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ARTICLE

Microplastics affect sedimentary microbial
communities and nitrogen cycling
Meredith E. Seeley 1✉, Bongkeun Song1, Renia Passie1 & Robert C. Hale1

Microplastics are ubiquitous in estuarine, coastal, and deep sea sediments. The impacts of

microplastics on sedimentary microbial ecosystems and biogeochemical carbon and nitrogen

cycles, however, have not been well reported. To evaluate if microplastics influence the

composition and function of sedimentary microbial communities, we conducted a microcosm

experiment using salt marsh sediment amended with polyethylene (PE), polyvinyl chloride

(PVC), polyurethane foam (PUF) or polylactic acid (PLA) microplastics. We report that the

presence of microplastics alters sediment microbial community composition and nitrogen

cycling processes. Compared to control sediments without microplastic, PUF- and PLA-

amended sediments promote nitrification and denitrification, while PVC amendment inhibits

both processes. These results indicate that nitrogen cycling processes in sediments can be

significantly affected by different microplastics, which may serve as organic carbon sub-

strates for microbial communities. Considering this evidence and increasing microplastic

pollution, the impact of plastics on global ecosystems and biogeochemical cycling merits

critical investigation.
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The increasing amount of plastic debris in the marine
environment is a global concern. Consequences of large
debris on individual organisms can be obvious (e.g.,

entanglement or intestinal blockage of a sea turtle or whale)1.
Although microplastics (<5 mm) and nanoplastics (<1 μm)2 are
the most abundant forms of debris, elucidating their biological
consequences is challenging and ecosystem-level impacts have
not been well demonstrated3. Such ecosystem-scale effects could
affect biogeochemical cycles and categorize microplastics as a
planetary boundary threat3,4. Further, most studies have focused
on microplastics in surface waters. Although many plastics are
buoyant, microplastics are still exported to sediments after bio-
fouling or incorporation into marine snow or fecal pellets5,6. In
fact, an increasing number of studies have identified microplastics
in freshwater, coastal and even deep sea sediments7. Hence,
impacts on sedimentary communities and associated processes
merit investigation. Although the interaction between floating
plastic debris and microbes (forming a biofilm) has been well
documented8–10, to our knowledge only three studies to date have
addressed biofilm formation on plastic in sediments. Nauendorf
et al.11 studied the surface colonization of plastic bags (poly-
ethylene (PE) or a biodegradable polyester/corn starch compo-
site) in organic-rich marine sediments. They observed rapid
bacterial colonization of the polymer surfaces, but did not char-
acterize the community composition. Harrison et al.12 investi-
gated the surface colonization of low-density PE (5 × 5 × 1 mm)
in estuarine sediments. Using 16S rRNA gene clone libraries, they
found that bacterial composition differed between sediment types
(fine sand, medium sand, and silt) and that two genera (Arco-
bacter and Colwellia) comprised 84–93% of the total sequences
identified12. The biofilm formation on large microplastics (3−4
mm in diameter) at the sediment water interface was explored by
Pinnell and Turner13 using shotgun metagenomics. These
authors found that compared with PE terephthalate (PET), a
bioplastic (polyhydroxyalkanoate, PHA) promoted growth of
sulfate-reducing bacteria, whereas the biofilm of PET was not
significantly different from a ceramic pellet control. These studies
illustrate the ability of biofilms to form on plastic surfaces in
sediments. However, an unanswered question is whether the
addition of microplastics (a presumably recalcitrant carbon (C)
pool) alters overall microbial community composition and bio-
geochemical cycling processes in sediments.

The impact of microplastics on sediment microbial commu-
nities may be particularly important in coastal salt marshes. These
systems receive direct influx of microplastics from land runoff14,
poor waste management15, storm drains and sewage overflows16,
and wastewater treatment plant outfalls17,18. Marsh vegetation
and water circulation patterns promote the entrainment and
deposition of suspended solids, organic matter (OM) and
microplastics19. As such, coastal salt marshes are also extremely
active zones of OM remineralization and biogeochemical cycling.
Sediment microbial communities work in a depth-dependent
cascade to remineralize OM. This digenesis typically starts with

degradation of the most-labile OM within the thin, oxygenated
layer and ends with fermentation of less labile OM in the anoxic
zone. Of these microbially mediated, catabolic processes, deni-
trification is particularly important in removing excess reactive
nitrogen (N) in coastal systems. Denitrification occurs in the
suboxic zone and utilizes nitrate (NO3

−) and nitrite (NO2
−)

instead of O2 as the terminal electron acceptor in the oxidation of
OM. Denitrification is nearly as energy efficient as the oxygen
respiration pathway. It acts to remove N by converting NO3

− and
NO2

− to gaseous N species, such as nitrous oxide (N2O) and
dinitrogen (N2). An equally important reaction is nitrification,
which occurs in the oxic layer, oxidizing ammonium (NH4

+) to
NO2

− and then NO3
−. Denitrification activity is limited by NO3

−

and NO2
− supply from in situ nitrification or anthropogenic

sources. In general, these two pathways are critical for both the
removal of excess N in polluted environments, as well as reg-
ulating productivity in N limited ecosystems20. The response of
these inorganic N forms to microplastic pollution has only been
addressed in two studies to our knowledge, neither of which
evaluated the role of bacterial community composition in relation
to nutrient fluxes21,22.

In our study, we explored the effects of microplastics on the
structure and function (specifically, nitrification, and denitrifica-
tion) of microbial communities in coastal salt marsh sediments.
Three common, petroleum-based plastics were chosen for testing:
PE, polyvinyl chloride (PVC), and polyurethane foam (PUF). In
addition, one biopolymer (polylactic acid, PLA) was included to
compare the effects of a presumably biodegradable polymer with
those more recalcitrant to degradation. To evaluate the potential for
these plastics to influence sediment communities in the short-term,
microplastics of these four polymers were added to individual
sediment microcosms and incubated for 16 days (Fig. 1). Changes
in the composition and diversity of sediment microbial commu-
nities were assessed based on MiSeq sequencing of 16S rRNA
genes, whereas the functional genes in nitrification and deni-
trification were determined with quantitative polymerase chain
reaction (qPCR). Dissolved inorganic N concentrations in the
overlying water of sediments were measured to infer sedimentary N
cycling processes. At the end of the microcosm incubation, a
sediment slurry incubation experiment with 15NO3

– tracer was
conducted to measure potential denitrification rates. From these
results, we demonstrate that sediment microbial communities dif-
ferentially respond to the addition of microplastics, with sig-
nificantly different structural and functional responses occurring
between polymer types.

