilatancy. This simplification is possible because the
dilatancy on the macrolevel is obtained automatically by virtue of
cracking damage interaction between microplanes of different
orientations and a difference between the tensile and compressive
microplane strength limits (Ba�zant andGambarova 1984, Figs. 1(a–d);
Ba�zant et al. 2000, Figs. 1(a–d)].

Differentiation of the potentials yields, under various regimes,
the stresses at a generic microplane, numbered m

elastic regime: r
∂U

∂ɛNm

¼ wmr
∂Um

∂ɛNm

¼ sNm
(37)

r
∂U

∂ɛTm

¼ wmr
∂Um

∂ɛTm

¼ sTm
(38)

tensile damage: r
∂P

∂ɛNm

¼ wmr
∂Pm

∂ɛNm

¼ sNm
(39)

compressive damage: r
∂C

�

ɛNm
, ɛV

�

∂ɛNm

¼ wmr

"

∂Cm

�

ɛNm

�

∂ɛNm

#

ɛV

þ r
∂CmðɛV Þ

∂ɛV

∂ɛV
�

∂ɛNm

�

(40)

¼ sDm
þ r

dCV ðɛV Þ

dɛV

∂

∂ɛNm

P

Nm

n

wnɛNn
(41)

¼ sDm
þ rwm

dCV ðɛV Þ

dɛV
¼ sDm

þ sV (42)

frictional slip: r
∂F

∂ _ɛTm

¼ wmr
∂Fm

∂ _ɛTm

¼ sTm

�

sNm

�

(43)

where Eq. (42) uses the fact that the volumetric strain may ap-
proximately be expressed as ɛV 5 ð

PNm

n ɛNn
Þ=Nm (which becomes

exact for Nm→‘). In Eq. (43), sTmðsNm
Þ is the microplane shear

stress as a function of the microplane normal stress, which is
a functional dependence that characterizes friction on the micro-
plane. The mass density r appears in the foregoing equations, be-
cause the potentials are defined per unitmasswhereas the stress is the
energy per unit volume.

Alternatively, one could obtain the same result by considering
the number of microplanes Nm→‘, which would convert the sums
in the foregoing equations into integrals over V. But the differen-
tiation with respect to the variables of one particular microplane
would become trickier, as it would necessitate the use of Dirac delta
functions of spherical angles. The discrete form in Eqs. (38)–(43) is
simpler.

Eq. (35) reflects the fact that the microplane normal strain ɛNm

does not suffice to characterize cracking damage and that the volume
change is important, too. As shown by Eq. (42), this implies that, for
characterizing the cracking damage, the normal microplane strain
must inevitably be split into its volumetric and deviatoric parts, as
stated in Eq. (4). Without this split it is impossible to capture the
salient feature that unconfined (uniaxial or biaxial) compression and
weakly confined compression produce postpeak softening, whereas
highly confined compression and hydrostatic compression lead to no
peak and no softening. So, the kind of compressive behavior depends
on whether the volume growth is restricted.

However, by contrast to previous microplane models, it is im-
portant to note that the volumetric-deviatoric split of normal micro-
plane strains is not required, and not useful, for the elastic regime and
also the tensile cracking (damage) regime. This is reflected in
potentialsU andP, which are functions of ɛNm

only, and in Eqs. (37)
and (39),which lead to normal stresswithout split. In thecurrent study,
such split has actually been found to harm themodeling power. So, in
departure from microplane models M2, . . . , M6, the volumetric-
deviatoric split for elastic strains and for tensile cracking is here
abandoned.

Admittedly, the present formulation of potentials is unorthodox. It
does not conform to the classical thermodynamics of continua, but it is
simple and is convenient for dealing with separate stress-strain
boundaries for different physical processes. The basic thermody-
namic hypothesis that naturally leads to the microplane model is that
the total potential density (or Helmholtz free energy density) at a point
of the macroscopic continuum is the sum of the potentials associated
with planes of deformation (or microplanes) of all possible ori-
entations within the material (n5 1, 2, . . . , Nm), as postulated in
Eqs. (37)–(43). However, a rigorous thermodynamic formulation
based on this hypothesis has so far been fully worked out only for
some simplistic microplane models with limited data-fitting capa-
bility. A rigorous and complete thermodynamic formulation of a re-
alistic microplane model still remains an elusive goal. One purpose of
this appendix is to provoke further debate.
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Zdeněk P. Bažant, Hon.M.ASCE

Distinguished McCormick Institute Professor and W. P. Murphy Professor

of Civil Engineering, Mechanical Engineering, and Materials Science,

Dept. of Civil and Environmental Engineering, Northwestern Univ.,

Evanston, IL 60208 (corresponding author). E-mail: z-bazant@

northwestern.edu

The following corrections should be made.

Replace Eq. (14) with

α ¼
k5

1þminðh−σ0
V
i,c21Þ=EN0

�

ε0
I
− ε0

III

k1

�

c20

þ k4

where c21 ¼ 250MPa.

Replace Eq. (23) with

σb

N
¼ Ek1β1e

−hεN−β1c2k1i=½c4εeþk1c3�

where β1 ¼ −c1 þ c17e
−c19h−σ

0
V
−c18i=EN0 in which c18 ¼ 62.5 MPa.

Replace Eq. (26) with

σ̂0
N
¼ EThk1c11 − c12hεVii

The element deletion criterion was specified as εI ≥ 0.5%.
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Microplane Model M7 for Plain Concrete. II:
Calibration and Verification

Ferhun C. Caner
1
and Zden�ek P. Ba�zant, Hon.M.ASCE

2

Abstract: The microplane material model for concrete, formulated mathematically in the companion paper, is calibrated by material test data

from all the typical laboratory tests taken from the literature. Then, the model is verified by finite-element simulations of data for some char-

acteristic tests with highly nonuniform strain fields. The scaling properties of model M7 are determined.With the volumetric stress effect taken

from the previous load step, the M7 numerical algorithm is explicit, delivering in each load step the stress tensor from the strain tensor with no

iterative loop. This makes the model robust and suitable for large-scale finite-element computations. There are five free, easily adjustable ma-

terial parameters, which make it possible to match the given compressive strength, the corresponding strain, the given hydrostatic compression

curve, and certain triaxial aspects. In addition, there are many fixed, hard-to-adjust parameters, which can be taken to be the same for all con-

cretes. The optimum values of material parameters are determined by fitting a particularly broad range of test results, including the important

tests of compression-tension load cycles, mixed-mode fracture, tension-shear failure of double-edge-notched specimens, and vertex effect

when axial compression is followed by torsion. Because of the lack of information on thematerial characteristic length or fracture energy, which

can be obtained only by size effect tests on the same concrete, and on the precise boundary conditions and precise gauge locations, the finite-

element fitting of the present test data can hardly be expected to give better results than single-point simulations of specimens with approxi-

mately homogeneous strain states within the gauge length. Nevertheless, tensile test data with severe localization are delocalized on

the basis of assumed material length. Model M7 is shown to fit a considerably broader range of test data than the preceding models M1–

M6. DOI: 10.1061/(ASCE)EM.1943-7889.0000571. © 2013 American Society of Civil Engineers.

