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Kuakata beach, known as Daughter of Sea in Bangladesh, has drawn a growing
number of tourists from all over the world, leading to the higher use of single plastic
products. This study was a first attempt to describe the occurrence, spatial distribution,
and ecological risk of microplastics (MPs) in Kuakata beach sediments. A total of 24
surface sediment samples were collected from the intertidal zone of the beach, and
MPs were extracted using the density separation method and a stereomicroscope.
Fourier transform infrared (FTIR) spectroscopy was used for qualitative and quantitative
identification. The results revealed that the average MPs in the beach sediment were
232 ± 52 items kg−1 dry weight, which was much higher than many other sandy
beaches throughout the world. Analyses of variance showed a significant (p < 0.01)
difference among the mean abundance of MPs in sampling points. Fibers were
dominated in every sampling point with an average of 123 ± 27 item kg−1. Most
of the MPs observed were colored (60%), and the rest were transparent (40%). It
was found that the size range of 1–5 mm MPs constituted over half (55%) of total
MPs covering an average value of 127 ± 34 items kg−1. Three polymer types were
identified in the sediment samples through FTIR analysis which followed the decreasing
order of polyethylene terephthalate > polyethylene > polypropylene. Correlation analysis
showed a positive relationship between the abundance of MPs and the finer grain size
of sediment (p = 0.055; r = 0.7), indicating grain size-controlled the density of MPs. The
pollution load index was assessed to estimate the ecological risk and found that the
beach sediment of Kuakata belonged to the risk category I of the pollution index. This
investigation provided preliminary information on MPs pollution in the marine ecosystem
that the policymakers can use to take appropriate management approaches.
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INTRODUCTION

Microplastics (MPs) (<5 mm in size) were first reported in
1972 as an aquatic pollutant in marine environments, and now
it has become a global concern for potential harmful effects
not only on ecosystems but also on human health (Carpenter
and Smith, 1972; Crew et al., 2020). Most of the MPs float
on the ocean surface except high-density polymers, such as
polyvinylchloride (PVC), polycarbonate (PC), and polyethylene
terephthalate (PET). These floated MPs remain in the marine
environment for longer periods due to their longevity, ubiquity,
and impact resistance properties and cannot be easily removed
(Geyer et al., 2017). Almost 367 million tons of plastic products
were produced worldwide in 2020, from which 2–5% ended up in
the oceans (Plastics Europe Market Research Group [PEMRG],
2021). If proper action is not taken to reduce the use of plastic
products, the amount of plastic entering the ocean each year
will be increased to 16 million tons by 2030 and approximately
32 million tons by 2050. It was estimated that in terms of
weight, there will be more plastics in the ocean than fish by 2050
(Neufeld et al., 2016).

Plastic materials that have been widely used as virgin pellets,
pharmaceuticals, cosmetics, or exfoliating scrubs (glitters and
microbeads) in the plastic industry and cleaning products are
generally referred to as primary MPs (Hahladakis et al., 2018;
Camacho et al., 2019). The larger amount of plastic items
are degraded into small, microscopic elements (<5 mm) due
to mechanical abrasion caused by wave action, photochemical
oxidation generated by UV-B radiations as well as biological
processes (Corcoran et al., 2015), which are commonly known
as secondary MPs. Plastics and their degraded products enter
into the oceans from some point and nonpoint sources, such as
incorrect disposal, sewage systems, loss during maritime activity,
tourists activity, industrial effluents, roadside dust (vehicles tires,
grease, etc.), beach adjacent hotels, motels, and restaurants,
which are driven by riverine output, atmospheric outfall, and
stormwater activity (Corcoran et al., 2015; Li et al., 2020).
The key sources of synthetic fibers in aquatic ecosystems are
from the washing process of synthetic textiles, which contribute
about 35% to the worldwide release of MPs to the oceans
(Boucher and Friot, 2017).