Results
Microbial community structure. A total of 1,379,639 sequences
were obtained after merging and filtering raw data of 16S reads,
with an average of 44,504 sequences per sample. Bacterial 16S
sequences were predominant in each sample, with <2.21%
archaeal 16S sequences, which were excluded in further analyses.

Control
(CON)

Polyethylene
(PE)

Polyvinyl
chloride (PVC)

Polyurethane
foam (PUF)

Polylactic
acid (PLA)

O2O2O2O2O2

×3

Fig. 1 Microcosm experimental design. All five treatments were repeated in triplicate and each microcosm was individually aerated to establish an oxygen
gradient in the sediment.
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Bacterial diversity (alpha diversity measures) was highest in the
biopolymer (PLA), lowest in PE-amended sediments and second
lowest in the control treatment (Table 1; Supplementary Fig. 1).
Bacterial community diversity was compared among samples
using a principal coordinate analysis (PCoA), which measures
dissimilarity among communities based on beta diversity (Fig. 2).
Using Bray–Curtis dissimilarity, the first two principal compo-
nents explained 32.7% of community variance. Multivariate
permutational ANOVA (PERMANOVA) was used to calculate
significant differences between these community dissimilarities
based upon plastic treatment (p= 0.001), day (p= 0.001) and the
interaction between these (p= 0.023; Supplementary Table 1).
Sediment communities in the PVC treatment were distinctly
different from the others. The initial community (sampled from
the homogenized sediment upon experiment initiation) and the
communities in control and PLA treatments clustered together in
the top left quadrant. The communities in control and PLA
exhibited minimal changes over time, according to the PCoA. PE
and PUF treatments exhibited the most variation in community
composition over time, but were similar to each other. These two
petroleum-based polymer treatments had distinctly different
effects on communities from the third petroleum-based polymer
treatment, PVC. The clear differences in bacterial communities
between PVC treatment and other treatments were also observed
in a cluster dendrogram (Supplementary Fig. 2).

All samples were dominated by species within phyla Bacter-
iodes and Proteobacteria (Supplementary Fig. 3). Of the
Proteobacteria, classes Deltaproteobacteria and Gammaproteo-
bacteria dominated the communities (Supplementary Fig. 4).
There were significant differences in community composition
between treatments, particularly at the family level. The relative
abundance of families at >1% in samples is illustrated in Fig. 3a
(Supplementary Fig. 5 illustrates relative abundance of each
sample). Significant differences in the relative abundance of these
families between each treatment and the control (determined
from DeSeq analysis; α < 0.01; Supplementary Figs. 6–9) are
illustrated in Fig. 3b. Several families showed a significantly
higher relative abundance in the control than the PVC treatment
community, including Chromatiaceae, Ectothiorhodospiraceae,
Lentimicrobiaceae, Magnetococcaceae, Pirellulaceae, Sedimentico-
laceae, Thermoanaerobaculaceae, and Woeseiaceae. Of these,
Chromatiaceae and Sedimenticolaceae showed a significantly
lower relative abundance in PVC-amended than all other

treatments (Supplementary Fig. 4). Family_XII was significantly
more abundant in communities of all plastic treatments than the
control community. Izimaplasmataceae, Marinifilaceae, and
Marinilabiliaceae exhibited a significantly higher relative abun-
dance in the PE, PUF, and PVC treatments than the control, but
not statistically more abundant than in the biopolymer (PLA)
treatment. Several genera of Desulfobacteraceae and Desulfobul-
baceae were significantly higher in the PVC-amended than the
other treatments (Supplementary Figs. 9–12); this is not reflected
in Fig. 3b because, although most genera within Desulfobacter-
aceae and Desulfobulbaceae showed a significantly higher relative
abundance in PVC than the other treatments (Supplementary
Fig. 9), at least one genus was also significantly lower, which resulted
in the exclusion of those families from the heatmap. The most
distinctly different treatment community, PVC, contained several
families that showed a significantly higher relative abundance than
all other treatment communities, including Acholeplasmataceae,
Anaerolineaceae, Family_XII, Izimaplasmataceae, Lachnospiraceae,
and Marinilabiliaceae (Supplementary Fig. 13).

Nitrification and denitrification. The concentrations of dis-
solved inorganic nitrogen forms (DIN), NO3

–, NO2
–, and NH4

+,
were measured in overlying water at each sampling point (Fig. 4).
Concentrations of NO3

–, NO2
–, and NH4

+ in the starting water
were low (0.072, 0.527, and 3.44 μM, respectively). In general,
concentrations of NH4

+ were three times greater than NO3
– and

NO2
– across all treatments, and there was two times as much

NO2
– as NO3

–. We observed greatest NO2
– and NO3

– in the 16-
day PUF and PLA treatments, whereas NH4

+ was lowest in these
samples (Fig. 4). PE and control treatments had NO3

– and NO2
–

in the water after 16 days, while PVC showed almost no detect-
able NO3

– or NO2
– at all time points. In contrast, NH4

+ in the
water was greatest in the PVC treatment after 16 days. In PE, PUF
and PLA treatments, NH4

+ was greater at 7 days than 16 days,
opposite the PVC and control treatments. All statistical infor-
mation can be found in Supplementary Tables 2–4. The PO4

3−

water concentrations were also measured and were greatest in the
PVC treatments (Supplementary Fig. 14, Supplementary Table 5).

The DIN concentrations can be used in conjunction with gene
abundance to gain insights into nitrification and denitrification
activities. Relative abundances of the genes involved in bacterial
nitrification (amoA) and denitrification (nirS and nirK) were

Table 1 Sediment community alpha diversity.

Shannon Chao Ace

Initial
0 days 5.68 634.92 625.72
CON
7 days 5.8 ± 0.01 666.48 ± 9.92 660.16 ± 10.71
16 days 5.79 ± 0.05 658.14 ± 32.09 655.48 ± ± 32.67
PE
7 days 5.55 ± 0.22 511.43 ± 174.91 510.54 ± 173.89
16 days 5.75 ± 0.13 605.93 ± 103.29 603.21 ± 101.5
PVC
7 days 5.73 ± 0.06 724.42 ± 63.10 721.73 ± 63.22
16 days 5.75 ± 0.02 657.45 ± 32.42 654.10 ± 32.08
PUF
7 days 5.89 ± 0.05 705.15 ± 60.32 701.10 ± 58.78
16 days 5.82 ± 0.17 658.34 ± 130.66 656.86 ± 130.62
PLA
7 days 5.85 ± 0.02 668.62 ± 7.17 667.15 ± 6.45
16 days 5.98 ± 0.03 790.98 ± 15.97 788.53 ± 16.92

