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The ubiquitous occurrence of microplastics (MPs) in the marine environment is raising

concern for interactions with marine organisms. These particles efficiently adsorb

persistent organic pollutants from surrounding environment and, due to the small

size, they are easily available for ingestion at all trophic levels. Once ingested, MPs

can induce mechanical damage, sub-lethal effects, and various cellular responses,

further modulated by possible release of adsorbed chemicals or additives. In this

study, ecotoxicological effects of MPs and their interactions with benzo(a)pyrene

(BaP), chosen as a model compound for polycyclic aromatic hydrocarbons (PAHs)

were investigated in Mediterranean mussels, Mytilus galloprovincialis. Organisms were

exposed for 4 weeks to 10 mg/L of low-density polyethylene (LDPE) microparticles

(2.34 ∗ 107 particles/L, size range 20–25µm), both virgin and pre-contaminated with

BaP (15µg/g). Organisms were also exposed for comparison to BaP dosed alone at

150 ng/L, corresponding to the amount adsorbed on microplastics. Tissue localization

of microplastics was histologically evaluated; chemical analyses and a wide battery of

biomarkers covering molecular, biochemical and cellular levels allowed to evaluate BaP

bioaccumulation, alterations of immune system, antioxidant defenses, onset of oxidative

stress, peroxisomal proliferation, genotoxicity, and neurotoxicity. Obtained data were

elaborated within a quantitative weight of evidence (WOE) model which, using weighted

criteria, provided synthetic hazard indices, for both chemical and cellular results, before

their integration in a combined index. Microplastics were localized in hemolymph, gills,

and especially digestive tissues where a potential transfer of BaP from MPs was also

observed. Significant alterations were measured on the immune system, while more

limited effects occurred on the oxidative status, neurotoxicity, and genotoxicity, with a

different susceptibility of analyzed pathways, depending on tissue, time, and typology
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of exposure. Molecular analyses confirmed the general lack of significant transcriptional

variations of antioxidant and stress genes. The overall results suggest that microplastics

induce a slight cellular toxicity under short-term (28 days) exposure conditions. However,

modulation of immune responses, along with bioaccumulation of BaP, pose the still

unexplored risk that these particles, under conditions of more chronic exposure (months

to years) or interacting with other stressors, may provoke long-term, subtle effects on

organisms’ health status.

Keywords: microplastics, mussels, bioavailability, biomarkers, immune responses, gene transcription, weighted

criteria, hazard index

INTRODUCTION

Microplastics are particles smaller than 5mm in diameter
(NOAA, 2015), now identified as the predominant component
of plastic debris in the marine environment (Goldstein et al.,
2013; Eriksen et al., 2014). The huge amount of microplastics
documented over the past decade (Wright et al., 2013), is partly
due to the direct release of micro-debris into the ocean (Browne,
2015), but in larger quantities, it depends on fragmentation of
macro- and meso-plastic (Galgani et al., 2015; Thompson, 2015).
The small dimensions of microplastics and their ubiquitous
presence in marine habitats, are key factors promoting their
interactions with organisms (Wright et al., 2013).

Ingestion of microplastics is well-documented for several
marine vertebrates and invertebrates, including commercially
important species, which differ by trophic level, feeding
strategies, and distribution along the water column (Lusher, 2015;
Phuong et al., 2016; Avio et al., 2017a; Lusher et al., 2017; Santillo
et al., 2017).

Several laboratory experiments have been performed, in
recent years, to understand dynamics of particles uptake,
bioaccumulation and toxicological mechanisms possibly leading
to detrimental effects in a variety of bioindicators organisms
(Lusher, 2015; Phuong et al., 2016). Such studies demonstrated
that ingested microplastics can be taken up into the cells by
endocytosis, retained and even traslocated to different tissues
(Browne et al., 2008; Von Moos et al., 2012; Avio et al., 2015).
Several effects have been described in terms of histological
alterations, inflammatory reactions, and ecotoxicological
responses at cellular, biochemical, and molecular levels, but
also in terms of modulations of physiological functions such
as respiration, nutrition, reproduction and growth (Avio et al.,
2015; Paul-Pont et al., 2016; Pedà et al., 2016; Détrée and
Gallardo-Escárate, 2017; Karami et al., 2017).

Harmful consequences of microplastics to marine organisms
may also derive from the possible transfer of hazardous chemicals
associated to the plastic during manufacturing or adsorbed from
the environment (Rochman et al., 2013; Wright et al., 2013).
In this respect, microplastics can efficiently concentrate organic
pollutants from surrounding seawater, due to the hydrophobic
nature of these compounds and to the high surface/volume
ratio of the small particles (Liu et al., 2016), with a sorption
capacity that varies by plastic polymers and considered chemicals
(Rochman, 2015).

Although the ingestion of microplastics does not certainly
represent the main route of exposure to organic xenobiotics
for aquatic animals, when compared with other environmental
sources (i.e., water, sediments, food web) (Koelmans et al., 2016;
Lohmann, 2017; Wang and Wang, 2018), plastic particles have
the peculiar characteristic to combine a physical stress with a
chemical challenge (Rochman, 2015). In this respect, studies
addressing the ecotoxicological risk of microplastics in the
marine environment, should consider both the individual effects
of particles and chemicals, as well as their interactions, possibly
causing synergistic, additive, or antagonistic effects (Syberg et al.,
2015).

While in field conditions it is virtually impossible to
distinguish adverse effects caused by exposure to microplastics,
chemicals, or their combined effects, controlled laboratory
experiments remain a necessary approach to understand such
mechanisms of toxicological action.

