
Scotland's Rural College

Microplastics in marine mammals stranded around the British coast: ubiquitous but
transitory?

Nelms, SE; Barnett, J; Brownlow, A; Davison, NJ; Deaville, Rob; Galloway, TS; Lindeque, PK;
Santillo, D; Godley, BJ

Published in:
Scientific Reports

DOI:
10.1038/s41598-018-37428-3

Print publication: 31/01/2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):
Nelms, SE., Barnett, J., Brownlow, A., Davison, NJ., Deaville, R., Galloway, TS., Lindeque, PK., Santillo, D., &
Godley, BJ. (2019). Microplastics in marine mammals stranded around the British coast: ubiquitous but
transitory? Scientific Reports, 9, [1075]. https://doi.org/10.1038/s41598-018-37428-3

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Aug. 2022

https://doi.org/10.1038/s41598-018-37428-3
https://pure.sruc.ac.uk/en/publications/9230e457-63c2-4d49-bad0-d730c7b74612
https://doi.org/10.1038/s41598-018-37428-3


1SCIENTIFIC REPORTS |          (2019) 9:1075  | https://doi.org/10.1038/s41598-018-37428-3

www.nature.com/scientificreports

Microplastics in marine mammals 
stranded around the British coast: 
ubiquitous but transitory?
S. E. Nelms  1,2, J. Barnett3, A. Brownlow4, N. J. Davison4, R. Deaville5, T. S. Galloway6, 
P. K. Lindeque1, D. Santillo7 & B. J. Godley2,3

Plastic pollution represents a pervasive and increasing threat to marine ecosystems worldwide and 

there is a need to better understand the extent to which microplastics (<5 mm) are ingested by high 
trophic-level taxa, such as marine mammals. Here, we perform a comprehensive assessment by 
examining whole digestive tracts of 50 individuals from 10 species whilst operating strict contamination 
controls. Microplastics were ubiquitous with particles detected in every animal examined. The relatively 

low number per animal (mean = 5.5) suggests these particles are transitory. Stomachs, however, were 
found to contain a greater number than intestines, indicating a potential site of temporary retention. 
The majority of particles were fibres (84%) while the remaining 16% was fragments. Particles were 
mainly blue and black (42.5% and 26.4%) in colour and Nylon was the most prevalent (60%) polymer 
type. A possible relationship was found between the cause of death category and microplastic 
abundance, indicating that animals that died due to infectious diseases had a slightly higher number 
of particles than those that died of trauma and other drivers of mortality. It is not possible, however, 
to draw any firm conclusions on the potential biological significance of this observation and further 
research is required to better understand the potential chronic effects of microplastic exposure on 
animal health, particularly as marine mammals are widely considered important sentinels for the 
implications of pollution for the marine environment.

Marine mammals, such as whales, dolphins and seals, are o�en considered important indicators of marine eco-
system health, particularly in relation to pollution1,2. �e high-trophic level status and long life-span of some spe-
cies leaves them susceptible to bioaccumulation and biomagni�cation of aquatic chemical contaminants, which 
have been shown to cause population-level e�ects3–5. As a result of this and other anthropogenic stressors, many 
species of this taxonomic group are of conservation concern6. Ingestion of anthropogenic litter by marine mam-
mals has been documented in a number of species (n = 1237), yet the number of studies (which use appropriate 
methods of extraction and contamination control) investigating the physical presence of microplastics (<5 mm 
in size) in the digestive tracts of cetaceans is extremely low (n = 4; totalling 57 animals of 8 species from Ireland, 
the Netherlands and Spain8–11; polymer information has been presented for two animals only8,10) and there are no 
studies whereby the digestive tracts of wild pinnipeds have been examined.

