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Microplastics in eviscerated flesh 
and excised organs of dried fish
Ali Karami1, Abolfazl Golieskardi1, Yu Bin Ho1, Vincent Larat3 & Babak salamatinia2

There is a paucity of information about the occurrence of microplastics (MPs) in edible fish tissues. Here, 
we investigated the potential presence of MPs in the excised organs (viscera and gills) and eviscerated 
flesh (whole fish excluding the viscera and gills) of four commonly consumed dried fish species (n = 30 
per species). The MP chemical composition was then determined using micro-Raman spectroscopy and 
elemental analysis with energy-dispersive X-ray spectroscopy (EDX). Out of 61 isolated particles, 59.0% 
were plastic polymers, 21.3% were pigment particles, 6.55% were non-plastic items (i.e. cellulose or 
actinolite), while 13.1% remained unidentified. The level of heavy metals on MPs or pigment particles 
were below the detection limit. Surprisingly, in two species, the eviscerated flesh contained higher MP 
loads than the excised organs, which highlights that evisceration does not necessarily eliminate the risk 
of MP intake by consumers. Future studies are encouraged to quantify anthropogenic particle loads in 
edible fish tissues.

Worldwide plastic production was estimated to reach 322 million metric tons in 20151 whereby 5 to 13 million 
metric tons were reported to be disposed into the marine environment annually2. The plastics dumped in the 
environment may never completely degrade3 but instead fragment into smaller particles called microplastics 
(MPs), sized between 1 and 1000 µm4. The widespread distribution of MPs in aquatic bodies [e.g.,5, 6] has sub-
sequently contaminated a diverse range of aquatic biota including those sold for human consumption such as 
fish7 and mussels8. Therefore, seafood products could be a major route of human exposure to MPs. For example, 
it was estimated that top European shellfish consumers might take up to 11,000 MPs per annum8. Microplastics 
were suggested to exert their harmful effects by providing a medium to facilitate the transport of other toxic 
compounds such as heavy metals9 and persistent organic pollutants (POPs)10 to the body of organisms. Upon 
ingestion, these chemicals may be released and cause toxicity11.

Dried fish are considered low-cost protein sources in many developing countries12. The purpose of the drying 
process is to create a desirable flavor and texture and/or to increase the shelf life by reducing the moisture con-
tent13. So far, nothing is known about the occurrence of MPs in dried fish that are intended for direct human con-
sumption. Dried fish are often processed without any cleaning process, and although evisceration prior to drying 
helps to reduce bacterial contamination in fish14, this is not practical to many small fish species such as anchovies. 
Subsequently, this could potentially increase the chance of anthropogenic particle exposure to consumers. In 
this study, we investigated the potential presence of anthropogenic particles (MP and pigment particles) in the 
eviscerated flesh and excised organs of Indian mackerel (Rastrelliger kanagurta), spotty-face anchovy (Stolephorus 
waitei), greenback mullet (Chelon subviridis), and belanger’s croaker (Johnius belangerii). These species were cho-
sen since they are often caught from the coastal waters of many Asian countries as well as in some other parts of 
the world15–18.

In aquatic organisms, the gills are the first organ exposed to anthropogenic particles during respiration19, 20, 
which increases the possibility that these particles can become stuck among the gill filaments. For example, fol-
lowing the exposure to high-density polyethylene (HDPE) fragments, these particles became trapped on the gills 
of the blue mussel (Mytilus edulis)21. Laboratory studies have later shown that MPs were able to be translocated 
into other tissues of fish22, 23. Most field studies on fish have investigated the occurrence of MPs in the gastrointes-
tinal tract [e.g.,24–26] but little is known about their presence in their edible tissues.

Here, we investigated MP (0.001–1 mm), mesoplastic (1–10 mm), and macroplastic (>10 mm) loads and mor-
phology (fragments, films, filaments, beads, and foams27) in the viscera and gills (hereafter are called excised 
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organs) and eviscerated flesh of 4 dried fish species. All the isolated particles were initially sampled based on their 
similar density and morphology to MPs and then analyzed for their chemical composition using micro-Raman 
spectroscopy. Finally, to investigate if the extracted MPs contained hazardous inorganic substances, we further 
assessed the atomic composition of MP particles using field emission scanning electron microscopy (FESEM) 
equipped with an energy-dispersive X-ray spectroscopy (EDX). The results of this study will help to understand if 
removing viscera and gills could mitigate the intake of anthropogenic particles by consumers.