In the present study, the contribution of microplastics to
benzo(a)pyrene (BaP) bioavailability and the onset of adverse
effects caused by pristine and contaminated particles were
evaluated at cellular, biochemical, and transcriptional levels,
using mussels Mytilus galloprovincialis, as biological model.
These organisms have high ecological and commercial relevance
in the Mediterranean Sea, where microplastics contamination
is also of particular concern (Lusher, 2015). Organisms were
exposed for 4 weeks to 10mg/L of virgin low density polyethylene
(LDPE) microparticles, one of the most common polymers in
floating debris (Cózar et al., 2015; Suaria et al., 2016), BaP
chosen as representative compound for polycyclic aromatic
hydrocarbons (PAHs), and to BaP pre-treated particles (LDPE-
BaP). Selected levels of microplastics are at least two orders of
magnitude higher than those observed in the Mediterranean
(Suaria et al., 2016) and more similar to those of the Californian
Current System (5.33 mg/L, Gilfillan et al., 2009) and of North
Pacific Central Gyre (3.02mg/L, Moore et al., 2001; Sussarellu
et al., 2016). The high dose of microplastics was chosen in our
study to explore potential long-term mechanism of action of
these particles after 28 days of exposure.

Chemical analyses of BaP and histological examinations were
performed in digestive glands, gills, and hemolymph to confirm
microplastics ingestion, translocation, and bioaccumulation in
different tissues. A wide battery of biomarkers was measured
at both cellular and transcriptional levels including lysosomal,
immunological, and antioxidant responses, markers of neuro and
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genotoxicity, peroxisomal proliferation, lipid peroxidation, and
oxidative stress. Results were further elaborated and integrated
within a weight of evidence (WOE) model which provided
a quantitative evaluation of hazard based on the extent of
BaP accumulation, as well as on the toxicological relevance
and magnitude of variations observed at cellular level. Overall,
the study was expected to provide additional insights on
potential ecotoxicological risk of microplastics and their role in
transferring chemical pollutants to marine biota.

MATERIALS AND METHODS

Sorption of Benzo(a)Pyrene on
Microplastic Particles
Low density polyethylene (LDPE) particles (20–25µm) were
purchased from Micro Powders, Inc. (USA), while BaP was
obtained from Sigma-Aldrich.

The adsorption of BaP on LDPE was obtained mixing 4 g of
LDPE micropowder in 32ml of double-deionized water, spiked
with 80 µl of BaP stock solution (1 µg/µL of BaP in toluene,
purity 96%, SOLVECO). After 2 days in continuous rotation at
the lowest speed (20 rpm, in 40ml amber glass vials with Teflon
lids), the solution was filtered on glass microfiber filters, rinsed
with double-deionized water and dried by vacuum evaporation
to obtain contaminated microplastic debris.

To confirm the adsorption of BaP on microplastics, an aliquot
of 0.25 g treated-LDPE was extracted in 2.5mL of hexane, ultra-
sonicated for 30min, and centrifugated for 10min. Supernatant
was reduced to a volume of 1.5ml using a nitrogen stream;
500 µL toluene were added and the volume further reduced
to 500 µL. GC vials were filled with 100 ng recovery standard
perylene D12 (Chiron) (2 ng/µL in toluene, 50 µL added)
and 500 µL of extract transferred. Concentrations of BaP were
quantified using a high-resolution GC-MS system (Micromass
Autopspec Ultima), separation on a 30m (0.25mm i.d., 25µm
film thickness) DB-5MS column (J&W Scientific, Folsom,
USA). Quality assurance/quality control procedures included the
internal standard method using labeled standards. Reference
microplastic (virgin microplastic) was tested in triplicates,

TABLE 1 | Primer pair sequences, amplicon size, annealing temperatures, and

Genbank accession numbers of genes analyzed in quantitative PCR in the

digestive gland of mussels.

Gene Primer sequences Amplicon

size (bp)

Annealing

T (◦C)

Accession

number

cat Fwd: CGACCAGAGACAACCCACCa 132 55 AY743716

Rev: GCAGTAGTATGCCTGTCCATCCa

Se-gpx Fwd: AGCCTCTCTCTGAGGAACAACTG 166 55 FL499839

Rev: TGGTCGAACATGCTCAAGGGC

gstpi Fwd: TCCAGTTAGAGGCCGAGCTGAb 172 55 AF527010

Rev: CTGCACCAGTTGGAAACCGTCb

hsp70 Fwd: GGTGGTGAAGACTTTGACAACAGc 295 62 AY861684

Rev: CTAGTTTGGCATCGCGTAGAGCc

aox1 Fwd: ACAGTCGTGCAAAACAGGGAC 153 62 EF525542

Rev: CTGCTGCTTCAACCAACCTGG

aCanesi et al., 2007; bCanesi et al., 2008; cCellura et al., 2006.

spiked with internal standard solutions before extraction,
and spiked with recovery standard before GC/MS-analysis.
BaP was quantified by use of five points calibration curves.
Relative standard deviation (RSD) of the triplicates was <15%.
Quantification standards were analyzed after every 10 or 12
sample. Procedure blanks were included in all batches, the limit
of detection (LOD) was defined as mean concentration in blanks
+3 times the standard deviations. The absorbed concentration
resulted approximately 15 µg BaP/g of LDPE.

Experimental Design
Specimens of M. galloprovincialis (6 ± 1 cm shell length) were
obtained in March 2017 from a local farm in an unpolluted
area of Central Adriatic Sea (Ancona) and acclimated for 15
days to laboratory conditions in glass aquaria with aerated
artificial seawater (ASW; Instant Ocean R© at salinity 37 p.s.u. and
18± 1◦C.

A total of 720 organisms were randomly distributed into
twelve 20 L- glass-aquaria and exposed, in triplicates, to one of the
following conditions for 4 weeks: (1) control (CTRL); (2) virgin
LDPE (10 mg/L corresponding to 2.34 ∗ 107 particles/L); (3) BaP
alone (150 ng/L); (4) BaP-treated polyethylene (LDPE-BaP) (15
µg BaP/g LDPE). BaP was dissolved in acetone which had a final
concentration of 0.0015%, previously shown to have no effects on
exposed organisms (Giannapas et al., 2012; Grintzalis et al., 2012;
Avio et al., 2015).