Microplastics in the marine environment originate from a variety of sources, including fragmentation of larger 
macro-plastic debris, pre-production pellets (nurdles) spilled during transportation and fabrication, out�ow of 
wastewater containing microbeads from cosmetics and �bres from the washing of synthetic textiles, as well as 
road-run-o� containing fragments of vehicle tyres and marking paint12–17. �eir small size makes them highly 
bioavailable to ingestion by a wide variety of marine biota from zooplankton, such as copepods, other inverte-
brates (including shell�sh), both juvenile and adult �sh, seabirds and marine megafauna8,10,18–24.
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Microplastics may be ingested directly through accidental consumption, for example as a result of indiscrim-
inate feeding strategies, such as �lter-feeding (e.g. mysticete whales10) or indirectly as a result of trophic transfer, 
whereby predators consume prey items contaminated with microplastics19, for example, during raptorial feeding 
(e.g. most seals and dolphins25). �ough little is known about the extent to which trophic transfer occurs in 
the wild, the presence of microplastics in scats of captive grey seals (Halichoerus grypus) has been attributed to 
trophic transfer from the wild-caught mackerel (Scomber scombrus) they were fed upon26.

Due to the di�culties of investigating the occurrence and e�ects of microplastics in the �eld, many studies 
are limited to low-trophic level organisms in a laboratory setting. In such cases, ingestion of microplastics has 
been shown to cause a reduction in feeding and energy reserves as well as impacts on reproductive output and 
damage to brain and intestinal function in invertebrates and �sh18,27–30. In addition, the hydrophobic properties 
of plastics means that organic chemical contaminants present within seawater, such as polychlorinated biphenyls 
(PCBs), have a tendency to adsorb to their surface31. �ese, and other chemicals added during production, such 
as plasticisers, can desorb into biological tissue if ingested and cause detrimental e�ects for organism health, such 
as oxidative and hepatic stress32,33.

In this study we sought to investigate the extent of microplastic ingestion in wild marine mammals by exam-
ining the digestive tracts of a large sample (n = 50) of individuals from 10 species (cetacean n = 43, 8 species; 
pinniped n = 7, 2 species) that stranded around the coast of Britain. We sought to not only determine the general 
abundance of microplastics ingested and polymers involved, but also to determine whether microplastics are 
egested or retained within the digestive tract.

Results
Microplastic abundance. Every animal was found to contain at least one synthetic particle (See Fig. 1a 
for photographic examples). In total, 273 particles were detected and 261 of these were less than 5 mm in size 
(mean ± SD = 5.5 ± 2.7 particles per animal; range 1–12 particles). Only one animal was found to contain mac-
roplastics; green netting in the forestomach of a juvenile short-beaked common dolphin (Delphinus delphis).

�e majority of particles were �bres (84%; n = 229) while the remaining 16% (n = 44) was fragments. Particles 
were mainly blue and black (42.5% and 26.4%, respectively) followed by clear (12.8%), red (11%), green (2.9%), 
orange and yellow (both 1.5%) and white and multi-coloured (both 0.7%; Fig. 1b). Fibres ranged in size from 2 cm 
in length to 0.1 mm (100 µm) with a mean length of 2 mm ( ± 2.3 mm; Fig. 1c). Fragments were between 4 × 2 mm 

Figure 1. (a) Photographic examples of microplastics found in marine mammal digestive tracts (i) Nylon; (ii) 
Polyethylene; (iii) Polyethylene terephthalate (PET); (iv) Phenoxy resin (b) proportion of particle colours found 
in all animals (c) size ranges of particles found in all animals. Note: a small proportion of �bres were larger than 
5 mm but were not macroscopically visible and are included here. (d) the proportion of polymer types found.
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and 100 × 100 µm in size (mean length = 0.9 mm ± 1.1). All (100%; n = 50; one per animal) of the particles suc-
cessfully tested using Fourier Transform Infrared (FTIR) spectroscopy were synthetic, with Nylon the most prev-
alent (60%; n = 30) followed by polyethylene terephthalate (PET) and polyester (all 10%; n = 5), phenoxy resin, 
polyethylene, polypropylene and rayon (all 4%; n = 2), polyamide resin and LDPE (both 2%; n = 1; Fig. 1d).