CE Database subject headings: Constitutive models; Inelasticity; Cracking; Damage; Concrete; Experimentation; Verification;

Data processing; Calibration; Finite element method.

Author keywords: Constitutive modeling; Inelastic behavior; Cracking damage; Concrete; Experimental verification; Data fitting;

Model calibration; Finite-element analysis.

Introduction

As a sequel to the theoretical formulation in the companion paper
(Caner and Ba�zant 2013) of this study, the present paper deals with
the calibration of microplane model M7 and its verification by
laboratory test data from the literature. All the definitions and
notations are retained.

Obstacles to Inverse Finite-Element Analysis of Tests
with Postpeak Softening

Optimal identification of material parameters by inverse finite-
element analysis of experimental data with softening faces certain

obstacles. When postpeak softening takes place, either the crack

bandmodel or the nonlocal model must be used to suppress spurious
mesh sensitivity. In either case, one must know the material char-

acteristic length l0 or the reference element size h0 for the crack
band model. It used to be thought that h0 were equal to about the
double of the maximum aggregate size da, but now it is understood

that the ratio h0=da can vary significantly, depending on other
properties of concrete.

The only way to determine l0 or h0 experimentally is to conduct

notched fracture tests of specimens with significantly different sizes
made from the same batch of concrete. Recently, it has been shown

that the load-deflection curve with complete postpeak softening can
be fitted by using l0-values or tensile strength values that differ by

70% and that unique results are obtained when the load-deflection
curves are tested on specimens of significantly different specimen
sizes (Ba�zant and Yu 2011). Likewise, when finite elements of

different sizes are used, the crack band simulation of the softening
parts of the present data can lead to very different model calibrations.

Unfortunately, for the triaxial test data in the literature, no ex-

perimental information on l0 or h0 exists. Therefore, inverse finite-
element analysis of the softening part of the test data considered

here is inevitably ambiguous.
Another obstacle to meaningful inverse finite-element analysis

is the insufficiency of information about the precise boundary con-

ditions of the test specimens and the precise location of the gau-
ges on the specimens. Consequently, single-point simulations, with

some delocalization of softening, are pursued here as the main ap-
proach formaterial parameter calibration.Nevertheless,finite-element

1Associate Professor, Institute ofEnergyTechnologies, School of Industrial
Engineering, Univ. Politecnica de Catalunya, Campus Sud, 08028 Barcelona,
Spain; presently, Visiting Scholar, Dept. of Civil and Environmental Engi-
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Professor of Civil Engineering, Mechanical Engineering, and Materials Sci-
ence,NorthwesternUniv., Evanston, IL 60208 (corresponding author). E-mail:
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Note. This manuscript was submitted on January 23, 2012; approved on
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individual papers. This paper is part of the Journal of Engineering

Mechanics, Vol. 139, No. 12, December 1, 2013. ©ASCE, ISSN 0733-
9399/2013/12-1724–1735/$25.00.
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analysis of some test specimens is subsequently used to check that
the fits are reasonable.

The best estimate l0 could in theory be obtained by simulation of
fracture tests of each given concrete with the lattice-particle model
(Cusatis et al. 2003, 2011a, b). However, this is a demanding
task that requires further study and is beyond the scope of a single
paper.

Even if the aforementioned obstacles did not exist, it would be
difficult to begin with finite-element fitting, because often an in-
correct initial guess ofmaterial parameters is made, which then leads
to convergence problems at worst and excessively long run times at
best. In addition, the simulation of fracturing may easily be cor-
rupted by mesh bias, which favors fractures running along the mesh
lines, and by numerical problems such as stress locking, which may
give rise to spurious crack paths (Jirásek and Zimmermann 1998).

It has been checked that the spurious mesh sensitivity and mesh
dependence of energy dissipated by localized fracture can be avoi-
ded if the normal tensile boundary and the deviatoric compression
boundary are scaled horizontally according to the element size, as
required by the crack bandmodel (Ba�zant and Oh 1983). The scaling
represents an affinity transformation with respect to the elastic line
as the affinity axis [Ba�zant and Caner 2005, Fig. 1 (left)]

Calibration of Model M7 Assuming Homogeneous
Strain Field

The main assumption in single-point simulations is that the zone
spanned by the gauge is deformed nearly homogeneously and lies
far enough fromboundary disturbances. Tensile softening, however,
is an exception in which the strain gets localized so severely that the
test data must at least be approximately delocalized, as described in
Ba�zant et al. (1996). The postpeak compression, too, is subjected to
localization, but the localization zone is often as large as the gauge
length, and so, the single-point simulation should suffice. In certain
important cases, the single-point fitting will nevertheless be fol-
lowed by finite-element analysis with the crack band model using
a judiciously assumed reference size h0.

When only a few types of tests of concrete are used for calibra-
tion, many different models can fit the same data. Therefore, all the
known basic types of laboratory tests are considered here to verify
and calibrate model M7. Omitting some of them would lead to
ambiguity. The optimized fits of material data by model M7 using
a single material point are presented first. Subsequently, the pa-
rameter values from these fits are used to analyze various problems
by finite elements, using the crack band model with element size
roughly equal to da. (The element sizes used in the simulations are
obvious from the figures, but they are also reported along with the
model free parameters used in the analyses.)

Two types of data are fitted: (1) data coming from different
laboratories, obtained by different researchers using different con-
cretes (Figs. 1 and 2); and (2) data coming from the same laboratory,
obtained by the same researchers using one and the same concrete
(Fig. 3). Because the responses of concrete to various triaxial loading
histories are very different, many different kinds of tests have to be
fitted to achieve unique calibration.

Some of the data fitted in this study have previously also been fitted
by models M3, M4, M5, and M6. They constitute the classical
benchmark data. In this paper, the authors enlarge the benchmark data
set by fitting some characteristic data that have not been fitted before.
The values of the adjustable (or variable) parameters of model M7
corresponding to each fit shown are given in each figure, along with
a reference to the data source. Because the fixed material parameters
are common to all the figures, they are shown only in Table 1.

The adjustable parameters, denoted as kI ðI5 1, 2, . . . , 5Þ, have
increased in number from four in microplanemodelsM4–M6 to five
in the present model M7, as shown in Table 2. The main reason for
this increase is to introduce a refined volumetric-deviatoric coupling
with a twofold aim: (1) to simulate data through the entire range from
low-strength to normal-strength concretes and (2) to capture the
dilatation attributable to shear, called the dilatancy, which may be
more pronounced in some concretes than others. For normal-
strength concretes, the interactions among the microplanes suffice
to automatically reproduce the dilatancy. But in concretes of rela-
tively low strength, they do not. The dilatancy of such concretes can
be simulated only through an explicit dependence of the deviatoric
behavior on the volumetric strain and vice versa, a coupling that is
allowed byM7. In the precedingmicroplane models, it was virtually
impossible to fit the triaxial compression data for lower-strength
concretes, which exhibit a particularly strong dilatancy under shear.