Microplastics are bioaccumulated into marine organisms
and then infiltrated into the human food web via direct
or indirect ingestion (Van Cauwenberghe and Janssen, 2014).
Though some toxic pollutants and coexposure of MPs have
health hazards, many ecotoxicological studies suggested that
the physiological activities of marine organisms may not be
significantly affected by a representative number of MPs (Rist
et al., 2016; Canniff and Hoang, 2018). Furthermore, MPs alone
has no effects on biochemical biomarkers in mussel. Still, the
combined effects of MPs and triclosan, an antimicrobial agent,
have enhanced the superoxide dismutase activity as well as
lipid peroxidation and caused oxidative stress (Webb et al.,
2020). Usually, some of the persistent organic pollutants, such
as polycyclic aromatic hydrocarbons, polychlorinated biphenyls,
pesticides, and medicinal agents, as well as heavy metals (e.g.,
Cu, Pb, Hg, Cd, Cr, etc.), are carried by MPs biofilms which

can cause adverse health issues on aquatic organisms and
humans (Wang and Wang, 2018; Camacho et al., 2019; Duan
et al., 2020; Mahfooz et al., 2020). However, these toxicants
are sorbed onto MPs following several mechanisms driven
by the physicochemical properties of the MPs, toxicants, and
the intermediate substances where the sorption takes place
(Yu et al., 2019; Fred-Ahmadu et al., 2020). Plastic products,
such as plastic bags, bottles, and other wrapping substances
release polybrominated diphenyl ether (PBDE), nonylphenol,
and bisphenol A, which are responsible for cardiovascular
disease, reproductive disorders, and breast cancer in humans
(Glausiusz, 2014; Weidemann et al., 2016; Ortiz-Villanueva et al.,
2018). Hence, it is indispensable to estimate the ecological
and environmental risks posed by MPs due to the versatility
of numerous physiochemical features. The ecological risks
which may usually drive-by MP particles can be illustrated
by different initial assessment methods (Li et al., 2020; Wang
et al., 2021). For instance, to calculate an index of MPs
polymer types Xu et al. (2018) merged the hazard scores of
plastic polymers and the pollution load index (PLI) which
are discovered by Tomlinson et al. (1980) and Lithner et al.
(2011).

However, the occurrence, distribution, and impacts of MPs
had already been studied and detected in marine habitats from
different parts of the world (Lo et al., 2018; Rodrigues et al.,
2018; Anela et al., 2019; Botterell et al., 2019; Wieczorek et al.,
2019; Li et al., 2020; Selvam et al., 2020; Wang Q. et al., 2020;
Wong et al., 2020; Bhowmick et al., 2021; Gardon et al., 2021;
Nithin et al., 2021; Sivagami et al., 2021; Taha et al., 2021; Wu
et al., 2021; Yaranal et al., 2021). The presence of MPs was also
documented in Bangladesh from sea salt (Parvin et al., 2022),
fish species (Hossain et al., 2019, 2020; Ghosh et al., 2021; Parvin
et al., 2021), and the beach sediment of Cox’s Bazar (Hossain
et al., 2021). Those studies, however, were only a brief description
of MPs occurrence, and none of them focused on the hazards
connected with MPs.

Kuakata sea beach, also known as Shagor Kannya (Daughter
of Sea), is the second-largest sandy beach along the Bay of
Bengal coastline of Bangladesh. About 115,000 tourists from
home and abroad visit this beach in the peak tourist season
(November–March) (Rahman et al., 2015). However, beachside
hotels, restaurants, and tourists’ activities produce many plastic
wastes, often disposed of on the beach. The three main rivers
in Bangladesh (The Padma, Meghna, and Jamuna) could enable
that transport, although currents could also transport MPs
from other parts of the Bay of Bengal into the coastline and
beaches. Therefore, important to know the occurrence of MPs
and understand the potential impacts of MPs on the environment
and the health risk to humans and organisms therein. So far, no
scientific study on MP contamination has been carried out along
the entire coastal water and beach sediment in Kuakata beach.
Therefore, this study was the foremost step toward elucidating
the occurrence, spatial distribution of MPs particles in beach
sediments from Kuakata, Bangladesh. Furthermore, ecological
risk assessment of MPs and a relationship between sediment grain
size and MPs distribution in Kuakata beach was studied for the
first time in Bangladesh.
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FIGURE 1 | Sampling points in Kuakata Beach along with the Bay of Bengal Coast, Bangladesh.