Factors affecting microplastic abundance. When we investigated factors that may a�ect microplastic 
burden (taxon, age-class, sex, length, cause of death), model simpli�cation indicated that cause of death was 
the only signi�cant predictor of microplastic abundance (p = 0.01; Supplementary Tables S1 and S2) and the 
mean number of microplastics was signi�cantly di�erent among the three cause of death categories (one-way 
ANOVA, F2,47 = 4.31, p < 0.05; Fig. 2). Animals presenting infectious diseases contained slightly higher mean 
( ± SD) microplastics abundances (7.0 ± 2.7), followed by trauma (4.7 ± 2.1) and other (4.6 ± 3.2). �is was also 
the case when we only analysed species (harbour porpoise and common dolphin) with sample size greater than 
16 individuals. See Supplementary Tables S3 and S4 for further detail.

Distribution of microplastics within the digestive tract. Of the GIT sections, stomach(s) showed 
a signi�cantly higher abundance of microplastics (mean ± SD = 3.8 particles ± 2.5) than intestines (1.7 ± 1.4; 
one-way ANOVA, F1,98 = 27.69, p < 0.001; Fig. 3.). �ere was no signi�cant di�erence among the compartments 
of cetacean stomachs (fore, fundic and pyloric; ANOVA, F2,77 = 0.6472, p = 0.5).

Figure 2. Box plot showing the number of microplastics in relation to cause of death category (infectious 
disease (7.0 ± 2.7), trauma (4.7 ± 2.1), other (4.6 ± 3.2)).

Figure 3. Box plot showing the number of microplastics detected in the gastro-intestinal tract (GIT) sections 
stomach(s) and intestines (mean ± SD = 3.8 particles ± 2.5 and 1.7 ± 1.4 respectively).

https://doi.org/10.1038/s41598-018-37428-3
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Contamination. No particles matching the contamination controls were found in any of the samples and all 
procedural blanks were clear, demonstrating that the measures implemented to minimise contamination were 
100% e�ective.

Discussion
Our study is the �rst to assess the presence of microplastics in the digestive tracts of multiple individuals from a 
range of both cetacean and pinniped species. At least one microplastic, which was con�rmed using FTIR, was dis-
covered in every animal with an average of 5.5 particles per animal. �ere are few studies available for comparison 
but two studies examined the stomach contents of 35 common dolphins and digestive tracts of 21 cetaceans (of 
various species) and found a total of 411 and 598 small debris items respectively9,11. Neither study, however, pre-
sented FTIR data con�rming polymer type. Sixteen con�rmed microplastics were found in an unknown volume 
of gut content from a humpback whale (Megaptera novaeangliae)10.

All animals examined in the current study were raptorial feeders, using their jaws and teeth alone to catch 
prey25. As raptorial feeders expel seawater through their teeth so as not to ingest it, we presume they are less 
likely to consume microplastics directly and more likely to indirectly consume them through trophic transfer 
from contaminated prey26. However, given that approximately 11–30% of �sh contain microplastics21,34 a greater 
number could perhaps be expected in the digestive tracts of marine mammals than demonstrated here. �ere are 
at least three possible explanations for the observed low abundances of microplastics. Firstly, microplastics are 
egested along with other dietary waste, such as �sh bones, otoliths and squid beaks, as shown by their presence 
in seal scats and the intestines of both cetaceans and seals8,26,35. A feeding trial examining the passage time of 
prey in grey seals found the majority of otoliths were passed within four days of consumption and all polystyrene 
balls (3 mm) fed to the animals were recovered within six days, demonstrating that, although microplastics have 
a slower passage time, they are egested in the faeces36,37. Our �nding of higher microplastic abundances in the 
stomach(s) than intestines, may explain this delay in passage time - the stomach(s) acts as an entrapment site 
within the digestive tract, partially retaining the microplastics. In addition to egestion, cetaceans, particularly 
odontocetes (toothed whales) are known to regurgitate foreign objects from the forestomach38,39, although very 
little information exists on the regurgitation rates of wild odontocetes38. Furthermore, a study on low trophic level 
organisms found microplastics transferred up food webs but were not present within predators a�er 10 days with-
out exposure40. Secondly, the levels of microplastics in �sh and other prey species may have been over-estimated 
due to poor contamination control in some studies41. For example, a study of North Sea �sh found that 0.25% 
(1 out of 400) contained microplastics when, as undertaken in our study, strict quality assurance criteria were 
employed41. Lastly, the number of microplastics detected in this study possibly represents a proportion of what 
is actually present within the marine mammal GITs at the time of death as some may have been lost during the 
extraction process.