The microplastics concentration (10 mg/l) is much lower than
those used in previous exposures to mussels (Von Moos et al.,
2012; Wegner et al., 2012; Avio et al., 2015), but still higher
than the maximum levels detected in the Mediterranean Sea
(0.026 mg/L) (Suaria et al., 2016). Although in the range of levels
measured in California Current System andNorth Pacific Central
Gyre (Gilfillan et al., 2009; Sussarellu et al., 2016), it was chosen
to highlight the possible onset of long-term effects after 28 days
of exposure. The administered dose of BaP (150 ng/l) was based
on the amount of BaP adsorbed on microplastics and it also
represents an environmentally realistic value, lower than those
frequently used to assess ecotoxicological effects of BaP in marine
invertebrates (Marigómez and Baybay-Villacorta, 2003; Pan et al.,
2009; Ren et al., 2015; Banni et al., 2017; Rey-Salgueiro et al.,
2017).

Water was daily changed in each tank and virgin, pre-treated
microplastics and BaP redosed. Mussels were fed 12 h prior
the water change with a commercial mixture of zooplankton
(50–300µm) for filter-feeding organisms, and no mortality was
observed during the experiment. To avoid the stratification of
particles in the surface of the aquaria, air bubbling and motion
pumps were used (Coral R©, 250lt/h).

Organisms were collected after 7, 14, and 28 days of
exposure. Hemolymph, digestive glands and gills were rapidly
removed from 60 specimens (20 from each tank) for each
treatment, pooled in 20 samples (each containing tissues of
three specimens), frozen in liquid nitrogen and maintained at
−80◦C for chemical, biochemical, molecular, and histochemical
analyses. An aliquot of hemolymph was immediately processed
for lysosomal neutral red retention time assay (NRRT),
phagocytosis activity, granulocytes/hyalinocytes ratio, and DNA
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damage (Comet Assay), while another aliquot was fixed in
Carnoy’s solution (3:1 methanol, acetic acid) for the microscopic
evaluation of micronuclei frequency.

Chemical Analyses of benzo(a)pyrene
Benzo(a)pyrene in mussels digestive glands and gills was
analyzed in samples extracted in 0.5M potassium hydroxide
and methanol (1:10 w:v) with microwave at 55◦C for 15min
(Benedetti et al., 2014). Centrifugation was performed for
5min at 1,000 × g, and resulting methanolic solutions,
concentrated in speedvac, were finally purified with solid phase
extraction (Octadecyl C18, 500mg × 6mL, Bakerbond). A final
volume of 1mL was recovered with pure, analytical HPLC
gradient grade acetonitrile, before analyses were performed
with water–acetonitrile gradient and fluorimetric detection.
Appropriate pure standard solutions (EPA 610 Polynuclear
Aromatic Hydrocarbons Mix) were used to identify BaP by the
retention time. Quality assurance and quality control (QA/QC)
included processing blank and reference samples (mussel tissues
SRM 2977, NIST); concentrations obtained for the SRM were
always within the 95% confidence interval of certified value. The
water content in tissues was determined and concentrations of
BaP expressed as ng/g dry weight (d.w.).

Histological and Biochemical Analyses
Presence and histological localization of plastic particles were
evaluated in cryostatic sections (20µm thick) of gills and
digestive glands, and in hemolymph smears. After staining with
Haematoxylin and Eosin, slides were observed through polarized
light microscopy. No quantitative assessment was performed and
results on microplastics in tissues are thus of descriptive and
qualitative nature.

Standardized protocols were used for measurement of
biomarkers in tissues of control and exposed organisms (Regoli
and Winston, 1998; Bocchetti et al., 2008; Baršiene et al.,
2012; Gorbi et al., 2013; Benedetti et al., 2014). Detailed
methods have been given elsewhere (Avio et al., 2015) for the
following typologies of effects: immunological alterations of

hemocytes in terms of lysosomal membrane stability (NRRT),
phagocytosis activity and granulocytes/hyalinocytes ratio (G/H
ratio); neurotoxic responses in hemocytes and gills measured
as enzymatic activity of acetylcholinesterase (AChE); cellular
and oxidative stress biomarkers in digestive tissues, i.e., acyl-
CoA oxidase (AOX), antioxidant defenses (catalase glutathione
S-transferases, glutathione peroxidases, glutathione reductase,
glutathione), total oxyradical scavenging capacity (TOSC),
content of malondialdehyde (MDA), and neutral lipids (NL);
genotoxic effects in hemolymph measured as DNA strand breaks
and micronuclei frequency (MN).

Molecular Analyses
Transcriptional responses were measured in digestive glands
for some antioxidant and stress genes including catalase
(cat), glutathione peroxidase Se-dependent isoform (Se-gpx),
glutathione S-transferase pi-isoform (gstpi), acyl CoA oxidase
1 (aox1), heat shock protein 70 (hsp70). Selected genes reflect
at molecular level some of the responses also measured at the
functional, catalytic level, and they are all typical responses to
cellular stress.

For mRNA isolation and cDNA synthesis, total RNA was
purified from tissues using the Hybrid-RTM purification kit
(GeneAll R©), according to the manufacturer’s protocol. Total
RNA concentrations were measured by Nano-Drop ND-
1000 UV-Visible Spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA). RNA quality was verified on agarose-
formaldehyde gel. Total cDNA was generated by RT-PCR
(Reverse Transcription-Polymerase Chain Reaction) from 1 µg
of total RNA for each sample using combined oligo(dT) and
random hexamer primers (iScript cDNA Synthesis Kit, Bio-Rad).