MATERIALS AND METHODS

Study Site
Kuakata sea beach (90◦ 7′ 0.0012′′ E and 21◦ 49′ 0.0012′′ N) of
Patuakhali district is one of the attractive tourist places on the
southernmost tip of Bangladesh (Figure 1). This beach area is
about 65 km away from Patuakhali town and is situated in the
middle of the Galachipa river and Andharmanik river estuary.
It has an unbroken natural sandy beach (approximately 18 km
long and 3 km wide) along the Bay of Bengal. The straight
coastline of Kuakata lies 7 m above the mean sea level. The
yearly mean temperature and rainfall are 25.9◦C (78.70◦F) and
2,590 mm where the average sea surface temperature (SST) is
27.30◦C (81.14◦F), respectively. Moreover, the average UV index
is recorded at 7–12 (Bangladesh Meteorological Department
[BMD], 2016) and such climate is categorized as tropical
monsoon (Am) climate based on the Köppen–Geiger system.
The current arrangement of the Bay of Bengal is recorded as
clockwise from January to July whereas counterclockwise from
August to December with a mean wind speed of 8.2 miles/h. The
semidiurnal tide with two high and two lows has been noticed
daily. The study area is generally flat and smooth with an average
elevation of 65 cm AMSL and lies on the mid-southern coast
of the old Ganges delta, covered with recent tidal deposits. In
addition, most of the area is blanketed by tidal flats and these
tidal flats are broad and nearly horizontal, which is detected by
numerous tidal creeks and channels. The formation of beach
ridge is a continuous linear mound of relatively coarser sediment
close to the high-water mark, and a well-developed dune is
present in Cower Char which is about 400 m away from the
shoreline. One of the major factors is wave energy for controlling
the beach development and changes across the Kuakata shoreline.

There are well-generated longshore and rip currents in Kuakata
beach, which develop within the surf zone by wave action. The
maximum velocity of longshore and rip currents may exceed
1 ms−1. This sandy beach with a gentle slope indicates that it has
formed by faulting and down wrapping. The slope of Kuakata
is 1–2◦ at Gangamatir char, 1–1.5◦ at Labur char, and 3–5◦ at
Cower char which are the parts of Kuakata beach toward the
Bay of Bengal (Rashid and Mahmood, 2011). Tourists usually
enjoy the scenic beauty of Kuakata beach through scenic drives,
boat tours, and bike tours. However, two forms of anthropogenic
activities adversely affect the beach environment in this area:
(1) the industrial and domestic waste discharge into Galachipa
river in the East and Andharmanik river in the West and (2)
exploration of tourists and the waste thrown by them.