�e majority of particles detected in our study were �bres, which corresponds with observations of envi-
ronmental microplastic concentrations42–44 as well as those found in other studies on cetaceans, turtles and 
�sh8,9,21,34,45. Similarly, blue and black, the most common colours detected in the marine mammal digestive tracts, 
frequently dominate composition of particles ingested by turtles, �sh and zooplankton21,23,24,45. �e mean length 
of �bres detected in the intestines of a True’s beaked whale was 2.16 mm which, again, corresponds closely with 
the mean length of �bres found in our study (2 mm)8. It is likely that, in our study and others, particles <500 µm 
in size are under-represented, due to detectability and size of mesh (35 µm) used for vacuum pumping.

In terms of polymer, previous studies found Nylon, polyethylene, polypropylene and polyethylene terephtha-
late which were also detected in our samples8,10.

Although a statistical relationship with a modest e�ect size was found between the cause-of-death category 
and microplastic abundance, it is not yet possible to draw �rm conclusions on the potential biological signi�cance 
of this observation. More research is required to better understand the potential chronic e�ects of microplastic 
exposure on marine mammal health. Sub-lethal e�ects, from the microplastics themselves or the chemical con-
taminants present on or within them are unlikely to be attributable to plastic ingestion at the low levels recorded 
here. It is not yet known to what extent microplastics act as a vector for transporting these toxincants from the 
aquatic environment into the tissues of marine mammals. It has been surmised that phthalates could act as a 
tracer for microplastic ingestion by Mediterranean �n whales (Balaenoptera physalus) because high concentra-
tions of these plasticizers were detected in areas that corresponded with the spatial distribution of the whales46. To 
date, there is little empirical evidence to demonstrate a direct causal link between chemical contaminant load and 
microplastic ingestion in marine mammals. Potential health e�ects, such as depressed immune system function 
or increased vulnerability to diseases47,48, may not develop until a�er the microplastics have passed through the 
body. As a result, a causal relationship between microplastics and sub-lethal e�ects cannot be ruled out, especially 
where chronic exposure may lead to the bioaccumulation of toxicants. Additionally, inhalation of atmospheric 
microplastics49 by marine mammals may be a non-dietary source9, but the extent to which this occurs is cur-
rently unknown. Monitoring of at-sea atmospheric microplastic levels and examination of airways and lungs 
from stranded animals is needed.

In conclusion, we have shown that at least 10 of the 26 marine mammal species inhabiting or transiting 
through UK waters are exposed to microplastics through ingestion, though the potential for detrimental impacts 
is not known. Further examination of larger sample sizes, including investigation of animals of varying feeding 
strategies (e.g. lunge and suction feeders, such as baleen and beaked whales) in a greater variety of locations is 
required for comparison. Global hotspots for both large marine vertebrates and plastic pollution, such as the 
north-west Paci�c Ocean50,51, may reveal clearer trends. In addition, investigation into the in�uence of oceano-
graphic variables, such as currents, on both marine mammal strandings and marine litter may assist our under-
standing of their spatial relationship.

https://doi.org/10.1038/s41598-018-37428-3
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�e methods employed in this study can be applied to a wide range of settings. Here, we were able to set 
baselines for geographical and temporal comparisons of microplastic ingestion within and across taxa. Exposure 
to microplastics is likely to be chronic, cumulative and persistent. Although the snapshot provided by this study 
cannot yet assess this risk, it does suggest that impacts of microplastic ingestion could manifest in these apex 
species, and hence further work is needed.