Fig. 1(a) demonstrates an excellent fit of the uniaxial com-
pression test data from vanMier (1986a, b). (In all figures, the values
measured in the tests are shown by circles, and the curves are the
model predictions.) Though not visible in the figure, the response for
large compressive strains monotonically decreases to zero and then
remains zero. Such behavior was not achieved in the earlier versions
of the microplane models for concrete.

Fig. 1(b) shows a reasonably good fit of test data of van Mier
(1984) for the volume expansion of concrete under uniaxial com-
pression. A close fit of the peak region of the data could not be
achieved, but the postpeak expansion has been captured well.

Fig. 1(c) depicts the triaxial test data from Balmer (1949) and
their fit by model M7. For both higher and lower confinement
values, the fits are very accurate, better than with the preceding
microplane models.

Fig. 1(d) presents a biaxial failure envelope reported in Kupfer
et al. (1969) and its excellent simulation by model M7. One of the
main advantages of model M7 is its improved capability to simulate
the biaxial compressive behavior, which is important for appli-
cations to plates, membranes, and shells. The current model is
exceptionally well suited for the multiaxial behavior of such
structural members.

Fig. 1(e) shows the data on the shear-compression failure en-
velope measured by Bresler and Pister (1958). They are fitted by
model M7 very well, better than by the previous microplane models
for concrete. This improvement is important for finite-element
analysis of columns, beams, plates, and shells.

Fig. 1(f) shows the test data for confined compression of cement
paste from Ba�zant et al. (1986) and their excellent fit achieved by
model M7. Very high pressures have been obtained in these tests.
The previous microplane models could fit these data just as well
but could not differentiate between the hydrostatic compression
and the confined compression at zero lateral strain.

Fig. 1(g) depicts test data for hydrostatic compression from
Green and Swanson (1973), in which the stresses are normalized by
the compressive strength, and their fits by model M7. Note that the
fit is excellent for both the loading and unloading regimes. Com-
pared with its predecessors, modelM7 predicts the unloading better.

Fig. 1(h) presents uniaxial tension test data fromPetersson (1981)
for two different concretes and their fits by model M7. The lateral
contraction response predicted bymodelM7 appears to the left of the
origin. There seems to be no experimental data for the lateral
contraction under uniaxial tensile loading, probably because the
deformation localizes into a very small zone, the location of which
cannot be known in advance. However, in the sense of the mac-
rocontinuum model pursued now, a large extension causes the
material to become intersected by a series of parallel densely dis-
tributed cracks, leaving stress-free material between the cracks.
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Therefore, in a continuum model, the lateral contraction must ap-
proach zero as the axial stress gets reduced to zero in the far postpeak
tail of the uniaxial tension curve.

The current model automatically captures this behavior, whereas
its predecessors M3 and M4 could not capture it at all because of
the volumetric-deviatoric split of elastic strains. Models M5 andM6
were able to simulate this behavior by means of a smooth transition
from a split to a no-split formulation during tensile softening. But
this transition makes impossible a good modeling of the unloading
and cyclic loading, turns out not to be robust in large-scale com-
putations, and does not have a general applicability. For example, it
runs into a conflict when the material is in postpeak tension in the

x-direction, which requires no split, and simultaneously in postpeak
compression in the y-direction, which requires the split. With the
current model, the problem of spurious lateral contraction under
uniaxial tension is totally eliminated, and this is achieved in a
continuous and robust manner, without the use of any potentially
troublesome transitions.

Fig. 2 presents the set of basic benchmark data and their single-
pointmaterialfits by the currentmodel. Fig. 2(a) shows theM7fits of
test data from Launay and Gachon (1971) in the form of triaxial
failure envelopes in which the stresses are normalized by the
compressive strength of concrete. These data are obtained by pre-
scribing a loading path in three dimensions (3D) inwhich the applied

Fig. 1. First part of benchmark data set for different concretes, used to evaluate the model and optimize material parameters
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stress in one direction (s1) is fixed to a value (e.g., 0.2), and then, the
specimen is loaded to failure in the remaining two directions fol-
lowing various load paths in two dimensions (in the s2, s3-plane).
In a previous work (Ba�zant et al. 1996), these data and the simu-
lation results (by model M3) were plotted in the octahedral plane,
which led to an apparently poor fit of these data.

However, it must be noted that, while the simulations can be
carried out (though with great difficulties) for a few load paths so as
to create failure envelopes for apparently constant pressure, the tests

actually cannot be performed for a constant pressure at the moment
of failure. As a result, the octahedral plot is not fully meaningful
for data fitting. Therefore, this study fits modelM7 to the data points
in a two-dimensional (2D) graph, as originally plotted by the exper-
imenters Launay and Gachon (1971).

Along the path s2 5s3, the model prediction for the strength of
concrete is excellent for all confinement levels except s1 5 0:4. For
other nonproportional paths, the M7 predictions of strength are
consistently lower than the experimental values. They appear to be

Fig. 2. Second part of the benchmark data set for different concretes, used to evaluate the model and optimize material parameters
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better for the triaxial strength values under high confinement, as is
generally the case for allmicroplanemodels. These tests have proven
to be difficult to simulate with the microplane and other models in
general. The performance of model M7 is by far the best among all
microplane models for concrete.

Fig. 2(b) depicts cyclic uniaxial compression data from Sinha
et al. (1964) and their fit by themodelM7. The envelope of the cyclic
data plotted in the figure is predicted as well. The areas of the
predicted hysteretic loops, which represent the dissipated energy,

agree with the experiments. The loading and unloading slopes are
also in agreement with the experimental loading and unloading
slopes in both the compressive and tensile regions. In contrast toM3,
M4, M5, and M6, model M7 delivers consecutive hysteretic loops
with a progressively decreasing strength limit, which is an essential
aspect of fatigue.

To provide a comparison of the single-point simulation to the
finite-element modeling of similar uniaxial tension test data, Fig. 2(c)
shows the test data by Li et al. (1998) and simulations for postpeak

Fig. 3. Benchmark set of test data obtained with one and the same concrete, used to evaluate the model and optimize material parameters
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uniaxial tension and tension-compression load cycles. The effect of

the load cycles on the lateral contraction is seen to the left of the

origin. To the right of the origin, the load cycles shown give

a comparison of this single-point simulation to a finite-element

simulation of similar uniaxial tension test data presented in the

“Finite-Element Verification of M7 on Specimens with Non-

homogeneous Strain Field” section (Fig. 4). The effect of the load

cycles on the lateral contraction is seen to the left of the origin (where

thehorizontal coordinate axis serves as the transverse strain coordinate).