Three diversity indices (Shannon, Chao and ACE) for bacterial communities within each sample day (0, 7 or 16) and treatment (n= 3), except the initial where n= 1. Values are included plus or minus
standard error.
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measured based on qPCR of the targeted genes relative to 16S
rRNA gene abundance. Ammonia monooxygenase (encoded by
the amoA gene) is a critical enzyme in nitrification, oxidizing
ammonia (NH3

+) to hydroxylamine (NH2OH). The ratio of

amoA to 16S in different treatments is plotted in Fig. 5. We
specifically targeted ammonia-oxidizing bacteria, not ammonia-
oxidizing archaea (AOA), as no AOA taxa were detected in 16S
sequences of the samples. Bacterial amoA gene abundances
increased from day 7 to day 16 for all treatments, suggesting
enhanced nitrification potential with time. The highest amoA
gene abundances were in PLA and PUF treatments after 16 days
(compared with control after 16 days, two-way ANOVA p-value
= 0.383 and 0.0093, respectively; see Supplementary Table 6 for
all treatment comparisons), portending the highest nitrification
activities. This was corroborated by the high NO3

– and NO2
– and

low NH4
+ concentrations in these samples, which are the

products and reactants of nitrification, respectively. In contrast,
amoA gene abundance was lowest in PVC treatment, which
corresponds with the accumulation of NH4

+ over time, indicating
nitrification inhibition in this treatment.

A key enzyme in denitrification is nitrite reductase encoded by
nirS and nirK genes. Denitrifiers carrying nirS genes are generally
considered to be complete denitrifiers, converting NO3

– and
NO2

– to dinitrogen (N2); nirK-type denitrifiers are more likely to
be incomplete denitrifiers, producing N2O as an end product and
contributing to greenhouse gas emission23. The abundance of
nirS and nirK genes (relative to bacterial 16S rRNA genes)
showed very little variation over time within treatments (Fig. 5;
Supplementary Tables 7–8). Control, PUF, and PLA treatments
had the highest nirS abundances, suggesting a higher denitrifica-
tion activity than the PE and PVC treatments. PVC consistently
exhibited the lowest nirS gene abundances, suggesting a lower
denitrification activity. Conversely, the nirK abundance was
relatively consistent across all treatments, but slightly higher in
the control after 16 days.
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Fig. 3 Bacterial community composition and treatment effects. Comparison of taxonomic differences (family level) in bacterial communities with
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PERMANOVA.
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The potential denitrification activity rate was measured at the
end of the 16-day incubation. PVC had a lower potential
denitrification rate (Fig. 6; Supplementary Table 9) than any of
the other microplastic treatments, coincident with the lowest nirS
gene abundances. Denitrification was potentially highest in PLA
and PUF, tracking their higher nirS gene abundances. PUF and
PLA treatments also had more substrate for denitrification (NO3

–

and NO2
–). Interestingly, the control treatment had a significantly

lower denitrification rate than PUF and PLA treatments,
comparable to the PVC treatment. This deviates from the pattern
of higher nirS and nirK gene abundances in the control than PVC
treatment, but may be a product of relatively lower available
NO3

– and NO2
– substrate compared with PUF and PLA.

Potential rates of anaerobic ammonium oxidation (anammox)
were also calculated in a subset of samples. Potential rates were
highest in PLA and PUF, and lowest in PVC and the control
(Supplementary Fig. 15; Supplementary Table 10), similar to
denitrification. Sediment organic C and N contents were
calculated at the end of the incubation (Supplementary Fig. 16),
as well as the C and N of the plastics themselves (Supplementary
Fig. 17), revealing that the control treatment was significantly
lower in sediment organic C than all other treatments
(Supplementary Tables 11 and 12). Further, the potential rates

of denitrification and anammox were compared with total DIN,
following Semedo and Song24, to estimate DIN removal capacity.
This revealed that PVC and the control treatments had the lowest
DIN removal capacity, whereas PLA and PUF had the highest
(Supplementary Fig. 18)24.

Discussion
Our study demonstrates that microplastic contamination affects
both composition and function of sediment microbial commu-
nities. We report changes in the sediment communities between
the control and plastic treatments, as well as differences owing to
polymer type. These sediment communities encompass both the
sediment in proximity to the microplastics, as well as the biofilms
thereon. This unit is relevant as it reflects the overall impact of
microplastic-contaminated sediments on the aquatic ecosystem.
Further, attempts to physically separate the biological con-
stituents of the microplastics and the sediment would disrupt
these communities. The functional implications of these total
sediment/biofilm changes were evaluated by monitoring DIN
concentrations in the overlying water, as well as measuring
relative abundances of nitrification and denitrification genes and
post-incubation estimates of denitrification rate.
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Based on both alpha and beta diversity measures, the different
plastic treatments resulted in significant differences in the overall
sediment bacterial community diversities (Table 1, Fig. 2). In all
alpha diversity indices, the biopolymer (PLA) treatment was the
most diverse and PE the least diverse community (Table 1).
Although the PCoA explained <50% of the variance among
treatments, there were clear deviations between PVC and the
other petroleum-based polymer treatments. These are reflected in
the significant differences between families present in those
treatments (Fig. 3 and Supplementary Fig. 13), and motivated by
the different polymer amendments. In contrast, the PLA treat-
ment and the control were very similar. Although PE, PVC, and
PUF polymers are all synthesized from petroleum-derived
hydrocarbons, their compositions, structures and physical prop-
erties (i.e., strength, density, crystallinity, etc.) vary25. PE and
PVC have C-C backbones, whereas PUF has a heteroatom in its
main chain; further, PVC contains chlorine, whereas PUF con-
tains N26. In addition, polymers may be amended with chemical
additives to modify their properties to meet market demands27.
Additive packages may be complex and often their compositions
are withheld as confidential business information by the manu-
facturer. PE is the most abundant polymer in production and
common in single-use containers28. In terms of marine debris, it
is frequently reported in surface waters and increasingly in
sediments, likely after its inherent buoyancy is overcome by
biofouling29. PVC, on the other hand, is a high-density polymer,
commonly used in industrial applications and construction.
Phthalates may be present in products that require flexibility27.
PUF is used in furniture, carpet underlayment, and insulation,
and therein often contains percent levels of flame retardant
additives27,30. Comparison of these common fossil fuel-based
polymers to PLA, a heteroatomic biopolymer, is also warranted31.
Biopolymers have been promoted as a more environmentally
compatible alternative and may become a greater proportion of
the market, and thus, of marine debris in the future. Indeed,
Nauendorf et al.11 reported that even biopolymers exhibited little
degradation in organic-rich marine sediments. In summary, all

four treatment plastics evaluated here vary in physical and che-
mical characteristics, hence their selection for this study. These
differences contributed to the contrasting responses exhibited by
the exposed bacterial communities.