Results
No particles were found in the procedural blanks. A total of 61 MP-like particles were isolated from the four 
dried fish species. As depicted by Fig. 1a, 36 particles (59.0%) were confirmed as MPs (i.e. particles confirmed 
as plastic polymer or plastic polymer plus pigment), 13 particles (21.3%) as pigments (i.e. particles confirmed as 
pigment), 4 particles (6.55%) were non-plastic items (i.e. cellulose or actinolite), and 8 particles (13.1%) remained 
unidentified. The most abundant plastic polymers were polypropylene (PP, 47.2%) followed by polyethylene (PE, 
41.6%), polystyrene (PS, 5.56%), polyethylene terephthalate (PET, 2.77%), and nylon-6 (NY6, 2.77%) (Fig. 1b). 
Particles identified as pigments were phthalocyanine (84.6%) and hostasol green (15.3%) (Fig. 1c). Figure 2 shows 
the Raman spectra of a PE particle containing phthalocyanine. Figure 3a–f are the microscopic images of some of 
the isolated particles. With regards to morphology, the predominant type of anthropogenic particles were frag-
ments (85.7%) followed by films (10.0%), and filaments (4.08%) (Fig. 4). No beads or foams were found among 
the samples.

Between 0 and 3 pigments and MP particles were isolated from each individual fish. Figure 5a and b, present 
the frequency histograms of pigment and MP particle numbers across the tested species, respectively. Figure 6a 
and b are stacked bar charts of the number of extracted pigments and MP particles, respectively, isolated from 
the excised organs or the eviscerated flesh of each dried fish species. Surprisingly, 29 MPs and 9 pigment particles 

Figure 1. Particle compositions. (a) Pie chart of the percentage and chemical composition of the extracted 
particles from dried fish samples and their corresponding proportion of (b) plastic polymers, and (c) pigments.

Figure 2. Raman spectrum of a particle identified as polyethylene + phthalocyanine and spectra of the 
reference materials.
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were isolated from the eviscerated flesh while 7 MPs and 4 pigment particles were from the excised organs. The 
abundance of anthropogenic particles per species ranged from 2 in S. waitei to 24 in C. subviridis. In C. subviridis 
and J. belangerii, Mann–Whitney U tests showed that the number of MPs in the eviscerated flesh was significantly 
higher than excised organs (Z = −2.43 and Z = −2.21, respectively; p < 0.05). No significant differences were, 
however, indicated in the number of pigment particles between the eviscerated flesh and excised organs. In R. 
kanagurta and S. waitei, the number of pigment particles or MP particles was comparable (p > 0.05) between the 
eviscerated flesh and excised organs.

There was a significant difference in the number of MPs (Kruskal-Wallis, H = 15.7, df = 3, p < 0.01) isolated 
from eviscerated flesh among the dried fish species. Dunn’s multiple comparison tests found higher MP loads in 
the eviscerated flesh of C. subviridis and J. belangerii than R. kanagurta and S. waitei. However, the number of 
pigment or MP particles in the excised organs was comparable among the fish species. Similarly, no significant 
difference, however, was noticed in the load of pigment particles extracted from eviscerated flesh among the 
species. Among the 5 identified plastic polymers, the prevalence of PP (Kruskal-Wallis, H = 8.56, df = 3, p < 0.05) 

Figure 3. Isolated particles from dried fish. These particles were identified using micro-Raman spectroscopy as 
(a) Phthalocyanine, (b) Polypropylene + Phthalocyanine, (c) Polyethylene terephthalate, (d) Polyethylene, (e) 
Hostasol green, and (f) Actinolite.
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and PE (Kruskal-Wallis, H = 9.14, df = 3, p < 0.05) were significantly higher in C. subviridis and J. belangerii than 
R. kanagurta and S. waitei while the concentration of other plastic polymers were comparable among all the tested 
species. Elemental analysis of the particles showed that all the anthropogenic particles contained carbon (C) and 
oxygen (O) while a few had nitrogen (N), chlorine (Cl) and sodium (Na) as well (Supplementary Information 
Fig. 1).

Discussion
The ability of MPs to translocate from the digestive systems into other tissues of aquatic organisms22, 23, 28 has 
raised concerns about the safety of seafood products. Most of the studies on wild fish have assessed MP loads in 
the digestive tract while little has been done to investigate the presence of MPs in the edible fish tissues.

The absence of particles in the procedural blanks ensured the reliability of contamination prevention proce-
dure employed by this study. Approximately one-fifth (21.3%) of the recovered particles were identified as pig-
ments (phthalocyanine or hostasol green) owing to the strong Raman spectra of these additives. Recent studies 
have indicated that additives could complicate the identification of the chemicals within the samples [e.g.,29]. 
These synthetic pigments are extensively employed during the manufacturing of different materials, including 
plastics30–33. Initially, we suspected that these particles could be dyes. However, this hypothesis was rejected since 
none of the isolated particles shared the main characteristics associated with dyes (i.e. brittleness34). Some earlier 
studies inferred that pigment particles were plastics [e.g.,35] while others only suspected these particles to be 

Figure 4. Pie chart of the morphology of isolated anthropogenic particles.