Absolute quantitative real-time PCRs (qPCRs) were
performed with gene-specific primer pairs (Table 1) and
mRNA levels of individual target genes were quantified through
the SYBR green method in StepOnePlus R© Real-Time PCR
System (Applied Biosystems). Each 15 µl DNA amplification
reaction contained 7.5 µl of SYBR Select Master Mix (Life
Technologies), 5 µl of total cDNA (synthesized as described

FIGURE 1 | Concentrations of benzo(a)pyrene in digestive glands (A) and gills (B) of mussels exposed for 7, 14, and 28 days to various treatments (CTRL, control;

LDPE, virgin low density polyethylene; BaP, benzo(a)pyrene alone; LDPE-BaP, benzo(a)pyrene-contaminated polyethylene). Data are expressed as ng/g dry weight

(mean values ± standard error, n = 4); different letters indicate significant differences between groups of means within the same time of exposure (post-hoc
Newman-Keuls comparison).
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above and diluted 1:5), and 200 nM of each forward and reverse
primers. The real-time PCR program included an enzyme
activation step at 95◦C (2min) and 40 cycles each composed by
15 s at 95◦C, 15 s at the annealing temperature (Table 1), and
1min at 72 ◦C. The absence of a specific amplifications was
checked by including negative controls lacking cDNA template
and by a melting analysis (1min at 95◦C, 10 s at 65◦C, and
fluorescence detection at increasing temperature between 65 and
95◦C).

For each target gene, serial dilutions of known amounts
of plasmid containing the amplicon of interest were used
as standards. Samples and standards were run in duplicate
in the same run. A calibration curve was built by plotting
cycle threshold (Ct)-values vs. log copy numbers. Ct-values of
unknown samples were converted into mRNA copy number by
interpolating the standard plot. Obtained data from the same
experimental group (n = 4) were averaged and expressed as
mRNA copy number per µg of total RNA.

Statistical Analyses and Hazard Indices
Evaluation
Analysis of variance (Two-way ANOVA) was used to evaluate
the effects of various treatments, time of exposure and their

interactions on investigated parameters. Combined effects of
microplastics and BaP were further assessed by post-hoc
comparisons (Newman-Keuls) between LDPE, BaP, and LDPE-
BaP. Level of significance was set at p < 0.05, homogeneity
of variance was checked by Cochram C and mathematical
transformation applied if necessary. Multivariate statistical
analyses (principal component analysis, PCA) were applied to
biomarkers data in order to discriminate between different
exposure conditions; a threshold factor loading of 0.6 was used
as cut-off value.

A quantitative and software-assisted WOE model
(Sediqualsoft) was applied to elaborate results of BaP
bioavailability and biomarkers analyses and to summarize
specific hazard indices. Whole calculations, detailed flow-charts,
rationale for weights, thresholds, and expert judgments have
been fully given elsewhere (Piva et al., 2011; Benedetti et al.,
2012) and successfully applied to several multidisciplinary
studies (Piva et al., 2011; Benedetti et al., 2012, 2014, 2016; Regoli
et al., 2014; Avio et al., 2015; Bebianno et al., 2015; Mezzelani
et al., 2016; Nardi et al., 2017).

Briefly, the elaboration of Hazard Quozient for bioavailability
(HQBA) was calculated by the increase of BaP tissue
concentration in exposed organisms in respect to controls,
corrected for the significance of the difference and assigned

TABLE 2 | Results of two-way analysis of variance for the biological responses in mussels, M. galloprovincialis, exposed to different treatments (LDPE, BaP, and

LDPE-BaP) for different times (7, 14, and 28 days).

Treatment Time Interaction

dF F p value dF F p value dF F P value

BaP in digestive gland 3 50.72 P < 0.001 2 1.892 ns

BaP in gill 3 41.52 P < 0.001 2 3.379 P < 0.05 6 1.482 ns

Neutral Red Retention Time 3 20.55 P < 0.001 2 2.100 ns

Phagocytosis activity 3 16.02 P < 0.001 2 46.19 P < 0.001 6 11.32 P < 0.001

G/H ratio 3 19.76 P < 0.001 2 15.02 P < 0.001 6 3.176 P < 0.05

Acetylcholinesterase in hemolymph 3 1.482 ns 2 10.30 P < 0.001

Acetylcholinesterase in gills 3 1.417 ns 2 4.702 P < 0.05

Micronuclei 3 3.365 P < 0.05 2 3.267 P < 0.05 6 1.621 ns

DNA TAIL 3 0.136 ns 2 2.695 ns

Acyl CoA oxidase 3 1.311 ns 2 3.621 P < 0.05

Neutral lipis 3 3.197 P < 0.05 2 0.056 ns

Catalase 3 0.632 ns 2 15.75 P < 0.001

Glutathione S-transferases 3 0.270 ns 2 2.003 ns

Glutathione reductase 3 1.117 ns 2 16.16 P < 0.001

Glutathione peroxidases total 3 3.419 P < 0.05 2 4.722 P < 0.05 ns

Glutathione peroxidases Se-dip 3 0.628 ns 2 3.943 P < 0.05

Total glutathione 3 2.376 ns 2 0.108 ns

TOSC OH 3 1.490 ns 2 4.269 P < 0.05

TOSC ROO 3 0.165 ns 2 2.870 ns

Malondialdehyde 3 1.553 ns 2 16.51 P < 0.001

catalase 3 1.539 ns 2 32.30 P < 0.001

Se-dependent glutathione peroxidases 3 0.156 ns 2 6.975 P < 0.01

glutathione S-transferases pi class 3 0.909 ns 2 16.03 P < 0.01

acyl CoA oxidase 3 2.724 ns 2 2.505 ns

heat shock protein 70 3 4.620 P < 0.01 2 12.16 P < 0.001 ns

DNA TAIL, single DNA strand breaks; TOSC, total oxyradical scavenging capacity toward peroxyl (ROO•) and hydroxyl (•OH) radical; Df (degrees of freedom). F- and P-value are

reported.
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to one of five classes of effect, Absent (no increase compared
to control concentrations), Slight (up to 2.6-folds increase),
Moderate (up to 6.5-folds increase), Major (up to 13-folds
increase), Severe (more than 13-folds increase, Piva et al., 2011).