We observed that microplastics generated from specific poly-
mer types enhanced sedimentary nitrification and denitrification,
whereas others inhibited these processes. In the case of PUF and
PLA, in particular, there was an increase in NO3

– and NO2
–

concentrations, a decrease in NH4
+ concentration (Fig. 4), as well

as correspondingly elevated amoA gene abundances with time
(Fig. 5), suggesting enhanced rates of nitrification relative to the
control. Presumably, the enhanced nitrification in these treat-
ments depended upon NH4

+ substrate. This may have been
available through active sediment OM remineralization. In fact,
NH4

+ increased with time in the control and PVC treatments.
This suggests remineralization was active, but nitrification might
not be operating at a rate sufficient to remove this excess NH4

+.
Furthermore, in our microcosm experiment, nitrification and
denitrification were coupled. Therefore, the increased NO3

– and
NO2

– in PUF and PLA treatments may have facilitated the
growth and activity of denitrifying communities, evidenced by
higher nirS gene abundance (Fig. 5) and elevated potential
denitrification rates (Fig. 6). For the same reasons, the PE treat-
ments also appeared to slightly enhance nitrification and deni-
trification, although not significantly so. Furthermore, some
forms of polyurethane have been reported to be susceptible to
microbial degradation32. PUF contains nitrogen in the polymer
backbone, unlike the other polymers tested here26. Theoretically,
in situ degradation of PUF may have contributed to labile inor-
ganic N for nitrification and coupled denitrification, and this
possibility should be addressed in future studies.

In contrast, both nitrification and denitrification appeared to
be inhibited in the PVC treatment. Not only were NO3

– and
NO2

– concentrations in the overlying water extremely low, but
the PVC treatment sediment also exhibited the lowest relative
abundance of nirS gene and lowest potential rate of denitrification
in the post-incubation sediment slurry experiment. Similar to the
control, however, the PVC treatment had high concentrations of
NH4

+, which increased over time, likely owing to sediment
remineralization. Thus, nitrification was clearly limited in this
system. Sulfide has been documented to inhibit nitrification in
marine sediments33. Most genera of Desulfobacteraceae and
Desulfobulbaceae showed a significantly higher relative abun-
dance in the PVC than the other treatments (Supplementary Figs.
9–12). Members of the Deltaproteobacteria class had highest
relative abundance in the PVC treatment after 16 days, which is
characteristic of sulfate reduction. Sulfide production in the PVC
treatment by these abundant sulfate-reducing bacteria may have
inhibited nitrification, and thus denitrification33. Pinnell and
Turner13 observed significantly higher sulfate-reducing micro-
organisms on the biofilm of a bioplastic (PHA) formed at the
sediment water interface, compared to PET plastic and a ceramic
control. They suggested that this was attributable to the hydro-
carbon degradation of PHA by sulfate reducers. Here, however,
sulfate-reducing bacteria were not observed in the biopolymer
treatment (PLA), decreasing the connection between sulfate-
reduction and hydrocarbon degradation. As such, the increase in
sulfate-reducing bacteria in PVC remains unexplained. However,
it is may be a function of the plastic composition (e.g., a shared
additive between tested PVC and Pinnell and Turner’s PHA) or a
physical response of the sediment environment (e.g., increased
hydrophobicity).

Insights into the mechanisms behind microplastic effects on
the sediment microbiome and N cycling may be drawn from
other studies. Cluzard et al.22 observed an increase in overlying
water NH4

+ concentration when sediments were amended with
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Fig. 6 Comparison of potential denitrification rates. Potential denitrification
rate for each treatment in nmol g−1 hr−1, calculated after the end of the
experiment (day 17). Error bars are the standard error (n= 6 per treatment)
and asterix represent significant difference from the control (p < 0.05;
Supplementary Table 9).
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PE microbeads, similar to our PVC treatment. These authors
proposed that an increase in sediment porosity allowed for
greater diffusion from the sediments. However, increasing por-
osity would also increase oxygen diffusion and thus nitrification,
decreasing NH4

+. Indeed, our PVC treatment also exhibited high
PO4

3− concentrations in the overlying water (Supplementary Fig.
14). This can be caused by decreased organic phosphorous burial
and subsequent increased PO4

3− in the overlying water in some
anoxic systems, which would be characteristic of a less-porous
system34. Cluzard et al.22 did not address community composi-
tion; thus, we cannot discern if sulfate-reducing bacteria, which
could also have inhibited denitrification, were present in their
samples. Another hypothesis is that the microplastics possessed
antimicrobial properties, which may select for certain taxa (e.g.,
sulfate reducers and gram-negative35) and against others (e.g.,
nitrifiers36)37. Plasticizer-containing PVC products with anti-
microbial properties are often used in the medical field38. For
example, Cluzard et al.22 used pre-rinsed PE microbeads derived
from a skin cleansing personal care product, which likely ori-
ginally contained antimicrobial additives. In contrast, the PE used
in our experiment was a pre-washed, composite of high- and low-
density single-use, container-derived plastics. If microbial
responses are indeed influenced by additive content and not
polymer type alone, experimental and field research designs must
consider both. We suggest future research to characterize addi-
tives, especially in controlled studies of organismal responses, so
that their influence can be better assessed. If certain additives are
found to inhibit coastal N cycling, their use in plastics could and
should be controlled.

Compared with the plastic treatments, the control exhibited
low denitrification activity following the incubation. This is
contrary to denitrification genes (nirS and nirK), which were
generally highest in the control treatment at 7 and 16 days. Over
time, nitrification increased in the control (i.e., there was a slight
increase in NO3

–, NO2
–, and amoA), thus denitrification was

not limited by NO3
– and NO2

– substrate. Yet, partial deni-
trification contributing to the NO2

– pool could have occurred, in
addition to nitrification, as evidenced by the considerably higher
dissolved NO2

– than NO3
–. The amount of organic C in sedi-

ments was notably different between control and plastic treat-
ments, the latter receiving supplemental OM in the form of C
from the polymer amendments (Supplementary Fig. 17). This
suggests that the higher denitrification in plastic treatments,
particularly PLA and PUF, may have been facilitated by the
polymer OM itself. PLA and PUF are also the only heteroatomic
polymers tested and more susceptible to hydrolytic cleavage,
compared with the other plastics with solely C backbones26.
However, again, other researchers have suggested that biode-
gradation of plastics in sediments is low11. Longer duration
experiments should be performed to observe if bacteria can
degrade plastic over time when faced with a labile sediment C
limitation. Another factor for future consideration is pre-
weathering of plastics, especially by photo-oxidation. This may
prime them to subsequent biodegradation26.