Figure 5. Frequency histograms of pigment and microplastic particles in the whole body (eviscerated 
flesh + excised organs) of tested dried fish species. Frequency histogram of (a) pigment and (b) microplastic 
particles in the whole body of Chelon subviridis, Johnius belangerii, Rastrelliger kanagurta, and Stolephorus 
waitei.

http://1
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plastics8, 33. Similar to the approach followed by the latter studies, we ensured that the pigment particles had an 
anthropogenic origin, but we could not confirm if they were in fact plastic polymers. One particle isolated from 
the excised organs of R. kanagurta was identified as actinolite. Actinolite is one of the 6 naturally occurring min-
eral silicate fibers that are referred to as asbestos, which has a wide application such as in textile, plastics, roofing, 
electrical insulation36–38.

Micro-Raman spectroscopy was unable to identify 13.1% of the isolated particles. The spectra of the samples 
collected from the field often differs with the spectra of pure materials, possibly due to the degradation pro-
cess39. All the isolated particles in this study were sampled according to their similar density (i.e. having density 
<1.5 g/cm3) and morphology with MPs. Therefore, the unidentified particles are suspected to be MPs. The high 
occurrence of fragments in the fish could indicate their dominance in Malaysian coastal environments, which is 
consistent with fish caught in other regions of the world23, 40. Coastal areas have often been reported to be con-
taminated with MPs41, which is due to their vicinity to anthropogenic activities along the coast. The dominance 
of fragments in the tested fish in this study could reflect their prevalence in the water and sediments of Malaysian 
marine ecosystems. Consistent with our findings, Barasarathi et al.42 showed the dominance of fragments in the 
soils of a Malaysian mangrove forest. The absence of bead or foam microparticles in the eviscerated flesh or the 
excised organs of the tested fish could reflect their negligible prevalence in the natural environments.

Polypropylene and PE were the major recovered plastic polymers in the tested species, which is consistent 
with their massive production load and demand by various industries1. Consequently, this can lead to their 
broad distribution in the marine environment43, 44. Also, the lower density of PP (0.90–0.91 g/cm3) and PE (0.91–
0.96 g/cm3) than seawater would cause them to float on the water surface. Over time, biofouling by micro- and 
macro-organisms have been suggested as a potential mechanism that could cause positively buoyant plastics to 
become less buoyant45 and, therefore, led to a more homogeneous distribution throughout the water column.

Surprisingly, in C. subviridis and J. belangerii, the MP load was significantly higher in the eviscerated flesh than 
excised organs. Initially, it was hypothesized that the fish might have been contaminated during handling on the 
fishing vessels or during the salting and drying processes. Interestingly, our recent study have shown the occur-
rence of MPs in most of the tested sea and lake salts produced in different countries46. However, this hypothesis 
was rejected because the fish were gutted in the laboratory after rinsing the body surface with water and ethanol 
(see Contamination control). Alternatively, the particles found in the eviscerated flesh could have been translo-
cated from the alimentary tract. Several laboratory-based studies on fish have shown the translocation of MPs 
from the digestive system into other organs. For example, PE and PS particles (sizes: 200–600 µm) translocated 
from the stomach to the liver of flathead grey mullet (Mugil cephalus)23. In another study on zebrafish (Danio 
rerio), waterborne exposure to PS microspheres resulted in their accumulation in the gills and liver22. An earlier 
study in rats demonstrated the translocation of PS particles from the gut into the lymph47. Uptake through the 
layer of Peyer’s Patches from M-cells located within the small intestinal lymphoid tissue is a common route for 
the absorption of nano- and micro-particles48. M-cells are the differentiated epithelial cells with the ability to 
transcytosize macromolecules and particles49. Other mechanisms such as persorption might have been involved 
in the translocation of particles across the gastrointestinal mucosa50. The higher load of MPs in the eviscerated 
flesh of C. subviridis and J. belangerii highlights that evisceration does not fully eliminate the risk of MP uptake 
by consumers. Moreover, this study showed that quantifying MPs in the viscera may not truly represent their 

Figure 6. Stacked bar chart of the isolated particles from the excised organs or the eviscerated flesh. (a) The 
prevalence (n) of plastic polymer and (b) pigment particles; n = 30.
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concentrations in the entire organism. Future studies are urged to assess MP loads, in not only the digestive tract, 
but also in the edible tissues of the fish. This strategy should better reflect the risks associated with the consump-
tion of the fish caught from the natural environment.