For elaboration of biomarkers results, each response has a
weight based on its toxicological relevance (from 1 to 3), and
a specific threshold defining changes of biological relevance
which consider the possibility of biphasic responses and the
different responsiveness among tissues (Piva et al., 2011). Each
biomarker variation is compared to its specific threshold (effect),
corrected for the weight of the response and the statistical
significance of the difference in comparison to control values.
The Hazard Quotient for biomarkers (HQBM) is calculated
without considering the contribution of responses with an effect
<1 (lower than threshold), the average for those with an effect
up to 2-folds compared to the threshold and the summation (6)
for the responses more than 22-folds greater than the respective
threshold (Piva et al., 2011):

HQBM =











N
∑

j=1
EffectW(j)1<Effect(j)≤2

numbiomark1<Effect(j)≤2
+

M
∑

k=1

EffectW(k)Effect(j)>2











The level of cumulative HQBM is summarized in one of five
classes of hazard for biomarkers, from Absent to Severe (Piva
et al., 2011).

The hazard indices elaborated for bioavailability and
biomarker results are normalized to a common scale and finally

integrated within a classical WOE approach which assigns one of
five classes of risk, from Absent to Severe (Piva et al., 2011).

RESULTS

Chemical analyses revealed amarked bioaccumulation inmussels
exposed to either BaP alone or LDPE-BaP, in both digestive gland
and gills (Figures 1A,B, Table 2). After 7 days of exposure, levels
of BaP in the digestive glands were significantly enhanced, then
remaining almost constant until the end of exposure and without
significant differences as a function of time in organisms exposed
to contaminated microplastics or to BaP alone (Figure 1A,
Table 2). Gills exhibited rapid accumulation of BaP in organisms
exposed to the chemical alone where the elevated concentration
measured after 7 days did not further change (Figure 1B). On
the other hand, in gills of mussels treated with contaminated
microplastics, BaP levels significantly increased until the end of
exposure at 28 days when values were similar to those of BaP
treatment (Figure 1B, Table 2).

Histological analyses revealed the presence of microparticles
in hemolymph, gills and digestive glands and no qualitative
differences were observed between organisms treated with virgin
LDPE or contaminated LDPE-BaP, as well as between different
times of exposure (7, 14, and 28 days). Particles were observed
inside hemocytic cells (Figure 2A), in the lamellae of gills
(Figure 2B) and in digestive glands, where numerous aggregates
could be observed in the intestinal lumen (Figure 2C) and, to a
lower extent, inside the digestive tubules (Figure 2D) and in the
intestinal epithelium.

Immunological responses of hemocytes exhibited statistically
significant variations (Figures 3–C, Table 2). A significant

FIGURE 2 | Polarized-light microscopy images showing the presence of microplastic particles in hemolymph (A), gills (B), gut lumen and epithelium (C), digestive

tubules (D).
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FIGURE 3 | Immunological biomarkers in mussels exposed for 7, 14, and 28 days to various treatments (CTRL, control; LDPE, virgin low density polyethylene; BaP,

benzo(a)pyrene alone; LDPE-BaP, benzo(a)pyrene-contaminated polyethylene). NRRT: neutral red retention time (A), Phagocytosis (B), Granulocytes/Hyalinocytes

ratio (C). Data are expressed as mean values ± standard error, n = 4; different letters indicate significant differences between groups of means within the same time of

exposure (post-hoc Newman-Keuls comparison).

destabilization of lysosomal membrane stability was observed
in mussels exposed to various treatments (Figure 3A, Table 2);
post-hoc comparison revealed a marked effect of BaP and
LDPE-BaP after 7 and 14 days of exposure, while no differences
were obtained among different treatments after 28 days
(Figure 3A). Phagocytosis exhibited significant changes as a
function of treatment and time, with a temporary increase
after 7 days in mussels exposed to virgin polymer and to BaP
alone, while a significant decrease appeared at longer times in
all experimental conditions (Figure 3B, Table 2). Granulocytes-
hyalinocytes ratio was significantly affected by treatment with
marked increase caused by with BaP after 7 and 14 days, while
no effects were observed in mussels exposed to both virgin
and contaminated LDPE (Figure 3C, Table 2): after 28 days no
differences were observed between exposed and control groups
(Figure 3C).

Acetylcholinesterase showed significant effects as a function
of time with a slight decrease in hemolymph and a slight
increase in gills after 7 days of exposure to all the treatments
(Figures 4A,B, Table 2): no significant variations were observed
between different treatments (Table 2).

DNA strand breaks in hemocytes were always comparable for
various treatments and times of exposure (Figure 4C, Table 2),
while micronuclei showed a significant increase in mussels
exposed to BaP and BaP contaminated LDPE after 14 days of
exposure (Figure 4D, Table 2).

Peroxisomal AOX did not significantly vary in any treatments,
although a clear trend of inhibition was observed over time in
mussels exposed to LDPE (Figure 4E, Table 2). A slight increase
of neutral lipids was observed in mussels exposed to BaP and BaP
contaminated microplastics particularly after 7 days (Figure 4F,
Table 2).

Antioxidant defenses revealed minor fluctuations caused by
various treatments, with only a slightly higher oxidative pressure
after 28 days of exposure to BaP (Figures 5A–F, Table 2). The
limited pro-oxidant challenge was further supported by MDA,
showing a moderate increase only after 7 days in mussels
exposed to LDPE and BaP (Figure 5I), and by general lack of
variations for TOSC toward both peroxyl and hydroxyl radicals
(Figures 5G,H, Table 2).

The results on molecular analyses confirmed the absence
of statistically significant differences between treatments on
mRNA levels of antioxidants cat, gst-pi, Se-gpx, and of aox1
(Figures 6A–D, Table 2). Generally higher transcriptional levels
were measured for cat and gst-pi in mussels after 28 days
independently on exposure treatment, while fluctuating levels of
Se-gpx mRNA were observed in mussels treated with BaP and
with LDPE-BaP (Figures 6A-C, Table 2). Transcriptional levels
of hsp70 appeared downregulated by various treatments after
7 days, while a significant increase was observed in organisms
exposed to LDPE for 14 days (Figure 6E).