Note that, for very large axial strains, the lateral contraction grad-

ually relaxes to zero.
Fig. 2(d) displays by circles the test data for uniaxial tension

reported in Li and Li (2000), by triangles the data obtained by

delocalizing this original data, and by a continuous curve their simu-

lation with model M7. The parameter set used in the simulation is

identical to that in Fig. 2(c), and in both Figs. 2(c and d), the data

correspond to the same elastic modulus and the same strength. Yet,

the data compare very differently to the same simulation in these

two figures. These figures are included specifically to emphasize an

important difference between the test data and the model predictions

that may result from unloading within the gauge span in the tensile

specimens. If the gauge span is long, crack formation causes the

surrounding material to unload, which produces a sharp drop in the

postpeak stress-strain curve. In this particular simulation, finite-

element analysis is obviously better for parameter optimization

than the analysis at a single material point. (These data are not

fitted using the FEM, because similar data are already fitted in

Fig. 4.)
Fig. 2(e) depicts test data for uniaxial compression of a lower-

strength concrete ( fc95 21MPa) as reported in Chern et al. (1992)

and their fit by model M7, which is seen to be excellent. Lower-

strength concretes exhibit larger dilatancy under shear than normal-

strength concretes do. The predecessors of model M7 could not

capture such large dilatancy, because they lacked an explicit de-

pendence of the volumetric response on the deviatoric strains.
Fig. 2(f) shows the biaxial test data from Yin et al. (1989) and

their fit by model M7. The fit is reasonably good. Other biaxial data,

which are fitted better than before, appear in Figs. 1(d) and 2(a).

(Notice the curve that corresponds to s1 5 0.)
Fig. 2(g) shows the test data for triaxial compression of a lower-

strength concrete reported in Chern et al. (1992) and their fits by

model M7 using the same parameter set as shown in the figure. By

virtue of the explicit dependence of the volumetric response on the

deviatoric strains, the fits are reasonably good. Note that the pre-

ceding microplane models could not fit these data at all.
Fig. 3 compares model M7 to the set of data from various

conventional and unconventional tests conducted by the U.S. Army

Engineers Waterways Experiment Station (WES) in 1994 and

reported inBa�zant et al. (1996). All the testswere done at one time, in

the same laboratory, and with one and the same concrete (i.e., with

the same mix design and the same aggregates). This set of data

Table 1. Fixed Parameters of the Model M7, Their Typical Values, and
Their Meanings

Parameter Value Meaning

fc09 15.08 MPa Reference compressive strength

E0 20 GPa Reference elastic modulus

c1 8:9 × 1022 Controls the uniaxial tensile strength

c2 17:6 × 1022 Controls the roundness of the peak in uniaxial

tension

c3 4 Controls the slopeof the postpeak in uniaxial tension

c4 50 Controls the slope of the postpeak tail in uniaxial

compression

c5 3,500 Controls the volumetric expansion under

compression

c6 20 Controls the roundness of the peak in volumetric

expansion under compression

c7 1 Controls the slope of the initial postpeak in

uniaxial compression

c8 8 Controls the peak strength in uniaxial compression

c9 1:2 × 1022 Controls the peak roundness in uniaxial

compression

c10 0.33 Controls the effective friction coefficient

c11 0.5 Initial cohesion in frictional response

c12 2.36 Controls the change of cohesion with tensile

volumetric strains

c13 4,500 Controls the unloading slope in tension

c14 300 Controls the unloading slope at low hydrostatic

compression

c15 4,000 Controls the transition from unloading slope at

high confinement to that at low confinement

c16 60 Controls the unloading slope at high hydrostatic

compression

c17 1.4 Controls the tensile strength

c18 1:6 × 1023 Controls the tensile cracking under compression

c19 1,000 Controls the tensile softening rate induced by

compression

c20 1.8 Controls the volumetric-deviatoric coupling at

high pressures

Table 2. Free Parameters of the Model M7, Their Typical (or Default)
Values, and Their Meanings

Parameter Value Meaning

E 25,000 MPa Elastic modulus (and vertical scaling parameter)

n 0.18 Poisson’s ratio

k1 1:5 × 1024 Radial scaling parameter

k2 110 Controls the horizontal asymptote value in the

frictional boundary

k3 30 Controls the shape of the volumetric boundary

k4 100 Controls the shape of the volumetric boundary

k5 1 × 1024 Controls the volumetric-deviatoric coupling at low

pressures

Fig. 4. Finite-element simulations of compression-tension load cycles

in which test data are from Reinhardt and Cornelissen (1984)
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represents a tougher check on the present model, because all the
model parameters must be the same for all these tests.

Fig. 3(a) depicts the uniaxial compression test results and their
fit by model M7. The fit is good. Fig. 3(b) shows the triaxial
compression test data for various confining pressures and their fits,
which are again good. Fig. 3(c) presents the test data obtained using
a load path in which the lateral-to-axial strain ratio is enforced to
be 20.2 and the comparison with the current model. This com-
parison is less than satisfactory, but it must be judged in view of the
fact that the parameter set had to be kept constant for all the figures.
Thus, what matters is whether a major part of all the test data in this
set could be fitted satisfactorily.

Fig. 3(d) shows, for the same load path, the plot of the principal
stress difference versus the volumetric stress. Here the prediction is
good. Fig. 3(e) depicts the test data for axial compression followed
by lateral unloading and their fit by model M7. The fit is reasonably
good. Fig. 3(f) shows the test data for the principal stress difference
versus the volumetric stress and reveals a good fit.

Fig. 3(g) presents the monotonic and cyclic hydrostatic com-
pression test data. Their simulation by model M7 is again seen to be
good. Lastly, Fig. 3(h) shows the fits of the test data for a confined
compression test for both loading and unloading. Their fits are again
good.

Overall, in the entireWES data set, optimally fitted with the same
material parameters, there is only one data fit, the one shown in
Fig. 3(c), which falls short of acceptability. All the others are either
good or excellent. This is an outstanding performance compared
with other models. It should also be noted that, even with expert
attention, the results of experiments exhibit random scatter, which is
particularly pronounced for a disordered material such as concrete.
Given that the data in Fig. 3(c) represent a single test, rather than an
average of several repeated tests, it is not impossible that this test
may be a statistical outlier in which something went wrong.
Moreover, note that the current fit could be improved if some of the
fixed parameters were converted to free parameters. However, it is
desirable to keep the number of free parameters as low as possible.

Finite-Element Verification of M7 on Specimens with
Nonhomogeneous Strain Field

The finite-element results for selected characteristic experiments
published in the literature are now presented. All the results were
obtained using the commercial software ABAQUS, in which model
M7 was coded as a VUMAT user material subroutine. The in-
tegration over the microplanes uses the 37-point optimal Gaussian
integration formula [derived in Ba�zant and Oh (1986)], which is
of 13th degree. (The accuracy of the previously used 21- and 28-point
formulas was found to be insufficient for far-postpeak softening.)

The elements are quadratic tetrahedra oriented randomly so that
the mesh bias can be minimized. The mesh is random to minimize
the directional bias of failure surfaces. To avoid spurious mesh
sensitivity, all the finite-element simulations are carried out in the
sense of the crack band model, using a mesh size corresponding to
the representative volume element of concrete, the size of which is
given in what follows along with the model free parameters in the
discussion of each analysis.