Clearly, plastic amendments also affected C cycling in our
sediment microcosms. In aquatic environments, the bulk of
plastic degradation studies have been on water column-
originating biofilms of plastics and have focused on the pre-
sence of known hydrocarbon degrading species9 or metabolic
pathways8. In either case, the true capacity for bacterial plastic
degradation and the responsible organisms are yet undetermined.
Certain plastic-degrading species have been suggested for PE10,39,
PUF10,39, PVC39, and PLA39. Yet very few, if any, of these were
found in our samples at >0.1% abundance (Supplementary
Table 13). This is not surprising, however, as the above-cited
studies are based on water column biofilm assemblages. In a study

addressing sediment microbial degradation of PUF, Shah et al.40

reported the significant presence of Pseudomonas spp. We also
observed these taxa in our PUF and PVC samples (Supplemen-
tary Table 14), including Pseudomonadales pseudomonadaceae, a
previously reported petroleum hydrocarbon degrader in oil-
polluted salt marshes41. Insight into novel, sediment-based,
hydrocarbonclastic taxa may be inferred from operational taxo-
nomic units (OTUs) that are significantly higher in plastic-
amended treatments than the non-amended control. Family_XII
Fusibacter was significantly higher in all treatments than in the
control (Fig. 3). Families Marinifilaceae and Marinilabiliaceae
were higher in all petroleum-based plastic treatments than the
control and PLA treatments. No publications to our knowledge,
however, suggest hydrocarbon degradation capacity of these
organisms. Therefore, further research is needed. Nonetheless, the
results from potential denitrification activity measurements sug-
gest that plastics may be acting as an organic C source for sedi-
ment microbial communities (Supplementary Fig. 16). Our
microcosm design provided no additional source of C substrate,
which may have motivated sediment microorganisms to utilize
microplastics as C for energy compared to natural systems.

Massive amounts of plastic enter and reside within riverine,
estuarine and coastal environments. Although it was once con-
sidered completely recalcitrant, we now know that plastic
degrades to varying extents in the marine environment over time
and that microbial communities may play a role in this9,25,42. The
leaching of chemicals from plastic alone has been shown to
potentially contribute to the dissolved organic C pool in marine
waters43 and to the production of greenhouse gases, such as
methane and ethylene44. It was estimated that between 1.15 and
2.41 million tons of plastic enter the coastal zone and oceans from
rivers annually, much of which eventually reaches sediments45.
These plastics once served a variety of consumer purposes; as
such, they are extremely diverse in form and chemistry. Here, we
have demonstrated that microplastics generated from four diverse
polymers influenced marsh sediment microbiomes and biogeo-
chemical cycling. Although the difference between biofilm com-
munities and that of the surrounding sediment cannot be
differentiated using our approach, the outcomes between our
treatments robustly illustrate the influence microplastics may
have on intact sediment ecosystems. This is foundational for
future efforts to assess risks of microplastic pollution in diverse
environments. Further, the work presented here demonstrates
that microplastics are indeed capable of ecosystem-level effects,
including alteration of biogeochemical cycles3. Thus, we should
evaluate plastic debris as a potential planetary boundary
threat3,4,46.

Methods
Experimental plastics. Consumer plastics were milled and sieved to a defined size
range, 53–300 µm. PE was a recycled product of predominantly high-density PE
obtained from Envision Plastics (Reidsville, NC). PVC used consisted of yellow
pellets from Teknor Apex. The PUF was a flexible, yellow PUF donated from a
gymnastics studio, similar to PUF used in furniture cushioning. The PLA pellets
were from IC 3D Printers LLC and are commonly used in 3D printing. All plastics
were embrittled and ground to a powder using a Retsch CryoMill. Resulting
powders were individually sieved to 53–300 µm using a Retsch AS 200 air jet sieve.
In previous studies, PUF, PVC, and PE were analyzed for flame retardants. PVC
was tested for phthalate additive content (see Supplementary Methods and
Supplementary Table 10). Previous analysis of the PVC used here revealed di-
ethylhexyl phthalate at 8.61 mg g−1. PUF used in this study contained both
brominated and phosphate-based flame retardants (Supplementary Table 15).
This additive analysis is not comprehensive, however, and does not include PLA.
Further, being a foundational study in the field, the plastics we selected were not
intended to be representative of all environmental sediment microplastic pollution,
but rather to embody a range of the characteristics that may be encountered.

Sediment microcosm incubation. Sediment was collected at low tide from the top
2 cm of an intertidal marsh, located along the York River estuary in Gloucester
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Point, VA in March 2018. Sediment was sandy, with low organic C content
(Supplementary Fig. 16). It was thoroughly homogenized and interstitial water and
large debris removed. An aliquot was sampled and immediately frozen for initial
community analysis (T0). Approximately 300 g of wet sediment were added to acid
washed and combusted 500ml glass jars (sediment depth reached 3 cm). The
experimental design included four microplastic (53–300 µm) treatments (PE, PUF,
PVC, PLA) and a no plastic control (CON), with three replicates each (n= 15;
Fig. 1). Microplastics were added to obtain a concentration of 0.5% by weight of
sediment, or 1.5 g of microplastics per microcosm (300 g sediment), and thoroughly
homogenized with the sediment prior to adding water. Published field data on
microplastic sediment concentrations are limited. Many studies that report
microplastics in sediments do so on a particle count (not weight) basis, making
comparison with our microcosms impractical. Reports generally underestimate
actual burdens as they do not include small microplastics. Carson et al.47 reported
the weight-based sediment concentration of microplastics to sediment for a
Hawaiian beach to be 3.3%, six times higher than our experimental concentration
Another Hawaiian study reported concentrations closer to 0.12% plastic by weight
(reported as 2 g L−1 and converted using 1.7 g cm−3 for marine sediment density48),
five times lower than our experimental concentration49. Based on these available
studies, we believe our exposure concentrations are relevant, particularly for
foundational work.

Estuary water was collected adjacent to the sediment sampling location
along the York River (salinity: 21) and filtered with a 38 µm pore size filter to
remove particulate matter. Filtered water (50 mL) was added to each microcosm,
mixed, and sediments allowed to settle. All samples were carefully topped with
an additional 200 mL of filtered seawater, so not to re-disturb the sediment.
Microcosms were gently aerated to maintain oxygen in the overlying water and
24 hours were allowed to establish an oxic/anoxic gradient down the sediment
prior to the start of incubation period. Microcosms were covered with aluminum
foil to prevent evaporation and maintained at room temperature in the dark during
incubation.