The PCA carried out on the whole set of biomarkers produced
a two-dimensional pattern explaining 54% of total variance
(Figure 7). Although a quite large percentage remained to be
explained, obtained results indicated a clear separation between
specimens exposed at different treatments for different times.
After 7 days (Blu ellipse), LDPE and LDPE-BaP treated mussels
separated from the other groups, at 14 days (Red ellipse) mussels
treated with BaP and LDPE-BaP were more differentiated,
while after 28 days (Green ellipse) the effects of BaP alone
became more evident, producing a clear separation between
such experimental group and other treatments (Figure 7). The
parameters determining the separation along the PC1 axis were
related to immune system responses (G/H ratio), neurotoxic
effects (AchE), and antioxidant system (catalase, glutathione-
S-transferase, glutathione reductase, glutathione peroxidase Se-
dep, TOSC •OH and ROO•), and AOX. On the other
side, genotoxic effects (micronuclei), neutral lipids (NL), total
glutathione (TGSH), total glutathione peroxidases (GPX_CHP),
and phagocytosis activity determined the separation along the
PC2 axis.

Elaboration of data with weighted criteria summarized as
Severe the hazard index for bioavailability in mussels exposed
to BaP or BaP contaminated LDPE at all exposure periods
(Figure 8). On the other hand, based on the magnitude of
variations exhibited by various biomarkers, their statistical
significance of such differences and the toxicological relevance of
each biological endpoint, the model summarized the hazard for
cellular responses as Slight for organisms exposed to BaP, virgin,
and contaminated LDPE, and Moderate only for organisms
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FIGURE 4 | Biomarkers in mussels exposed for 7, 14, and 28 days to various treatments (CTRL, control; LDPE, virgin low density polyethylene; BaP, benzo(a)pyrene

alone; LDPE-BaP, benzo(a)pyrene-contaminated polyethylene). ACh-E: acetylcholinesterase in haemolymph (A) and gills (B); DNA TAIL %: fragmentation of DNA (C);

MN/1000: frequency of micronuclei (D); AOX: Acyl CoA Oxidase (E); Neutral Lipids (F). Data are expressed as mean values ± standard error, n = 4; different letters

indicate significant differences between groups of means within the same time of exposure (post-hoc Newman-Keuls comparison).

exposed to BaP after 14 days (Figure 8). The integration of
hazard indices elaborated for bioavailability and biomarker data
resulted in a combined WOE effect classified as Slight for
mussels exposed to virgin LDPE andMajor for those treated with
both contaminated LDPE and BaP alone, without variations at
different times of exposure.

DISCUSSION

The increase of plastics and microplastics in marine ecosystems
has raised concern on their impact to marine organisms, and

several species have been shown to ingest these particles under
experimental and wild conditions (Cole et al., 2011; Lusher
et al., 2013; De Witte et al., 2014; Avio et al., 2015, 2017b;
Devriese et al., 2015; Paul-Pont et al., 2016; Sussarellu et al., 2016;
Murphy et al., 2017). The capability of microplastics to efficiently
adsorb chemical pollutants from the environment (Avio et al.,
2017a) poses an additional risk although there is not yet clear
evidence that microplastics ingestion has adverse consequences
on the health status of marine species, especially under long term
conditions.

In this respect, the present study was aimed to provide new
insights on the capability of microplastics to transfer adsorbed
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FIGURE 5 | Levels of catalase (A), glutathione reductase (B), glutathione S-transferases (C), sum of Se-dependent and Se-independent glutathione peroxidases (D),

Se-dependent glutathione peroxidases (E), total glutathione (F), total oxyradical scavenging capacity (TOSC) toward peroxyl (•OOR) radicals (G), total oxyradical

scavenging capacity (TOSC) toward hydroxyl (•OH) radicals (H), malondialdehyde (MDA) (I) in mussels exposed for 7, 14, and 28 days to various treatments (CTRL,

control; LDPE, virgin low density polyethylene; BaP, benzo(a)pyrene alone; LDPE-BaP, benzo(a)pyrene-contaminated polyethylene). Data are expressed as mean

values ± standard error, n = 4; different letters indicate significant differences between groups of means within the same time of exposure (post-hoc Newman-Keuls

comparison).

pollutant to organisms after ingestion and to evaluate potential
ecotoxicological effects of virgin and contaminatedmicroplastics,
using the Mediterranean mussel M. galloprovincialis as model
marine organism. Although the selected level of microplastics
(10 mg/L) appears higher than environmental data, it is worthy
to note that a direct comparison between experimental and
field values is not necessarily appropriate. Reported seawater
concentrations are typically referred to microplastics >200µm,
while natural levels are still unknown for smaller particles, like
those used in the present study (20–25µm), which represent
the size range preferentially ingested by filter feeding organisms.
Considering the need to characterize the ecotoxicological
potential of such biologically relevant microplastics, at the
present state of knowledge, concentrations of fewmg/L are still in
an ecologically relevant range to evaluate in laboratory conditions
the disturbance of cellular pathways, possibly involved in long-
term responses to small microplastics.

Our results revealed that microplastics can act as efficient
vehicles of chemical pollutants. Bioaccumulation analyses
showed a marked and rapid enhancement of BaP concentrations
in digestive gland of mussels exposed to LDPE-BaP, reaching

a steady state after 7 days and values comparable to those
observed in BaP treated mussels. This result corroborates the
hypothesis of a marked release of BaP from microplastics and an
elevated bioconcentration process in tissues under physiological
gut conditions, as previously suggested by other authors (Teuten
et al., 2009; Bakir et al., 2014; Avio et al., 2015). A slightly different
trend was observed for bioaccumulation of BaP in gills: LDPE-
BaP treated mussels exhibited only a moderate increase during
the initial phases of exposure, reaching tissue concentrations
similar to those observed in BaP exposed mussels only after
28 days. While a rapid uptake in gills can be explained by the
direct contact of this tissue with the chemical dissolved in water
(Banni et al., 2017), the slower accumulation from contaminated
microplastics may, at least partly derive from primary desorption
of BaP in digestive tissues and a secondary transfer of this
chemical to gills.