Sample Collection
A total of 24 sediment samples were collected from eight
sampling points, each having triplicates, in the pretourist season
from September to October (postmonsoon) in 2019. These
locations were S1 (90◦ 5′ 6′′ E, 21◦ 50′ 34.8′′ N), S2 (90◦ 7′ 12′′
E, 21◦ 49′ 4.8′′ N), S3 (90◦ 9′ 0′′ E, 21◦ 48′ 28.8′′ N), S4 (90◦
11′ 9.6′′ E, 21◦ 48′ 7.2′′ N), S5 (90◦ 12′ 50.4′′ E, 21◦ 48′ 49.68′′
N), S6 (90◦ 13′ 55.2′′ E, 21◦ 49′ 30′′ N), S7 (90◦ 15′ 21.6′′ E, 21◦
50′ 56.4′′ N), and S8 (90◦ 15′ 54′′ E, 21◦ 52′ 8.4′′ N) (Figure 1).
All the samples were collected from strandline when there was
ebb tide into the Bay of Bengal. Surface sand samples (top 5 cm)
were collected using a metal quadrate (30 cm× 30 cm) following
the methods of de Carvalho and Neto (2016) and Li et al. (2020).
All the sands within the quadrate were carefully collected using
the metal shovel and transferred into an aluminum foil bag. The
sample bags were then carefully packed and shipped back to the
laboratory for further processing.
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Extraction Procedure of Microplastics
The extraction procedure of MPs in this study was conducted
following the methodologies illustrated by Masura et al. (2015)
and Hossain et al. (2020) with some modifications. First, wet
sand samples of 400 g each were weighed and dried at 90◦C
using a hot air oven until their dryness. The dried samples were
subsequently taken into an 800 ml glass beaker with 300 ml of
ZnCl2 (1.8 g cm−3) salt solution (Coppock et al., 2017) and
stirred with a spatula for a few minutes. Next, all solutions, e.g.,
H2O2 (Scharlab, Spain), ZnCl2, FeSO4, and NaCl (Loba Chemie,
India), were filtered through a cellulose nitrate filter paper of
5.0 µm to remove indigenous MPs from them. After that, all
the floating solids were sieved with a 0.3 mm sieve and moved
into a 500 ml beaker. Then the beaker with the sample was
dried at 90◦C for 24 h. Finally, to eliminate organic matters
from the dried sample, Fenton’s reagent (30% H2O2 + FeSO4)
associated with 3 ml H2SO4 was added, and again heated to 75◦C
temperature on a hotplate for 30 min. A total of 6 g of salt (∼5 M
NaCl) was added afterward per 20 ml of sample to intensify
the density of the wet peroxide oxidation (WPO) solution and
transferred to a density separator (Coppock et al., 2017) and kept
overnight. After that, the floating solids from the separator were
collected into a 500 ml beaker and filtered through a 5.0 µm
of cellulose nitrate filter paper (Minipore, India) with 47 mm
diameter (Bonello et al., 2018).

Visual Identification of Microplastics
A stereomicroscope (Leica EZ4E, Germany) with 8 to 35X
magnification was used to quantify and identify the MPs from
the filter paper with the method as in Hidalgo-Ruz et al. (2012),
Cheung et al. (2016), and Catarino et al. (2018). For these,
the filter paper was divided into four quarts pointing to the
top clearly, and MPs were counted one by one quart from
the filter paper (Lots et al., 2017). The images of MPs were
taken with a high-resolution camera (DP-software) attached with
the microscope, and measurements were done using ImageJ
software (ver. 2.0.0) (Laglbauer et al., 2014). Besides, a hot
needle test was conducted for suspicious plastic pieces (De Witte
et al., 2014). The morphometric characteristics of MP particles
were categorized into different types (microbeads, sheets, foams,
films, fibers, and fragments) and shapes (irregular, elongated,
rectangular, and cylindrical) (Hidalgo-Ruz et al., 2012; Lusher A.
et al., 2017; Lusher A. L. et al., 2017; Frias and Nash, 2019), colors
(Möller et al., 2020), and sizes (Zhang et al., 2016).

Polymer Type Identification
Comparatively larger particles were collected to Petri dish from
filter papers to identify the polymer types of MPs. An FTIR 8400S
manufactured by Shimadzu Corporation, Japan (wavenumber
range of 4,000–400 cm−1) and potassium bromide (KBr) pellet
technique were used for the polymer characterization. Nearly
200 mg of KBr powder was mixed with around 1–3 mg of
finely ground sample. The mixture was then pressed for 1 min
in a pellet maker with a continuous pressure of 10 tons to
form a transparent pellet using a Shimadzu (IR Prestige-21)
hydraulic press. During pellet preparation, the system was kept

under evacuation. The pellet was analyzed immediately using an
FTIR spectrometer with resolution 2 cm−1 in 30 no. of a scan.
The identification process is performed through an automated
contrast with the extensive spectral libraries. However, depending
only on automated libraries may lead to false identification.
Therefore, the FTIR spectra have also been contrasted to
absorption bands of polymers reported in the previous studies
(Noda et al., 2007; Jung et al., 2018).