Sediment aliquots were collected at 7 and 16 days for microbial community
analysis. Triplicate cores (depth: 1 cm; diameter: 0.5 cm) were randomly sampled
at three locations within the microcosm. The three cores were homogenized,
centrifuged and supernatant water removed by pipet. Sediment composites for each
microcosm and sample date (n= 30) were stored in a −60 °C freezer for DNA
extraction. Coincident with sediment sampling, 10 mL of overlying water were
collected and immediately frozen for inorganic nutrient analysis.

DNA extraction and 16S rRNA gene analysis. A DNeasy Powerlyzer Powersoil
Kit (Qiagen) was used to extract DNA following the manufacture’s instruction. In
brief, silica bead tubes were loaded with 0.5 g of sediment and extraction solution,
using the bead beater to break cells and extract DNA. Microplastics were not
removed from the sediments prior to DNA extraction. The supernatant in each
tube was purified and prepared with a series of DNA-cleaning solutions, and final
DNA was eluted in 50 µL. Qbit fluorometric quantification (Thermo Scientific) was
used to measure the extracted DNA, and each sample was diluted to 10 ng µL−1.
Diluted DNA (1 µL) was combined with 12.5 µL GoTaq mix, 9.5 µL nucleic acid
free water and 1 µL each PCR primers (515 F and 926 R) to target the V4-5 regions
of 16S rRNA genes50. PCR was carried out with denaturation at 95 °C for 3 min-
utes, 25 annealing cycles at 95 °C for 30 seconds, 55 °C for 30 seconds and 72 °C for
30 seconds, followed by elongation at 72 °C for 4 minutes. The PCR product was
purified using an AMPure XP bead kit and the concentration calculated using Qbit
fluorometric quantification. All PCR products were diluted to 0.2 ng µL−1 and
6 pM of this product was used for sequencing with the Illumnia MiSeq platform,
following the manufacturer’s instruction. All genes were normalized to the 16S
qPCR concentration, to correct for nucleic acid concentration.

The high-quality sequences from the Illumina MiSeq were processed using
dada2 plugin for RStudio51. In brief, forward and reverse sequences were trimmed
to 200 and 250 base pairs and a maximum error number of 2 and 5 errors,
respectively. Sequences were merged and aligned, and chimeras removed. The Silva
reference database (version 132) was used to match the taxonomy information of
sequences52. Code is provided in the Supplementary Code. RStudio packages
(phyloseq, ggplot2, and vegan) were used for all graphical and statistical analyses
(McMurdie and Holmes, 2013).

Quantitative PCR of targeted genes. QPCR assays of 16S rRNA, amoA, nirS, and
nirK genes were conducted using the QuantStudio 6 Flex (Thermo Scientific), as
described by Lisa et al. and Semedo et al.24,53. Standards were prepared through a
serial dilution of M13 PCR products from plasmids carrying the target gene or
fusion PCR products from environmental DNA and quantified using an Agilent
220 TapeStation System (Agilent Technologies). The primers used for qPCR of 16S
rRNA genes were 515 F and 926R50. The primers nirScd3aF and nirSR3cd were
used to generate 400 bp amplicons of bacterial nirS genes;inirK genes were detected
using nirKF1Ac and nirKR3Cu primers54; bacterial amoA genes were detected
using AmoA-1F and AmoA-2R53. The 12 μL qPCR reactions for 16S, nirS, nirK,
and amoA quantification consisted of 6 μL of SYBR green GoTaq qPCR Master
Mix (Promega), 0.03 μL of CRX dye, 0.6 μL of each primer (10 μM), 0.12 μL of
bovine serum albumin, 8 ng of template DNA, and were adjusted to final volume
with nuclease-free H2O. The qPCR conditions can be found in reference

publications for 16S24, nirS, nirK, and amoA53. Amplification efficiencies were
69%, 76%, 74%, and 84%, for 16S rRNA, nirS, nirK, and AmoA genes, respectively.
The R2 value of the standard curves was 0.99 for the four genes. All reactions were
performed in 384 well plates with three negative controls, which contained no
template DNA, to exclude potential contamination. Reaction specificity was con-
firmed using gel electrophoresis in comparison with standards and monitored by
analysis of dissociation curves during quantitative amplification. Gene ratio of
amoA, nirS, and nirK genes in different treatments was calculated by dividing the
gene copy numbers by bacterial 16S rRNA gene copy numbers.

Rate measurements of denitrification and anammox. Sediment slurry incu-
bation experiments, with 15NO3

− as a tracer, were conducted after 17 days
incubation time, with exetainer tubes for each treatment replicate (n= 6 per
treatment) following Lisa et al.53 In brief, exitainer tubes with 2 g of homo-
genized sediment were helium-purged and dark-incubated overnight to remove
residual NO2

− and NO3
−. Six replicates of exetainer tubes per sample were

amended with 100 nmoles 15NO3
− and then incubated at room temperature in

dark. Both anammox and denitrification activities were stopped by adding
saturated zinc chloride (ZnCl) solution after 0, 1, and 2 hr of incubations. Time
series production of 29N2 and 30N2 was measured on an isotope ratio mass
spectrometer and used to calculate the rate of denitrification and anammox
following Song and Tobias55.

Sediment and water column nutrients. Water samples from each collection date
(including the initial water, n= 31) were analyzed for NO2

−, NO3
−, NH4

+, and
PO4

3− content using a Lachat QuickChem 8000 automated ion analyzer, per
methods in Anderson et al.56. In addition, total organic carbon and nitrogen
content were analyzed by the Virginia Institute of Marine Science Analytical Ser-
vice Center using an Exeter model 440CE CHN analyzer.

Statistical analyses. Differences in rate, gene abundance or nutrient concentra-
tion between treatments were statistically compared using a one-way or two-way
ANOVA (α < 0.05) in RStudio57. Prior to analysis, the Shapiro–Wilks test for
normality and Levene’s test for homogeneity of the variance were conducted. A
post hoc Tukey test was used to determine which treatments were significantly
different. A multivariate PERMANOVA was conducted using the anodis function
(Vegan package, Rstudio) to evaluate significant effects of plastic, date, and the
interaction of these on community dissimilarity. Results of all analyses may be
found in Supplementary Tables 1–12.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The 16S sequence data that support the findings of this study are available in NCBI
repository (accession code: PRJNA575886). The authors declare that the remainder of
data that support the findings of this study are available within the article and source
data file.