The first problem is the uniaxial compression-tension cycles
reaching the strength limit in uniaxial tension. Fig. 4 shows such
cycles simulated by model M7 as the solid curves superposed on the
dashed curves representing the test data reported in Reinhardt and
Cornelissen (1984). Unlike the data fitted in the other figures, the test
data are not represented by discrete data points, because the crowded
curves would be hard to distinguish as well as difficult to digitize

accurately. The specimen analyzed and the finite-element mesh are
shown in the figure. The specimen is a concrete cylinder with
a circumferential notch 5 mm deep and 5 mm wide. The gauge
length,which is 25mm, is taken as the length of thewhole cylinder to
simplify the finite-element analysis. The diameter of the cylinder is
120 mm. The maximum aggregate size of the concrete was 16 mm.
The analysis is again carried out in the sense of the crack bandmodel.
During the simulations, it is observed that the crack localizes in the
plane of the notch.

Clearly, the discrepancy between the test data and the simulation
is quite small and is appreciable only in the transition from tension to
compression. The predicted response is perfectly continuous. The
slopes of calculated loading and unloading match almost perfectly
the slopes of the experimental curves. The free model parameters
used to obtain the prediction curve are E5 25,000MPa, k1
5 110 × 1026, k2 5 110, k3 5 30, k4 5 100, and k5 5 1 × 1024. The
finite-element size is taken to be 5 mm.

The second and third problems to be analyzed by finite ele-
ments are the tests of three-point-bend beams with an asymmet-
rical notch reported inGálvez et al. (1998). In the second problem,
designated as Type 1 [Gálvez et al. 1998, Fig. 2(a)], the beam,
made from concrete with a maximum aggregate size of only 5 mm,
had depthD5 75 mm, widthB5 50 mm, and length L5 340mm.
The notch, of width 2 mm, reached to a depth of 0:5D and was
located at distances of 37.5 mm from the left support and 150 mm
from the right support. The load was applied at a distance of 84.98
mm to the right of the notch. This loading produced combined
normal and shear stresses in the vertical crack-tip cross section and
thus led to mixed-mode crack propagation. The mixed mode has
perennially been a challenging problem, beyond the capability
of many previous models. The simulations for both of these two
problems were carried out using the free model parameters
E5 38,000 MPa, k1 5 110 × 1026, k2 5 110, k3 5 30, k4 5 100,
and k5 5 1 × 1024. The finite-element size in this problem is taken
to be 5 mm.

Fig. 5(a) portrays the experimentally observed crack pattern
superimposed on the finite-element mesh. The evolving crack is
indicated by darkened elements.

The experimentally observed range of the load versus the load-
point displacement is shown in Fig. 5(b) as the shaded region be-
tween the gray curves. The solid curve is the model prediction.
Clearly, a very good agreement with the experimentally observed
crack path is achieved. The load-deflection diagram agrees with the
test data reasonably well.

The third problem is the test designated in Gálvez et al. (1998) as
Type 2. In this test, a much higher shear stress in the crack-tip cross
section is achieved by controlling the displacement at the free end of
the beam, whose dimensions are the same as in the aforementioned
mixed-mode test. For this, the machine stiffness, which may be
imagined to be simulated by the spring controlling the displacement
of the free end, is of the utmost importance. For example, if the
machine stiffness is assumed to be infinite, the beam does not fail by
a crack emanating from the notch tip but rather by a new crack that
develops in the tension zone at the left support. However, if the
machine has a finite stiffness, equivalent to a spring of stiffness
K5 3,000N=mm calibrated to fit both the numerical data and the
correct crack propagation imagined at point B [see the inset figure in
Fig. 6(b)], then a crack emanating from the notch tip is obtained in
the simulations.

In this simulation, the same model free parameters and the
finite-element size as in the Type 1 test are used. In Fig. 6(a), the
experimentally observed crack pattern is superimposed on the
finite-element mesh in which the crack appears in various shades.
The darker the shade, the more open the crack is. Clearly, the
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experimental and predicted cracks coincide. Fig. 6(b) compares the
load versus the crack mouth opening displacement measured in the
test to that predicted by model M7. The predicted response is in
excellent agreement with the measured response.

The fourth problem analyzed is the mixed-mode crack propa-
gation in the double-edge-notched specimen reported in Nooru-
Mohamed (1992). The maximum aggregate size of the concrete
used in the tests was 16 mm. This problem has been the subject of
many studies.Many loading paths were used in experiments, and the
path studied most frequently is chosen here. In this path, first the
shear load of Fh 5 10 kN is applied gradually while the vertical load
is kept at Fv 5 0. Second, a vertical tensile load Fv is raised up to
failure while keeping the horizontal shear load constant at Fh

5 10 kN.
This specimen is analyzed in 3D using random mesh with an

average element size of 25 mm (which is roughly correct for strain
localization according to the crack band model). The free model
parameters used in the simulations are E5 30,000MPa, k1
5 80 × 1026, k2 5 110, k3 5 30, k4 5 100, and k5 5 1 × 1024. The
finite-element size in this problem is chosen to be 16 mm. The crack
paths experimentally observed on the front and back faces and the
simulated crack paths are superimposed in Fig. 7(a). Their agree-
ment is seen to be very good. Fig. 7(b) compares the measured data

to the curves of load versus gauge length displacement, as obtained
by M7 and by other researchers (Gasser and Holzapfel 2006;
Pivonka et al. 2004). The result by model M7 gives both the correct
peak load and the correct crack paths. The reason for a less than
perfect prediction of the load-displacement response must be small
deviations from the observed crack path that have a large effect on
the load-displacement response. For example, toward the end of the
loading, the crack tip curves toward the direction of the tensile load
instead of remaining perpendicular to it, which increases the load-
carrying capacity relative to the test data. To avoid such problems,
a finer mesh would be required, but that would require a nonlocal
approach, which would in turn require knowing the material
characteristic length. Determining this length would, however,
necessitate data from corresponding size effect tests, which are
lacking.

Finite-Element Check of Vertex Effect in M7

The fifth and last problem is a test in which the principal stress or
strain axes rotate against the material. For such loading, which
typically consists of axial compression followed by shear and is
always produced by impacts, explosions, and earthquakes, the sa-
lient aspect is the vertex effect.

Fig. 5. Finite-element simulation of mixed-mode crack propagation

and failure of asymmetrically notched three-point bend beam: (a)

simulated andmeasured crack patterns; (b) simulated andmeasured load

versus displacement at point B at the free end on the left of the beam [the

test data and the inset figure of the test setup are from Gálvez et al.