Sand Grain Size Analysis
Wet sand samples of 250 g were collected from each sampling
point (S1–S8) at Kuakata beach and dried at 105◦C in a hot
air oven until sample dryness (Urban-Malinga et al., 2020). The
average grain size was assessed by sieving 40 g of dry sediment
through a sorted sequence of sieves (2, 1, 0.5, 0.25, 0.125,
0.063, and 0.002 mm) with a sieve shaker (Biobase BK-TS 200,
China), and shake for 15 min (Wu et al., 2021). After that, all
sediments on each sieve were collected and weighed for analysis.
The grain sizes were ascertained based on the Wentworth scale
(Wentworth, 1922).

Risk Assessment
The PLI is generally used to evaluate the ecological risk in
terrestrial and aquatic environments (Tomlinson et al., 1980). In
this study, the concentration of MPs was considered the pollutant
to estimate the ecological risk in the beach sediment of Kuakata
Beach. The PLI was evaluated using the following equations (Xu
et al., 2018; Wang et al., 2021).

CFi =
Ci

Coi
(1)

PLI =
√

CFi (2)

PLIzone =
n
√

PLI1PLI2PLI3... PLIn (3)

where CFi is the quotient (contamination factor) of the MP
concentration at each sampling site, Ci is the MP concentration
at each sample site, and Coi is the background value of
MP concentration in sediments before expanding the plastics
industry. Nevertheless, there was no scientific study regarding
MPs pollution in Kuakata to acquire the background values.
Besides, there is no existing standard method to assess the risk
of MPs. Coi has been suggested to be denoted by the minimum
MP concentration (153 items kg−1) to assess the PLI (Isobe et al.,
2014; Xu et al., 2018; Li et al., 2020). However, this approach
has the potential that an unusually scattered minimum value
can distort the PLI values. The MP concentration (154 items
kg−1) at 5% cumulative probability was used to avoid this. The
advantage is that this value is determined by the entire probability
distribution and hence not significantly affected by a single
point value. The PLI value of MPs pollution was categorized
according to Wang et al. (2021). It provides a clear extent of
MP risk and raises concerns about managing MP contamination
(Xu et al., 2018).
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Control of Contamination
In this study, all the cautious steps were taken to avoid possible
contamination. While working with a toxic hydrogen peroxide
mixed solution, special care was taken, and all the reaction
was carried out under a fume hood. Precautions were also
taken to prevent cross-contamination, predominantly with aerial
contaminants and synthetic fibers from clothes. All equipment
was washed with distilled deionized water before and after
use. Moreover, working surfaces were continuously wiped with
distilled H2O and 70% alcohol. Samples were kept retained,
wrapping with aluminum foil. Two blank-control samples were
run using the above procedure: one with pure sand and
concentrated ZnCl2 solution and the other with concentrated
ZnCl2 solution (Yu et al., 2016). The blank samples contained
no plastics. As we sieved the sand salt (ZnCl2) solution through
0.3 mm mesh, the size range of particles used in this study was
between 0.3 and 5 mm.

Statistical Analysis
Significant variations in the mean abundance of MPs among
the sites were analyzed using one-way ANOVA followed by
pairwise comparisons using Tukey’s HSD test. In all the cases,
homogeneity of variances was tested with Levene’s test, and
the data were transformed using square root or logarithm
when needed. The granulometric data were analyzed on
normalized data using Ward’s method. Statistical analyses were
conducted using the computer package, PAST (PAleontological
STatistics), Version 4.03.