Received: 11 October 2019; Accepted: 14 April 2020;

References
1. Gregory, M. R. Environmental implications of plastic debris in marine

settings–entanglement, ingestion, smothering, hangers-on, hitch-hiking and
alien invasions. Philos. Trans. R. Soc. B 364, 2013–2025 (2009).

2. Hartmann, N. B. et al. Are we speaking the same language? Recommendations
for a definition and categorization framework for plastic debris. Environ. Sci.
Technol. 53, 1039–1047 (2019).

3. Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris
throughout the marine ecosystem. Nat. Ecol. Evol. 1, 1–8 (2017).

4. Villarrubia-Gómez, P., Cornell, S. E. & Fabres, J. Marine plastic pollution as a
planetary boundary threat—The drifting piece in the sustainability puzzle.
Mar. Policy 96, 213–220 (2018).

5. Fazey, F. M. C. & Ryan, P. G. Biofouling on buoyant marine plastics: an
experimental study into the effect of size on surface longevity. Environ. Pollut.
210, 354–360 (2016).

6. Kooi, M., Van Nes, E. H., Scheffer, M. & Koelmans, A. A. Ups and downs in
the ocean: effects of biofouling on vertical transport of microplastics. Environ.
Sci. Technol. 51, 7963–7971 (2017).

7. Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J. & Janssen, C. R.
Microplastics in sediments: a review of techniques, occurrence and effects.
Mar. Environ. Res. 111, 5–17 (2015).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16235-3

8 NATURE COMMUNICATIONS |         (2020) 11:2372 | https://doi.org/10.1038/s41467-020-16235-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


8. Debroas, D., Mone, A. & Halle, A. T. Plastics in the North Atlantic garbage
patch: a boat-microbe for hitchhikers and plastic degraders. Sci. Total Environ.
599–600, 1222–1232 (2017).

9. Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the ‘plastisphere’:
microbial communities on plastic marine debris. Environ. Sci. Technol. 47,
7137–7146 (2013).

10. Oberbeckmann, S., Löder, M. G. J. & Labrenz, M. Marine microplastic-
associated biofilms—a review. Environ. Chem. 12, 551–562 (2015).

11. Nauendorf, A. et al. Microbial colonization and degradation of polyethylene
and biodegradable plastic bags in temperate fine-grained organic-rich marine
sediments. Mar. Pollut. Bull. 103, 168–178 (2016).

12. Harrison, J. P., Schratzberger, M., Sapp, M. & Osborn, A. M. Rapid bacterial
colonization of low-density polyethylene microplastics in coastal sediment
microcosms. BMC Microbiol. 14, 2–15 (2014).

13. Pinnell, L. J. & Turner, J. W. Shotgun metagenomics reveals the benthic
microbial community response to plastic and bioplastic in a coastal marine
environment. Front. Microbiol 10, 1–13 (2019).

14. Rochman, C. M. Microplastics research-from sink to source. Science 360,
28–29 (2018).

15. Jambeck, J. R. et al. Plastic waste inputs from land into ocean. Science 347,
768–771 (2015).

16. Dris, R., Gasperi, J. & Tassin, B. Sources and fate of microplastics in urban
areas: a focus on Paris megacity. in Freshwater Microplastics (eds Wagner, M.
& Lambert, S.) 69–83 (Springer International Publishing, 2018).

17. Mintenig, S. M., Int-Veen, I., Löder, M. G. J., Primpke, S. & Gerdts, G.
Identification of microplastic in effluents of waste water treatment plants
using focal plane array-based micro-Fourier-transform infrared imaging.
Water Res. 108, 365–372 (2017).

18. Raju, S. et al. Transport and fate of microplastics in wastewater treatment
plants: implications to environmental health. Rev. Environ. Sci. Biotechnol. 17,
637–653 (2018).

19. Fagherazzi, S. et al. Fluxes of water, sediments, and biogeochemical
compounds in salt marshes. Ecol. Process 2, 1–16 (2013).

20. Ward, B. B. & Jensen, M. M. The microbial nitrogen cycle. Front. Microbiol 5,
1–2 (2014).

21. Green, D. S., Boots, B., O’Connor, N. E. & Thompson, R. Microplastics affect
the ecological functioning of an important biogenic habitat. Environ. Sci.
Technol. 51, 68–77 (2017).

22. Cluzard, M., Kazmiruk, T. N., Kazmiruk, V. D. & Bendell, L. I. Intertidal
concentrations of microplastics and their influence on ammonium cycling as
related to the shellfish industry. Arch. Environ. Contam. Toxicol. 69, 310–319
(2015).

23. Helen, D., Kim, H., Tytgat, B. & Anne, W. Highly diverse nirK genes comprise
two major clades that harbour ammonium-producing denitrifiers. BMC
Genomics 17, 1–13 (2016).

24. Semedo, M., Song, B., Sparrer, T. & Phillips, R. L. Antibiotic effects on
microbial communities responsible for denitrification and N2O production in
grassland soils. Front. Microbiol. 9, 1–16 (2018).

25. Andrady, A. L. The plastic in microplastics: a review. Mar. Pollut. Bull. 119,
12–22 (2016).

26. Gewert, B., Plassmann, M. M. & MacLeod, M. Pathways for degradation of
plastic polymers floating in the marine environment. Environ. Sci. Process.
Impacts 17, 1513–1521 (2015).

27. Hermabessiere, L. et al. Occurrence and effects of plastic additives on
marine environments and organisms: a review. Chemosphere 182, 781–793
(2017).

28. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics
ever made. Sci. Adv. 3, 25–29 (2017).

29. Erni-Cassola, G., Zadjelovic, V., Gibson, M. I. & Christie-Oleza, J. A.
Distribution of plastic polymer types in the marine environment; a meta-
analysis. J. Hazard. Mater. 369, 691–698 (2019).

30. Hale, R. C., La Guardia, M. J., Harvey, E. & Matt Mainor, T. Potential role of
fire retardant-treated polyurethane foam as a source of brominated diphenyl
ethers to the US environment. Chemosphere 46, 729–735 (2002).

31. Lunt, J. Large-scale production, properties and commercial applications of
polylactic acid polymers. Polym. Degrad. Stab. 59, 145–152 (1998).

32. Howard, G. T. Biodegradation of polyurethane: a review. Int. Biodeterior.
Biodegrad. 49, 245–252 (2002).

33. Ward, B. B. Nitrification in marine systems. in Nitrogen in the marine
environment (eds Capone, D. G., Bronk, D. A., Mulholland, M. R. &
Carpenter, E. J.) 199–261 (Academic Press, 2008).

34. Lenton, T. M. & Watson, A. J. Regulation of nitrate, phosphate, and oxygen in
the ocean. Glob. Biogeochem. Cycles 14, 225–248 (2000).