The possibility that BaP measured in LDPE-BaP treated
organisms can reflect the presence of still un-excreted particles
more than a real tissue accumulation, can be considered as
negligible. Concentrations higher than 15 and 30 ng/g were
measured in gills and digestive glands, respectively; assuming
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FIGURE 6 | Transcriptional responses in the digestive glands of mussels exposed for 7, 14, and 28 days to various treatments (CTRL, control; LDPE, virgin low

density polyethylene; BaP, benzo(a)pyrene alone; LDPE-BaP, benzo(a)pyrene-contaminated polyethylene). cat, catalase (A); gst-pi, pi-class glutathione S-transferase

(B); Se-gpx, selenium-dependent glutathione peroxidase (C); aox1, acyl-CoA oxidase, isoform 1 (D); hsp70, heat shock protein 70 (E). Data are expressed as mean

values ± standard error, n = 4; different letters indicate significant differences between groups of means within the same time of exposure (post-hoc Newman-Keuls

comparison).

that all the measured BaP was still adsorbed on microplastics,
we should expect at least 1mg of particles for each gram of gill
tissue (corresponding to 2.34 ∗ 105 particles), and at least 2mg
(4.68 ∗ 105 particles) for each gram of digestive gland. A similar
assumption is excluded by histological analyses that confirmed
the presence of particles in those tissues, but with much more
limited numbers, particularly in gills where only a few and sparse
microplastics were observed.

Uptake and tissue distribution of microplastics has already
been investigated in marine bivalves such as the mussels
Mytilus edulis and M. galloprovincialis exposed to virgin and
contaminated polyethylene and polystyrene (Browne et al., 2008;
Von Moos et al., 2012; Avio et al., 2015). Although these studies
used extremely high concentrations of microplastics (up to three
order of magnitude greater than in the present work), they were
important in demonstrating the initial uptake of particles at the
gill’s surface throughmicrovilli activity and endocytosis, while via
ciliae movement in the stomach, intestine and digestive tubules
are responsible for a second pathway mediated by accumulation
within the lysosomal compartment (Von Moos et al., 2012). Our
observations almost reflected the above mechanisms of uptake,
with aggregates of particles observed within intestinal lumen and
digestive tissues, lower occurrence in gills, and some particles
noticed also inside hemocytes, as previously documented in
other experiments (Browne et al., 2008; Von Moos et al., 2012).
Histological analyses were of qualitative nature, but no marked
differences in the amount of microparticles were visible for
various treatments and times of exposure, thus supporting a short
retention time of such particles in mussels, as reported in fish
exposed to microbeads (Grigorakis et al., 2017).

Significant immunological effects were observed on
hemocytes lysosomal membrane stability, phagocytosis, and
granulocytes/hyalinocytes ratio. The impairment of immune
system has already been measured in marine organisms exposed
to microplastics by several authors (Von Moos et al., 2012;
Avio et al., 2015; Paul-Pont et al., 2016). Lysosomes, beside
representing major sites for intracellular sequestration and
detoxification of xenobiotics, have been also demonstrated as
sensitive organelles toward micro- and nano-plastics (Regoli,
1992; Petrović et al., 2004; Moore et al., 2006; Canesi et al.,
2012; Avio et al., 2015; Nardi et al., 2017). The destabilization
of lysosomal membrane caused by LDPE or BaP alone, was
synergistically enhanced in mussels exposed to LDPE-BaP,
particularly after 7 days and, to a lower extent, 14 days of
exposure. Effects of various treatments were observed also
for phagocytosis which initially increased in mussels exposed
to LDPE and BaP, while decreasing at longer periods as a
consequence of BaP, virgin, and contaminated LDPE: similar
effects might be due to an overload of sequestering capacity of
hemocytes by microplastics, and to the well-known inhibitory
action of PAHs on this function (Wootton et al., 2003; Hannam
et al., 2010). Interestingly, LDPE and LDPE-BaP did not affect the
granulocytes/hyalinocytes ratio that was statistically increased
only by BaP until 14 days. The changes of immune parameters
observed in this study are not a surprise given the characteristics
of plastic particles, and the physical stress that potentially induce
in hemocytes, further modulated with a chemical challenge in
mussels exposed to LDPE-BaP.

Our results did not reveal significant effects on AChE
activity neither in hemolymph nor in gills, although both the
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FIGURE 7 | Multivariate PCA analysis on biomarker data in mussels exposed to various microplastics treatments: CTRL, control; LDPE, virgin low density

polyethylene; BaP, benzo(a)pyrene alone; LDPE-BaP, benzo(a)pyrene-contaminated polyethylene.

tissues exhibited after 7 days a clear trend toward reduced or
enhanced values, respectively. The only moderate and temporary
modulation of AChE may reflect the low exposure period.
However, cholinesterasic effects of microplastics still deserve
scientific attention due to the abundance of these particles in
the marine environment and their suggested role in influencing
various physiological and behavioral responses controlled by
neurological mechanisms (Oliveira et al., 2013; Avio et al., 2015;
Mattsson et al., 2017; Ribeiro et al., 2017).

No variations were measured on levels of DNA strand
breaks in organisms exposed to microplastics (both virgin and
contaminated) or to BaP. A high DNA fragmentation had
been previously measured in mussels exposed to polyethylene
microplastics (Avio et al., 2015), but the more elevated amount
of particles used in those treatments (1.5 vs. 0.01 g/L of this
study) can explain the different results. Similarly, the lack of
DNA fragmentation in BaP treated mussels might reflect the low
experimental concentration as compared to those frequently used
for assessing ecotoxicological effects of BaP in mussels (Pan et al.,
2009; Banni et al., 2017): in this respect, no formation of DNA
adducts or strand breaks was observed in mussels exposed to 300
ng/L of BaP for 24 days (Ching et al., 2001).