RESULTS AND DISCUSSION

Occurrence and Spatial Distribution of
Microplastics
Microplastics were recognized in every sampling point of
Kuakata Beach sediment with an overall mean value of 232 ± 52

items kg−1 dry sediment. In our investigation, the highest mean
value of MPs was observed in the estuarine S8 sampling point
(311 ± 11 items kg−1), followed by S7 (279 ± 8 items kg−1),
S1 (270 ± 9 items kg−1), S4 (246 ± 8 items kg−1), S5 (221 ± 9
items kg−1), S3 (191 ± 11 items kg−1), S6 (182 ± 6 items kg−1),
and lastly in the lowest interrupted zone S2 (157 ± 5 items
kg−1) (Figure 2). One-way ANOVA showed that the abundance
of MPs significantly varied (F = 123.8, df = 7, p < < 0.001)
among the eight stations. Tukey’s pairwise comparisons showed
significant differences between almost all sites pair, except for
S1 and S4 (p = 0.12), S1 and S7 (p = 0.94), S3 and S6
(p = 0.75). In addition, the cumulative probabilistic distributions
of all the sample values were calculated (Figure 3). The 5%
and 95% values from the distributions were 154 and 318 items
kg−1, respectively.

The higher abundance in S1, S7, and S8 sampling points
indicated that MPs load in the estuarine beach might be
attributed to extensive river discharge along with tourism
activities (Zhang et al., 2019). Tourist activity would yield an
incredible amount of plastic waste, leading to MP pollution on
the beach. It was proposed that wind-driven oceanic circulation
could also influence MP accumulation at beaches with higher
concentrations (Vianello et al., 2013). On the other hand, the S2
sampling point was a remote area for the tourists, and therefore
the abundance of MPs was recorded lowest at S2. Previous studies
indicated that MP contamination was significantly positively
correlated with population density, river discharge, and the
spread of industrial zones (Fetner and Miller, 2021; Zhu et al.,
2021). However, present outcomes were compared with other
countries that used almost similar extraction and detection
methods, as well as the quantification unit (Table 1). The mean
abundance of MPs in this study site was found to be higher
than those in Small Island, Fuji (Ferreira et al., 2020), Brest Bay,
France (Frère et al., 2017), and some other beaches (Graca et al.,
2017). Our results depicted the MPs pollution in the surface
sediments of the Kuakata beach was lower than the sediments
from Chennai, India (Sathish et al., 2019), Lido di Dante, Italy

FIGURE 2 | The abundance of microplastics (MPs) in different sampling points.
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FIGURE 3 | Cumulative probabilistic distributions of all the sample values
indicating 5 and 95% values.

(Lots et al., 2017), Bohai sea, China (Zhu et al., 2021), and Da
Nang, Vietnam (Nguyen et al., 2020).

Characteristics of Microplastics
The investigation on characteristics of MPs in this experiment
exposed the types and shapes, color, and size of MPs presented
in the Kuakata beach sediment. A total of six different types of
MPs were noticed in the examined sediment, namely microbeads,
sheets, foams, films, fibers, and fragments (Figure 4A). Among
these, fibers were predominant in every sampling point. They
contributed about 55% of total MPs with an average of 123 ± 27
items kg−1, followed by 15% fragments (35 ± 20 items kg−1),
14% films (30 ± 11 items kg−1), 10% microbeads (28 ± 30
items kg−1), 5% sheets (12 ± 9 items kg−1), and 2% foams
(4 ± 6 items kg−1), respectively. Fibers, fragments, films, and
microbeads were documented at all sampling points, and most
of the fragments and films (98%) were irregular in shape.
In addition, a little elongated, rectangular, and cylindrical-
shaped particle were also visualized. While comparing with other
studies conducted worldwide, fibers were found to contribute a
significant portion of most beach sediment (Graca et al., 2017;
Sathish et al., 2019; Nguyen et al., 2020), showing a similar
pattern to our present findings (Table 1). Among the MPs
types, fibers were also observed to be dominant in the surface
sediment from Belgium, Singapore, Slovenia, and South Africa
(Nor and Obbard, 2014; Nel and Froneman, 2015). However,
a larger amount of fiber found in the beach sediment of
Kuakata, Bangladesh, may be originated from clothing materials
and industrial fabrics, domestic laundry effluents through river
discharge, fishing activity using nets and ropes in the Bay of
Bengal. Besides, food and beverage packaging plastics disposed
of by the tourists and locals might have caused the presence of
MPs in the study area.