(1998)]

Fig. 6. Finite-element simulation of crack propagation and failure of

asymmetrically notched three-point bend beam,with the displacement at

a fourth point controlled to remain zero during the test: (a) simulated and

measured crack patterns; (b) simulated and measured load versus crack

mouth opening displacement (CMOD) [the test data and the inset figure

of the test setup are from Gálvez et al. (1998)]
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According to the tensorial incremental plastic or plastic-damage
models, any load increment that is tangent to the current loading
surface in the stress space should produce an elastic strain only. But
it does not, and often, the tangential stiffness is several times smaller
than the elastic stiffness (Ba�zant and Cedolin 1991; p. 500). The
vertex effect, whichwas first discovered inmetals (Gerard andBecker
1957; Budianski 1959), implies that, at the current state point in the
stress space, either the loading surface must always have a corner (or
vertex) traveling in the stress space with this point or that a multi-
surface incremental plasticity in which multiple loading surfaces
always intersect at the current state point to create a vertex. In either
case, attempts tomodel the vertex effect tensorially were too complex
and unsuccessful. In the computational practice after the 1980s, this
effect has simply been ignored despite its practical importance.

Fortunately, the microplane models (as well as the Taylor
models) exhibit this effect automatically (Brocca and Ba�zant 2000).
This is not surprising, because the microplane models may be
regarded as a variant of multisurface plasticity in which the loading
surfaces (or stress-strain boundaries) are defined not in the tensorial
space but vectorially on a generic plane.

In concrete, the vertex effect was experimentally discovered by
Caner et al. (2002). Test cylinders of diameter 101.6 mm (4 in.) and
length 203.2 mm (8 in.), with a maximum aggregate size of 9.5 mm,
were used. The specimens were instrumented to measure axial and

torsional displacements using several LVDTs over a gauge length of
114.3 mm.

The loading path consisted of two parts. In the first part, some test
cylinderswere loaded under uniaxial compression up to the peak stress
state, and otherswere loaded up to the postpeak stateswith axial strains
0.2 and 0.45%. In the second part of the load path, at one of these three
strains, the cylinder was subjected to torsion while keeping the axial
displacement constant, which created the vertex situation.

If the vertex effect did not exist, as implied by the current ten-
sorial plastic and plastic-damage models, then the torsional stiffness
would have to remain constant, corresponding to the horizontal line
in Fig. 8(a). But the torsional stiffnesses measured by Caner et al.
(2002), shown in this figure by the circled points, show a large
decrease of torsional stiffness. For axial strain 0.45%, at which the
uniaxial compressive stress is reduced to about 3=4 of the peak
value, the elastic torsional stiffness, measured and reported in
Caner et al. (2002), is reduced to a mere 1=4 of the elastic value.
This is a major effect indeed.

Fig. 7. Tension-shear test of double-edge-notched specimen of Nooru-

Mohamed (1992) and its simulation byM7: (a) simulated and measured

crack patterns; (b) simulated and measured vertical load versus gauge

displacement [the test data are from Nooru-Mohamed (1992)]

Fig. 8. (a) Test data from vertex effect test with rotating principal axes

and their simulation microplane models M4 and M7 and by plasticity-

based models [the tests were performed by Caner et al. (2002)];

(b) vertex effect test specimen compressed first to an axial (postpeak)

strain of 0.45% and next twisted about its axis at constant axial strain
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The free model parameters used in this simulation are E

5 36,900MPa, k1 5 130 × 1026, k2 5 110, k3 5 30, k4 5 100, and
k5 5 1 × 1024. The finite-element size is chosen to be 15mm. Fig. 8(b)
shows the finite-element mesh used in the finite-element si-
mulations and the maximum principal strain distribution in the
cylinder for the case of a torsional (or vertex) loading that begins at
the postpeak axial compressive strain of 0.45%. The results of M7
simulations, shown by the solid curve, give a somewhat stronger
vertex effect than do the experiments, with somewhat greater
reductions of the torsional stiffness. Simulations have also been
made with the previous microplane model M4. That the M4 results
match the data points exactly is probably by chance. The inevitable
experimental error is probably as large as the deviation of the M7
curve from the data points. Also, using ABAQUS, generating a truly
random mesh over the cylinder proved to be too difficult, and thus,
the mesh bias must have affected the results in the simulations in
which the model M7 was used.

Identification of Free Parameters and Scaling
of Response

The meaning of each material parameter is briefly indicated in
Tables 1 and 2. Changing the E-modulus to some other value E9

causes a vertical scaling transformation (or affinity transformation)
of all the response stress-strain curves such that all the stresses are
multiplied by the ratioE9=E at no change of strains. (This is a vertical
affinity transformation with respect to the strain axis.) Changing
parameter k1 to some other value k91 causes radial scaling of any
stress-strain curve in which all the distances from the origin are
multiplied by the ratio k19=k1. (This is polar affinity transformation.)

If avertical scalingby factorE9=E (obtained by replacingE byE9)
is combined with a radial scaling by factor k1 5E=E9, the result is
a horizontal scaling by factor k1 of all the response curves. (This is
a horizontal affinity transformation with respect to the stress axis.)
These transformations do not change the shape of the response
curves. The shapes are controlled by the remaining free parameters
k2, . . . , k5 and the fixed (hard-to-change) parameters c1, . . . , c20.

The default values of the free parameters are listed in Table 2.
Together with the values of fixed parameters listed in Table 1, they
yield the uniaxial compression strength fc95 36MPa (5,221.4 psi)
and the axial normal strain at peak stress ɛp 5 0:0036 as determined
by simulation of the uniaxial compression test. If one needs a
microplane model that yields the uniaxial compressive strength f pc
and the corresponding strain at peak ɛ

p

p, it suffices to replace the
reference values of parameters k1 and E by the values

kp1 ¼ k1
ɛ
p

p

ɛp
, Ep ¼ E

f pc

fc9

ɛp

ɛ
p

p

(1)

Furthermore, the parameters listed in Tables 1 and 2 yield the
following ratios characterizing the behavior of concrete:

ft9=fc9 ¼ 0:083, fbc9 =fc9 ¼ 1:4, f sc =fc9 ¼ 0:08 (2)

where fc9 5 uniaxial compressive strength; ft9 5 uniaxial tensile
strength; fbc9 5 biaxial compressive strength; f sc 5 pure shear
strength; sr 5 0 5 residual stress for very large uniaxial com-
pressive strain; and tr 5 0 5 residual stress for very large shear
strain (at sV 5 0). These ratios cannot be changed by the trans-
formations according to Eq. (2). To change them, free parameters
other than E and k1 must be adjusted.

Striving to optimize the fits of extensive test data, one need
not vary all five free parameters simultaneously. Starting with the

given values of E and n and assuming the reference values for all
the other parameters, one can proceed in the following stages:
1. If sufficient data exist for the hydrostatic compression curve,

fit this curve by adjusting only parameters k3 and k4. Other-
wise, keep the default values.

2. Determine the radial scaling coefficient k1 either simply from
the strain at peak uniaxial compressive stress or better byfitting
the complete uniaxial compressive stress-strain curve, post-
peak included.

3. If sufficient data exist for triaxial compression with the con-
finement strong enough to make the response almost plastic
(i.e., with no significant postpeak softening), fit them by
adjusting k2. Otherwise, keep the default value.