In 2014, a total of 17 million tons of dried, smoked, or salted fish were produced for human consumption51. 
There is insufficient data, however, regarding the global consumption of dried fish. The species employed in this 
study were caught from Malaysian waters. Thus, consumers in neighboring countries could be exposed to the 
similar MP loads. Based on a report on the consumption of fish and fish products in the Asia Pacific region, the 
annual dried fish consumption in Bangladesh is 370 g/capita52. Considering the average fish weight (Table 1) and 
the number of anthropogenic particles (pigment + MP) per individual fish (between 0 and 3), consumers of S. 
waitei are expected to ingest between 0 to 246 MPs per annum. Similarly, consumers of C. subviridis (containing 
between 0 and 3 anthropogenic particles per fish), J. belangerii (containing between 0 and 3 anthropogenic parti-
cles per fish), or R. kanagurta (0 and 1 MP particles per fish) could ingest 0–68, 0–44, and 0–6 anthropogenic par-
ticles per annum, respectively. However, the majority of the tested fish in this study did not contain MP (Fig. 5b). 
Therefore, it is less likely that an individual would ingest the suggested maximum number of MPs per annum. 
Previous studies have shown that MPs adsorb POPs from the surrounding environment53 or contain additives 
that were incorporated into them during the manufacturing process54. Subsequently, these chemicals may desorb 
from the particles into the body of organisms upon ingestion55. However, recent studies have shown the intake of 
POPs by aquatic organisms from water and food exceeded the potential transfer of POPs from ingested MPs56, 57. 
According to the results of this study, the undetectable level of toxic heavy metals on the isolated particles does 
not support their potential toxicity and the mechanisms whereby MPs cause toxicity are still unclear. Therefore, 
despite the potential for a maximum of 246 anthropogenic particles to be ingested by a human per year, we cannot 
evaluate the health risks associated with the consumption of dried fish at this moment. The increase in plastics 
disposal2 coupled with their continuous fragmentation58, is expected to increase MPs concentrations over time. 
As such, it will become increasingly important to regularly assess MP loads in seafood products, including dried 
fish.

Given the fact that dried fish are often consumed as a whole, they may be responsible for the translocation 
of a significant amount of MPs into the body of consumers. Higher MP loads in the edible tissues than excised 
organs of two dried fish species indicates that removing gills and viscera does not necessarily reduce MP uptake 
by consumers of dried fish. The results of this study underscores the importance of assessing edible fish tissues for 
MP presence and to better understand the ability of MPs to translocate into other organs.

Methods
Materials and chemicals. Packed dried C. subviridis, J. belangerii, R. kanagurta, and S. waitei were pur-
chased from local markets in Malaysia (Table 1). Sodium iodide (NaI), potassium hydroxide (KOH), and ethanol 
95% were purchased from R&M Chemicals (UK). Solutions of NaI (4.4 M) and KOH (10% w/v) were prepared 
by dissolving the powder/pellet in ultrapure deionized water. The GF/D microfiber filter membranes (pore 
size 2.7 µm) and filter membranes No. 540 (hardened ashless, pore size 8 µm) were supplied by Whatman. The 
149 µm-pore size filter membranes were purchased from Spectrum Laboratories (USA).

Sample preparation. Each fish was placed on pre-cleaned aluminum foil, and the total length and weight 
was recorded. An equal number of fish per pack (3–6 packs per species) was used to provide a total number of 30 
fish for each species (n = 30). The gill arches were carefully removed by cutting through the bone at the top and 
bottom where the gills joined the head. The viscera was removed by cutting the fish beginning at the vent and con-
tinuing to the throat. Gills and viscera (excised organs) were placed together into a 250 mL DURAN laboratory 
glass bottle sealed with a premium cap and pouring ring (Schott, Germany). The eviscerated flesh (fish without 
gills and viscera) was placed into a separate 250 mL laboratory bottle and were subjected to digestion.

Microplastic isolation. Microplastic isolation from the eviscerated flesh and excised organs of dried fish 
were done according to the method of Karami et al.59. Briefly, 200 mL of KOH (10% w/v) was added to each bot-
tle containing either excised organs, or the eviscerated flesh, and were incubated at 40 °C for 72 h. The digestate 
was then vacuum filtered through a 149 µm filter membrane. To separate the high-density particles (i.e. bone 
fragments and scales), the filter membrane was soaked in 10–15 mL of 4.4 M NaI (density: 1.5 g/mL), sonicated 
at 50 Hz for 5 min and agitated on an orbital shaker at 200 rpm for 5 min. Eventually, the solution was centrifuged 
at 500 × g for 2 min, and the supernatant containing MPs was vacuum filtered through another filter membrane 
(pore size 8 µm). This process was repeated once more to ensure complete isolation of MPs.