Methods
Sample collection. Post-mortem examinations of 50 stranded marine mammals (Fig. 4, Supplementary 
Table S5) were carried out by the Scottish Marine Animal Strandings Scheme (SMASS) and the Cetacean Stranding 
Investigation Programme (CSIP, at the Institute of Zoology and University of Exeter, Penryn campus), during 
which the gastro-intestinal tracts were extracted and retained for further investigation at Plymouth Marine 
Laboratory, UK. All post-mortem investigations were conducted using standard procedures52,53 by experienced 
marine mammal pathologists in a necropsy facility rated to biosafety level 2. Samples were collected under contract 
to Defra and the Devolved Governments of Scotland and Wales. All samples were stored at −20 °C or below.

Gut content extraction. �e GITs were thawed at room temperature before being rinsed with Milli-Q 
(ultra-pure, �ltered) water to remove any unwanted particles (e.g. sand) adhering to the external surfaces. In a 
clean metal tray, each GIT section – intestines and stomach (stomach compartments for cetaceans) - were cut 
open separately and the inside rinsed with Milli-Q water. �e resulting solution was retained in glass beakers. Due 
to the relatively low amount of organic material present within some stomach compartments (obvious bony parts 
and otoliths (ear bones) of �sh and squid beaks were picked out), it was possible, using a vacuum pump, to pass 
the content through 35 µm mesh discs for later inspection. �e intestines (and fore-stomachs of some animals) 

Figure 4. Distribution of marine mammal strandings around the coast of Britain. �e coloured points 
correspond to the marine mammal species and sample size as displayed in the legend. Further details are 
included in Supplementary Table S5. Map generated using ArcMap 10.3.1.

https://doi.org/10.1038/s41598-018-37428-3
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contained a greater amount of material which could obscure microplastic particles upon visual inspection. 
�erefore, this material was digested using an enzymatic protocol (see below) to remove organic material whilst 
retaining inorganic and anthropogenic material for inspection (adapted from Lindeque and Smerdon, 200354).

Enzymatic digestion. Once extracted, the content of the intestines or fore-stomach was placed in a drying 
oven until the water added during the extraction process evaporated. �e dry weight was calculated and the 
following digestion solution volumes were applied to each 1 g of dried content, the total for each animal varied 
between 4.5 and 203.5 g. Homogenizing solution (2.2 mL; 400 mM Tris-HCI bu�er, 60 mM EDTA, 105 mM NaCl, 
1% SDS) was added to the gut content in a clean glass bottle and incubated at 55 °C for 24 hours. A metal spatula 
was used to physically homogenize the GIT content for 30 seconds, 40 µL of 20 mg mL−1 Proteinase K was added 
and the samples incubated at 55 °C for a further 24 hours. Following this, 400 µL of 5 M sodium perchlorate 
(NaCLO4) was added and the content physically homogenized for 1 min. Finally, the samples were incubated for 
72 hours at 55 °C. Each sample was passed through 35 µm mesh discs (number dependent on amount of material 
remaining) using a vacuum pump and le� to dry at room temperature in a sealed Petri dish.

Contamination and microplastic loss avoidance. Extensive measures were implemented throughout to 
limit the risk of contamination of samples by microplastics present on equipment and air-borne particles within 
in the atmosphere, see below. As a result, no microplastics were found in the procedural blanks and all controls 
were clear.