4. If sufficient data on uniaxial, biaxial, and triaxial compression
exist for low hydrostatic pressures, fit them to obtain k5.
Otherwise, keep the default value.

Furthermore, by varying c17 (with k1), one can control the tensile
strength, and by varying c3, c4, c13, . . . , c16, one can control the
steepness of the postpeak slope in tension and in compression.
Similarly, the postpeak slope in unconfined tension can be altered by
changing c3. Such optimizations, however, are not so easy, because
other types of response also get affected.

Calibrating model M7 for a given concrete according to Steps
1–3 necessitates test data for only uniaxial compression, triaxial
compression at various pressures, and hydrostatic compression. In
many practical applications, except missile penetration and ground
shock, the confining pressures are not high enough to cause pore
collapse in concrete, which means that the compressive volumetric
boundary does not matter. Then, Step 1 can be omitted, and pa-
rameters k3 and k4 have to be used at their default values, which
means one needs to adjust only k1 and k2 according to Steps 2 and
3—an almost trivial task. Rarely, the user will have enough data to
adjust k5.

Are there too many parameters? Probably not if one takes note
of the broad range of phenomena covered by the model. The von
Mises material can do with only two parameters, but the metals it
describes are incomparably simpler. Only one uniaxial stress-strain
curve has to be matched. Here, one has about 20 different types of
tests and must match dozens of curves. Mere fitting of these curves
would require many dozens of parameters.

When only a few test types are considered in data fitting, the
model has a high degree of ambiguity. This explains why a vast
number of diverse nonlinear triaxial models for concrete are found in
the literature. For an unambiguous result, all the present types of
tests need to be considered in data fitting. In this regard, it may be
noted that none of the important test data have been omitted from
the current study even if their fits were not close.

Conclusions

1. The key idea of model M7 is to use the volumetric-deviatoric
split of strain components only for the microplane stress-strain
boundaries controlling the compressive behavior but not for
the elastic stress and strain components and not for tensile
boundary. This means that the volumetric and deviatoric
boundaries are summed before being imposed on the total
compressive normal stress.

2. This idea eliminates stress locking and excessive lateral
strains in postpeak tensile softening and greatly improves
the loading and unloading performance. It also allows mod-
eling of the very high dilatancy observed in the frictional shear
of low-strength concretes and the pronounced brittleness in
high-strength concretes. It makes it possible to capture the
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hardening response differences between high hydrostatic com-
pression and compressive uniaxial strain. Importantly, it leads
to a perfectly robust explicit algorithm for finite-element
simulations. Compared with previous models, a much broader
range of experimental data can be matched.

3. For data fitting, it is beneficial to deviate from the perfect
kinematic constraint of the microplanes by making some
microplane responses dependent on the volumetric part of
the stress tensor and on the difference between the maximum
and minimum principal strains. Although the former in theory
breaks the explicitness of stress calculation, the algorithm
remains explicit and performs well by taking the volumetric
stress from the previous step.

4. The basic microplane formulation can be correlated with
macrocontinuum potentials, which are distinct for the elastic
regime, the tensile and compressive damage regimes, and the
plastic-frictional regime. However, a rigorous thermodynamic
formulation remains a challenge and deserves further debate.

5. The abandonment of the volumetric-deviatoric split of the
elastic strains limits Poisson’s ratio n to values #0:25. This
works for concrete. Materials with a higher n can be easily
simulated by coupling in parallel a simple fluidlike element
with volumetric response only.

6. Because of the very broad range of behaviors simulated, there
are many empirical material parameters. Five of them can
easily be adjusted to fit the basic properties of a given concrete,
and the remaining ones, which are hard to optimize, can be
kept the same for all concretes.

7. Horizontal scaling of the inelastic postpeak part of the bound-
aries can be used as a way to implement the crack band model,
to avoid spurious mesh sensitivity, and to ensure mesh-
independent fracture energy in localized failure [Ba�zant and
Caner 2005, Fig. 1 (left)].

8. The single material point fitting of stress-strain relations likely
has no greater error than the optimum finite-element fitting,
because no information exists on the material characteristic
length or fracture energy of the concretes used and also
because the information on the precise boundary conditions
and precise gauge locations is missing or incomplete. Never-
theless, approximate delocalization with assumed character-
istic length is applied to tensile softening data.

9. Model M7 can represent a considerably broader range of tests
than other constitutive models for concrete, including: (1) the
vertex effect, a feature of all microplane models (important
especially for dynamics, where shear often suddenly follows
postpeak compression); (2) the S-shaped unloading in tension,
with transit into compression, and multiple hysteretic loops
(important for earthquakes); (3) the difference in responses to
extreme hydrostatic pressures and to extreme compression
for rigidly confined uniaxial strain (important for missile
impacts); (4) triaxial behavior under low, high, and very high
confinement; and (5) biaxial behavior and uniaxial compressive
behavior with correct loading and unloading cycles (which are
very different from the tensile loading and unloading cycles).

Acknowledgments

Financial support under grantW911NF-09-1-0043/P00003 from the
U.S. ArmyResearch Office, Durham, North Carolina, to Northwest-
ern University is gratefully acknowledged, and so is additional sup-
port for theoretical studies of the microplane model granted to
Northwestern University through Daejeon University by the
Agency for Defense Development (ADD), Korea.

References

ABAQUS 6.11 [Computer software]. Vélizy-Villacoublay, France, Dassault

Systèmes.
Balmer, G. G. (1949). “Shearing strength of concrete under high triaxial

stress computation of Mohr’s envelope as a curve.” Rep. No. SP-23,

Structural Research Laboratory, Bureau of Reclamation, U.S. Dept. of

the Interior, Denver.
Ba�zant, Z., and Yu, Q. (2011). “Size effect testing of cohesive fra-

cture parameters and non-uniqueness of work-of-fracture method.”

J. Eng. Mech., 137(8), 580–588.
Ba�zant, Z. P., Bishop, F. C., and Chang, T.-P. (1986). “Confined com-

pression tests of cement paste and concrete up to 300 ksi.” J. Am. Concr.

Inst., 33(4), 553–560.
Ba�zant, Z. P., and Caner, F. C. (2005). “Microplane model M5 with

kinematic and static constraints for concrete fracture and anelasticity.

II. Computation.” J. Eng. Mech., 131(1), 41–47.
Ba�zant, Z. P., and Cedolin, L. (1991). Stability of structures: Elastic,

damage theories, Oxford University Press, New York.
Ba�zant, Z. P., and Oh, B.-H. (1983). “Crack band theory for fracture of

concrete.” Matér. Struct., 16(3), 155–177.
Ba�zant, Z. P., and Oh, B.-H. (1986). “Efficient numerical integration on

the surface of a sphere.” Z. Angew. Math. Mech., 66(1), 37–49.
Ba�zant, Z. P., Xiang, Y., Adley, M. D., Prat, P. C., and Akers, S. A. (1996).