Visual identification. Microscopical examination of the filter membranes was performed using a Motic 
SMZ-140 stereomicroscope (Motic, China). Particles resembling MPs were sampled based on their morphological 

Common name Species Total weight (g) Total length (cm)

Greenback mullet Chelon subviridis 16.3 ± 1.812 12.7 ± 0.4460

Belanger’s croaker Johnius belangerii 25.2 ± 0.381 13.6 ± 0.2160

Indian mackerel Rastrelliger kanagurta 58.5 ± 3.755 18.6 ± 0.2687

Spotty-face anchovy Stolephorus waitei 1.50 ± 0.1568 6.66 ± 0.4440

Table 1. Average total weight and length ± SD of the dried fish used in this study. Number of fish examined per 
species (n) = 30.
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characteristics, such as color and shape, as explained by Karami et al.46 Fragments (irregular shape with une-
ven surface), fibers/filaments (thin and elongated), beads (spherical and ovoid), films (thin plane of flappy), or 
foams (lightweight and highly porous). Selected particles were photographed using a camera (AxioCam, ERc 5S, 
Germany) coupled with a microscope.

Raman spectroscopy and FESEM-EDX analyses. Particles were analyzed over a range of 150 to 
3000 cm−1 using a Raman spectrometer (Horiba LabRam HR Evolution) equipped with a Single Mode Open 
Beam Laser Diode (Innovative Photonic Solutions) operating at a wavelength of 785 nm coupled with a 
charge-coupled device detector (Horiba Synapse). Before the library search, to reduce noise and enhance the 
spectrum quality without losing subtle spectral information, each spectrum passed through a baseline correction 
and denoising procedure (Labspec 6, Horiba Scientific). Pre-processed spectra were then evaluated and compared 
to the following spectral libraries: Raman polymers and monomers from Bio-Rad Sadtler and Raman Forensic 
from Horiba using the KnowItAll software from Bio-Rad. The Correlation algorithm (KnowItAll, Bio-Rad) was 
used to evaluate each query spectrum to the spectra of the databases. The Hit Quality Index (HQI) was used to 
rank the results of the spectral search. To assess the inorganic composition of isolated MPs, all particles identified 
as plastic polymers were examined using a FESEM (Hitachi Ultra-high resolution SU8010) operating at 5 keV and 
equipped with an Oxford-Horiba Inca XMax50 energy-dispersive X-ray (EDX; Oxford Instruments Analytical, 
High Wycombe, England). The detection limit of the machine was around 1000 pg/µg for most of the heavy 
metals.

Contamination control. To minimize contamination, cotton lab coat, nitrile gloves were worn at all times. 
All the liquids (deionized water, ethanol, KOH, and NaI) were filtered through a GF/D microfiber filter mem-
brane (pore size 2.7 µm). The glassware and instruments, such as dissecting scissor and forceps, were washed once 
with dishwashing liquid, rinsed with deionized water, and finally with ethanol. To remove any potential particles 
attached to the fish body surface, the outer part of the fish was rinsed twice with ultrapure deionized water and 
once with ethanol. The work surface was pre-cleaned with 70% ethanol every time before dissection. The entire 
procedure was carried out in a horizontal laminar flow cabinet (AHC-4A1-ESCO) to avoid potential contamina-
tion with airborne MPs. To monitor and correct potential contamination, one procedural blank with 10% KOH 
was tested simultaneously during the isolation procedure, and another procedural blank containing NaI solution 
was tested simultaneously during the density separation process.

Statistics. Shapiro–Wilk test was used to assess normality of the data. Upon data transformations, normal 
distribution was not achieved. Therefore, the Mann–Whitney U test was used to compare pigment or MP particle 
loads between the eviscerated flesh and excised organs of each fish species. A Kruskal–Wallis test (non-parametric 
one-way analysis of variance) was employed to compare the number of extracted pigments or MP particles in the 
excised organs or eviscerated flesh among the tested species. Also, the concentration of each polymer (PP, PE, 
PS, NY6, PET) was compared among the species with a Kruskal–Wallis test. The analysis was followed by using 
Dunn’s multiple comparison tests if a significant difference (P < 0.05) was obtained. Statistical analyses were per-
formed using SPSS (IBM SPSS Statistics V. 24).
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