35. Córdova-Kreylos, A. L. & Scow, K. M. Effects of ciprofloxacin on salt marsh
sediment microbial communities. ISME J. 1, 585–595 (2007).

36. Beddow, J. et al. Nanosilver inhibits nitrification and reduces ammonia-
oxidising bacterial but not archaeal amoA gene abundance in estuarine
sediments. Environ. Microbiol. 19, 500–510 (2017).

37. Barra Caracciolo, A., Topp, E. & Grenni, P. Pharmaceuticals in the
environment: Biodegradation and effects on natural microbial communities. A
review. J. Pharm. Biomed. Anal. 106, 25–36 (2015).

38. Choi, S. Y. et al. Dual functional ionic liquids as plasticisers and antimicrobial
agents for medical polymers. Green. Chem. 13, 1527–1535 (2011).

39. Pathak, V. M. & Navneet Review on the current status of polymer
degradation: a microbial approach. Bioresour. Bioprocess 4, 1–31 (2017).

40. Shah, A. A., Hasan, F., Akhter, J. I., Hameed, A. & Ahmed, S. Degradation of
polyurethane by novel bacterial consortium isolated from soil. Ann. Microbiol.
58, 381–386 (2008).

41. Beazley, M. J. et al. Microbial community analysis of a coastal salt marsh
affected by the Deepwater Horizon oil spill. PLoS One 7, 1–13 (2012).

42. Da Costa, J. P. et al. Degradation of polyethylene microplastics in seawater:
Insights into the environmental degradation of polymers. J. Environ. Sci. Heal.
Part A 4529, 1–10 (2018).

43. Romera-Castillo, C., Pinto, M., Langer, T. M., Álvarez-Salgado, X. A. &
Herndl, G. J. Dissolved organic carbon leaching from plastics stimulates
microbial activity in the ocean. Nat. Commun. 9, 1–7 (2018).

44. Royer, S.-J., Ferrón, S., Wilson, S. T. & Kar, D. M. Production of methane and
ethylene from plastic in the environment. PLoS One 13, 1–13 (2018).

45. Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat.
Commun. 8, 1–10 (2017).

46. MacLeod, M. et al. Identifying chemicals that are planetary boundary threats.
Environ. Sci. Technol. 48, 11057–11063 (2014).

47. Carson, H. S., Colbert, S. L., Kaylor, M. J. & McDermid, K. J. Small plastic
debris changes water movement and heat transfer through beach sediments.
Mar. Pollut. Bull. 62, 1708–1713 (2011).

48. Tenzer, R. & Gladkikh, V. Assessment of density variations of marine
sediments with ocean and sediment depths. Sci. World J. 2014, 1–9 (2014).

49. McDermid, K. J. & McMullen, T. L. Quantitative analysis of small-plastic
debris on beaches in the Hawaiian archipelago. Mar. Pollut. Bull. 48, 790–794
(2004).

50. Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and
fungal internal transcribed spacer marker gene primers for microbial
community surveys. mSystems 1, 1–10 (2016).

51. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina
amplicon data. Nat. Methods 13, 581–583 (2016).

52. Yilmaz, P. et al. The SILVA and ‘all-species Living Tree Project (LTP)’
taxonomic frameworks. Nucleic Acids Res 42, D643–D648 (2014).

53. Lisa, J. A., Song, B., Tobias, C. R. & Hines, D. E. Genetic and biogeochemical
investigation of sedimentary nitrogen cycling communities responding to tidal
and seasonal dynamics in Cape Fear River Estuary. Estuar. Coast. Shelf Sci.
167, A313–A323 (2015).

54. Throbäck, I. N., Enwall, K., Jarvis, Å. & Hallin, S. Reassessing PCR primers
targeting nirS, nirK and nosZ genes for community surveys of denitrifying
bacteria with DGGE. FEMS Microbiol. Ecol. 49, 401–417 (2004).

55. Song, B. & Tobias, C. R. Chapter three—Molecular and stable isotope methods
to detect and measure anaerobic ammonium oxidation (anammox) in aquatic
ecosystems. in Research on Nitrification and Related Processes, Part B (eds
Klotz, M. G. & Stein, L. Y.) vol. 496, 63–89 (Academic Press, 2011).

56. Anderson, I. C. et al. Impacts of climate-related drivers on the benthic nutrient
filter in a shallow photic estuary. Estuaries Coasts 37, 46–62 (2014).

57. Team, Rs. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA
http://www.rstudio.com/ (2015).

Acknowledgements
We thank the Freeman Family Foundation for support, via the Virginia Institute of
Marine Science (VIMS) Freeman Family Fellowship. This work was partially supported
by National Science Foundation grants (grant numbers: 1737258 and 1658135) and the
National Oceanic and Atmospheric Administration (grant number: NA13NOS4630062).
We also appreciate a Plumeri Faculty Excellence Award from William & Mary and VIMS
Academic Studies department for APC support. This is contribution #3890 from the
Virginia Institute of Marine Science, William & Mary.

Author contributions
M.E.S. and B.S. designed the experiment. R.C.H contributed all plastics and their asso-
ciated analyses. M.E.S. completed 16S rRNA gene extraction and analysis. R.P. completed
qPCR and, denitrification and anammox experiments. Nitrogen cycling and DNA ana-
lysis was completed under the supervision of B.S. and in his lab. M.E.S completed first
draft and figures of this manuscript. M.E.S, B.S., and R.H. contributed to manuscript
editing and interpretation of data and results.

Competing interests
The authors declare no competing interests.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16235-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2372 | https://doi.org/10.1038/s41467-020-16235-3 | www.nature.com/naturecommunications 9

http://www.rstudio.com/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-16235-3.

Correspondence and requests for materials should be addressed to M.E.S.

Peer review information Nature Communications thanks Anne Daebeler, Andrew
Osborn, and other, anonymous, reviewers for their contribution to the peer review of this
work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16235-3

10 NATURE COMMUNICATIONS |         (2020) 11:2372 | https://doi.org/10.1038/s41467-020-16235-3 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-16235-3
https://doi.org/10.1038/s41467-020-16235-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Microplastics affect sedimentary microbial communities and nitrogen cycling
	Recommended Citation

	Microplastics affect sedimentary microbial communities and nitrogen cycling
	Results
	Microbial community structure
	Nitrification and denitrification

	Discussion
	Methods
	Experimental plastics
	Sediment microcosm incubation
	DNA extraction and 16S rRNA gene analysis
	Quantitative PCR of targeted genes
	Rate measurements of denitrification and anammox
	Sediment and water column nutrients
	Statistical analyses
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