“Microplane model for concrete. II. Data delocalization and verif-

ication.” J. Eng. Mech., 122(3), 255–262.
Bresler, B., and Pister, K. S. (1958). “Strength of concrete under com-

bined stresses.” J. Am. Concr. Inst., 551(9), 321–345.
Brocca, M., and Ba�zant, Z. P. (2000). “Microplane constitutive model

and metal plasticity.” Appl. Mech. Rev., 53(10), 265–281.
Budianski, B. (1959). “A reassessment of deformation theories of

plasticity.” J. Appl. Mech., 26(2), 259–264.
Caner, F., Ba�zant, Z., and �Cervenka, J. (2002). “Vertex effect in

strain-softening concrete at rotating principal axes.” J. Eng. Mech.,

128(1), 24–33.
Caner, F. C., and Ba�zant, Z. P. (2013). “Microplane model M7 for

plain concrete. I: Formulation.” J. Eng. Mech., 139(12), 1714–1723.
Chern, J.-C., Yang, H.-J., and Chen, H.-W. (1992). “Behavior of steel

fiber-reinforced concrete in multiaxial loading.” ACI Mater. J., 89(1),

32–40.
Cusatis, G., Ba�zant, Z. P., and Cedolin, L. (2003). “Confinement–shear

lattice model for concrete damage in tension and compression: I.

Theory.” J. Eng. Mech., 129(12), 1439–1448.
Cusatis, G.,Mencarelli, A., Pelessone, D., andBaylot, J. T. (2011a). “Lattice

discrete particle model (LDPM) for failure behavior of concrete. II:

Calibration and validation.” Cement Concr. Compos., 33(9), 891–905.
Cusatis, G., Pelessone, D., and Mencarelli, A. (2011b). “Lattice discrete

particle model (LDPM) for failure behavior of concrete. I: Theory.”

Cement Concr. Compos., 33(9), 881–890.
Gálvez, J., Elices, M., Guinea, G., and Planas, J. (1998). “Mixed mode

fracture of concrete under proportional and nonproportional loading.”

Int. J. Fract., 94(3), 267–284.
Gasser, T. C., and Holzapfel, G. A. (2006). “3D crack propagation in

unreinforced concrete: A two-step algorithm for tracking 3D crack

paths.” Comput. Methods Appl. Mech. Eng., 195(37–40), 5198–5219.
Gerard, G., and Becker, H. (1957). “Handbook of structural stability: Part I.

Buckling of flat plates.” NACA Technical Note 3781, National Advisory

Committee for Aeronautics, Washington, DC.
Green, S. J., and Swanson, S. R. (1973). “Static constitutive relations

for concrete.” Rep. No. AFWL-TR-72-2, Air ForceWeapons Laboratory,

Kirtland Air Force Base, Albuquerque, NM.
Jirásek, M., and Zimmermann, T. (1998). “Analysis of rotating crack

model.” J. Eng. Mech., 124(8), 842–851.
Kupfer, H., Hilsdorf, H. K., and Rüsch, H. (1969). “Behavior of concrete

under biaxial stresses.” J. Am. Concr. Inst., 66(8), 656–666.
Launay, P., andGachon, H. (1971). “Strain and ultimate strength of concrete

under triaxial stress.” Proc., 1st Int. Conf. on Structural Mechanics in

Reactor Technology (SMiRT1), T. Jaeger, ed., Commission of European

Communities, Brussels, Belgium.

1734 / JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2013

J. Eng. Mech. 2013.139:1724-1735.

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 N

o
rt

h
w

es
te

rn
 U

n
iv

er
si

ty
 L

ib
ra

ry
 o

n
 1

1
/1

9
/1

3
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000254
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:1(41)
http://dx.doi.org/10.1002/zamm.19860660108
http://dx.doi.org/10.1061/(ASCE)0733-9399(1996)122:3(255)
http://dx.doi.org/10.1115/1.3097329
http://dx.doi.org/10.1061/(ASCE)0733-9399(2002)128:1(24)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2002)128:1(24)
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000570
http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1439)
http://dx.doi.org/10.1016/j.cemconcomp.2011.02.010
http://dx.doi.org/10.1016/j.cemconcomp.2011.02.011
http://dx.doi.org/10.1023/A:1007578814070
http://dx.doi.org/10.1016/j.cma.2005.10.023
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:8(842)


Li, F., and Li, Z. (2000). “Continuum damage mechanics based modeling
of fiber-reinforced concrete in tension.” Int. J. Solids Struct., 38(5),
777–793.

Li, Z., Li, F., Chang, T.-Y.-P., and Mai, Y.-W. (1998). “Uniaxial tensile
behavior of concrete reinforced with randomly distributed short fibers.”
ACI Mater. J., 95(5), 564–574.

Nooru-Mohamed, M. (1992). “Mixed mode fracture of concrete: An
experimental approach.” Ph.D. thesis, Delft Univ. of Technology,
Delft, Netherlands.

Petersson, P. E. (1981). “Crack growth and development of fracture zones
in plain concrete and similar materials.” Rep. No. TVBM 1006, Lund
Institute of Technology, Lund, Sweden.

Pivonka, P., O�zbolt, J., Lackner, R., and Mang, H. A. (2004). “Comparative
studies of 3D-constitutive models for concrete: Application to mixed-
mode fracture.” Int. J. Numer. Methods Eng., 60(2), 549–570.

Reinhardt, H. W., and Cornelissen, H. A. W. (1984). “Post-peak cyclic
behavior of concrete in uniaxial tensile and alternating tensile and
compressive loading.” Cement Concr. Res., 14(2), 263–270.

Sinha, B. P., Gerstle, K. H., and Tulin, L. G. (1964). “Stress-strain
relations for concrete under cyclic loading.” J. Am. Concr. Inst.,
62(2), 195–210.

van Mier, J. G. M. (1984). “Strain-softening of concrete under multi-
axial loading conditions.” Ph.D. thesis, Die Technische Hogeschool
Eindhoven, Eindhoven, Netherlands.

van Mier, J. G. M. (1986a). “Multiaxial strain-softening of concrete. I:
Fracture.” Mater. Struct., 19(3), 179–190.

vanMier, J. G.M. (1986b). “Multiaxial strain-softening of concrete. II: Load
histories.” Mater. Struct., 19(3), 190–200.

Yin, W. S., Su, E. C. M., Mansur, M. A., and Hsu, T. T. C. (1989). “Biaxial
tests of plain and fiber concrete.” ACI Mater. J., 86(3), 236–243.

JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2013 / 1735

J. Eng. Mech. 2013.139:1724-1735.

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 N

o
rt

h
w

es
te

rn
 U

n
iv

er
si

ty
 L

ib
ra

ry
 o

n
 1

1
/1

9
/1

3
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.

http://dx.doi.org/10.1016/S0020-7683(00)00034-2
http://dx.doi.org/10.1016/S0020-7683(00)00034-2
http://dx.doi.org/10.1002/nme.975
http://dx.doi.org/10.1016/0008-8846(84)90113-3
http://dx.doi.org/10.1007/BF02472034
http://dx.doi.org/10.1007/BF02472035