Some authors have suggested that microplastics ingestion can
potentially cause pseudo-satiety in mussels, thus lowering fatty
acids metabolization (Kühn et al., 2015). The AOX, one of the
enzymes involved in fatty acid oxidation (Cajaraville et al., 1997;
Bilbao et al., 2009) did not show significant effects neither at
catalytic nor at transcriptional levels. Content of neutral lipids
tended to increase in mussels exposed to BaP and LDPE-BaP,
confirming a typical effect of this chemical in inducing lipidosis

in digestive gland ofmussels (Livingstone and Farrar, 1984; Gorbi
et al., 2008).

Treatments with virgin and contaminated microplastics did
not affect the oxidative status of mussels, and only minor
fluctuations of a few enzymes (glutathione S-transferases and
glutathione reductase) were observed, without clear trends as
a function of treatment or time of exposure. Responses of
antioxidant systemwere investigated also atmolecular level, since
transcriptional changes might be more sensitive than enzymatic
biomarkers, despite more useful in revealing “exposure” rather
than functional “effects” at cellular level (Giuliani et al., 2013;
Regoli and Giuliani, 2014). Also these analyses exhibited minor
and not significant variations, allowing to exclude an oxidative
challenge, as further supported by the lack of effects on the
total antioxidant capacity and peroxidation processes in mussels
exposed to virgin and contaminated LDPE. The lower levels of
particles used in this study, might explain the different results
on oxidative effects in comparison to other studies in which
mussels exposed to microplastics exhibited significant changes
of antioxidant defenses (Avio et al., 2015; Paul-Pont et al., 2016;
Détrée and Gallardo-Escárate, 2017; Ribeiro et al., 2017).

A transient upregulation of hsp70 was observed only after
14 days in mussels exposed to virgin LDPE, suggesting a
response toward the physical disturbance caused by the ingestion
of such particles. Enhanced levels of these proteins are a
generic biomarker of stress, acting in mussels as a first line of
defense to cope with environmental challenges (Franzellitti and
Fabbri, 2005; Heindler et al., 2017). The effects of contaminated
microplastics were more similar to those of BaP, with lack of
statistical changes and a trend toward lower values of hsp70,

Frontiers in Marine Science | www.frontiersin.org 11 April 2018 | Volume 5 | Article 103

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Pittura et al. Ecotoxicology of Microplastics in Marine Mussels

FIGURE 8 | Weighted elaboration of bioaccumulation and biomarkers data in mussels exposed for 7, 14, 28 days to LDPE, BaP, and LDPE-BaP. The assigned

classes of hazard are given. Treatments: LDPE, virgin low density polyethylene; BaP, Benzo(a)pyrene alone; LDPE-BaP, Benzo(a)pyrene-contaminated polyethylene.

supporting a limited responsiveness of these proteins to the
prevalence of a chemical stress.

The overall evaluation of biomarker results by multivariate
PCA provided a clear separation between times and typologies
of exposure, highlighting a shift from a physical to a chemical
stress. After 7 days, the main effects were those induced
by microplastics (possibly reflecting a physical challenge),
followed at 14 days by those combined of microplastics
with BaP, while at longer exposure conditions effects of
BaP prevailed on those induced by microplastics (chemical
impact). The multivariate analysis indicated that the majority of
observed immunological, lysosomal, and cholinesterasic effects
were influenced by polymer (LDPE), while genotoxicity and
antioxidant defenses were mostly related to BaP. The impact
of LDPE-BaP appeared more biologically relevant with time
of exposure, suggesting that energy resources were initially
directed to activate primary mechanisms of defense toward
the physical stress of particles, while later the chemical stress
assumed the major role in biological disturbance. A similar
delay of chemical-induced toxic effects was previously observed
in fish Pomatoschistus microps exposed to microplastics and
organic compounds, where these particles acted as a transitory
mechanism of protection toward chemical insult (Oliveira et al.,
2013).

The overall data were elaborated according to the weighted
criteria of the Sediqualsoft model to synthesize the biological
significance of bioaccumulation results and cellular responses
in mussels exposed to virgin and contaminated microplastics.

The bioavailability of BaP was classified as Severe for both the
chemical dosed alone and for LDPE-BaP, since concentrations
increased from 15- to 60-folds in tissues of exposed mussels
compared to controls. On the other hand, the toxicological
hazard calculated from the number, magnitude and biological
importance of biomarkers was typically Slight for all the
treatments, raising to Moderate only in BaP exposed mussels
after 14 days. The combination of chemical and cellular hazards
provided a WOE index Slight for mussels exposed to virgin
LDPE, and Major for those exposed to BaP and LDPE-BaP
for all the periods. Considering the similarity of biological
effects observed after 28 days, it is quite obvious that the final
evaluation of the risk caused by virgin and contaminated LDPE
was greatly influenced by the marked accumulation of BaP,
further corroborating the still unexplored possibility of indirect,
long-term consequences of released chemicals.

In conclusion, this study confirmed that microplastics can
transfer adsorbed organic contaminants like BaP to tissues
of marine organisms, providing an additional experimental
evidence to the role of these particles as source of chemical
bioaccumulation. Both virgin and contaminated microplastics
did not induce marked ecotoxicological effects at molecular
and cellular levels after 28 days of exposure. However, the
observed susceptibility of the immune system, the accumulation
of BaP and the probable shift from physical to chemical
challenge, suggest that the toxicological risk of microplastics for
marine organisms is probably low, but not negligible. Additional
studies are needed to elucidate conditions of chronic exposure

Frontiers in Marine Science | www.frontiersin.org 12 April 2018 | Volume 5 | Article 103

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Pittura et al. Ecotoxicology of Microplastics in Marine Mussels

and whether interactions of particles with other stressors may
provoke long term, subtle effects on organisms’ health status.
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