Gut content extraction. For health and safety purposes, nitrile gloves and low-density polyethylene 
(LDPE) �uid protection gowns were worn over a cotton lab coat. Samples of the gloves and gowns were retained 
to control for any contamination that may have occurred from these sources. Post-mortem examinations were 
conducted in an ultra-clean facility and the gut content extraction step was performed inside a positive pressure 
laminar �ow hood with the aim of preventing airborne microplastics from settling on the samples. A damp �lter 
paper in a Petri dish was placed within the hood to catch any such particles, allowing for the e�cacy of this meas-
ure to be assessed. All equipment was thoroughly rinsed with Milli-Q water and all surfaces were wiped down 
with 70% ethanol prior to any work commencing. All equipment was rinsed with Milli-Q water again between 
each GIT section. A procedural blank (50 mL Milli-Q water) was run through the process to control for any con-
tamination at this stage.

Enzymatic digestion. As above, all equipment was rinsed with Milli-Q and all pipettes and syringes were 
�ushed with Milli-Q prior to use. A procedural blank was run at this stage. Foil lids were used instead of plastic bottle 
caps as these were previously observed to cause contamination. �e metal spatula was rinsed with homogenizing solu-
tion (deemed contamination-free a�er testing) a�er the homogenising step to avoid loss of particles from samples.

Vacuum pumping. Prior to �ltering, all mesh discs were visually inspected for potential contamination 
under a microscope and any particles removed. Milli-Q water was run through the vacuum pump and mesh disc 
to allow for potential contamination from the equipment to be detected and prevented. If particles were found, 
the vacuum pump and mesh disc were cleaned again until no particles were detected. Only then were samples 
�ltered. �e vacuum pump was then �ushed copiously with Milli-Q water to ensure no particles became adhered 
to the edges and so lost from the sample. �e vacuum pump was used inside the laminar �ow hood to minimise 
air-borne contamination. Damp �ltered paper inside a petri dish was placed alongside the samples to control for 
any contamination that might have occurred.

Microplastic identification and characterisation. �e mesh discs were visually inspected under an 
Olympus SZX16 microscope and potential microplastics (identi�ed by colour and uniformity of shape and mate-
rial; Cole et al.55; Norén56) classi�ed by type (fragment or �bre), colour, size and description, and photographed 
using a microscope mounted Canon EOS 550D DSLR camera. A sub-sample of one particle from each animal 
(n = 50) was subjected to further analysis using attenuated total re�ection-Fourier transform infra-red spectros-
copy (ATR-FTIR; PerkinElmer Spotlight 400 FT-IR Imaging System) to con�rm the identity of the particles 
and determine the accuracy level of their visual identi�cation as synthetic materials. Particles were scanned at 
a resolution of 8 cm−1 (wavelength range = 4000–650 cm−1) and pixel size of 6.25 µm using SpectrumIMAGETM 
so�ware. �e resulting spectra were compared to a spectral database from a number of polymer libraries using 
SpectrumTM (PerkinElmer). FTIR was attempted for a greater number of particles (n = 65 in total) but obtaining 
reliable spectra matches was not possible for some due to the extent of degradation. �ough these particles were 
qualitatively similar to those with reliable spectra matches, we were conservative in our inclusion of only parti-
cles that exceeded the search score con�dence of 0.70 or greater21 and those considered to have reliable spectra 
matches (a�er visual inspection) as this was deemed the most robust method.

Factors affecting microplastic abundance. A General Linear Mixed Model (GLMM) was used to exam-
ine whether factors such as taxon (cetacean or pinniped), age-class (adult or juvenile), sex (male or female), 
length of animal and cause-of-death (infectious disease, trauma or other) were related to microplastic abundance. 
�ese factors were incorporated within the GLMM as �xed e�ects and Species was used as a random e�ect to 
account for the di�ering number of animals sampled from each species.

Distribution of microplastics within GIT. One-way analysis of variance (ANOVA) was used to assess 
whether microplastic abundance di�ers between GIT sections in all animals and among stomach compartments 
(fore, fundic and pyloric) in cetaceans. Statistical signi�cance was set at a probability level (α) of 0.05. Analyses 
were undertaken in the statistical computing so�ware, R57.
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