Most of the MPs were found colored (60%) in the sediment of
Kuakata, whereas 40% were transparent. The highest number of
MPs were purple (27%) in color with an average of 62± 24 items
kg−1, followed by red (12%; 29 ± 14 items kg−1), blue (10%; TA
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FIGURE 4 | Characteristics of microplastic, (A) types; (B) color; and (C) size.

23± 13 items kg−1), brown (6%; 15± 11 items kg−1), and others
(5%; 12 ± 11 items kg−1). The mean abundance of transparent
MPs was 92 ± 25 items kg−1. Colorful MPs were distributed
on every sampling point of Kuakata Beach and highest (68%)
in site S4 (Figure 4B), which might be degraded mainly from
plastic food and beverage package. MPs’ color may be attributed
to their various sources (Patterson et al., 2019). However, the
finding of our study was consistent with some other studies
conducted worldwide (Peng et al., 2017; Robin et al., 2019; Yuan
et al., 2019), who reported that most MPs were colored particles
in the sediment. As bleaching processes happen in the marine
ecosystem, it is difficult to comment on MPs’ color (Stolte et al.,
2015). Nevertheless, the color of the MPs is a significant factor as
the marine organisms prey on colored MPs for resembling their
prey, and the results have already been documented in many parts
of the world (Ory et al., 2018; Botterell et al., 2019; Hossain et al.,
2019, 2020; Hoellein et al., 2021; Liu et al., 2021; Muller, 2021;
Wootton et al., 2021).

Microplastics ranging from 0.3 to 5 mm were the primary
concern in this investigation. The observed MPs were thus
categorized into three distinct groups among which size range
between 1 and 5 mm comprised almost half (55%) of total MPs
with an average of 127± 34 items kg−1, followed by 0.5− 1 mm
(31%; 72 ± 19 items kg−1), and <0.5 mm (14%; 34 ± 15 items
kg−1) (Figure 4C). Most fibers were predominantly documented
in a size range of 1–5 mm. Though our findings were similar
to some authors (Zhang et al., 2016; Sagawa et al., 2018), many
others disagree with these (Nor and Obbard, 2014; Klein et al.,
2015; Lots et al., 2017; Peng et al., 2017; Urban-Malinga et al.,
2020; Wang S. et al., 2020) who reported that MPs < 1 mm
were more abundant. It was proven that MPs in sediment are

accredited from large plastic particles and domestic laundry wash
effluent (Yu et al., 2018). Approximately 6,000,000 microfibers
ranging from 20 to 2,000 mm can be released from each 5 kg of
polyester fabrics washing effluent (De Falco et al., 2017), which
degrade to MPs (<5 mm) due to water turbulence, wave action,
and high UV from sunlight (Auta et al., 2017).

Correlation With Grain Size Distribution
Beach sediments of Kuakata were primarily composed of very
fine sands (39%) and mud (35%), followed by fine sand (24%),
medium sand (1.5%), and coarse sand [0.5 (Figure 5)]. However,

FIGURE 5 | Cumulative curve of sediment grain size of Kuakata Beach.

Frontiers in Marine Science | www.frontiersin.org 7 April 2022 | Volume 9 | Article 860989

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-860989 April 8, 2022 Time: 16:54 # 8

Banik et al. Microplastics in Sediment of Kuakata Beach

a positive correlation was found between the MPs abundance
and the finer grain size distributions from each sampling point
(p = 0.055; r = 0.7). McLachlan and Brown (2006) stated that
beach sediments work as pollution traps that nonspecifically
adsorb particles carried by tides and currents. It was proven that
the finer the sediment is more effective to trap the particles.
Besides, fine-grained sediments are typical for accumulation
regions, therefore, may be susceptible to pollution. In this
primary investigation, we have noticed higher MPs incidence
in finer sediment grain size, which reinforced our assumption
that finer sediments act as pollution traps for MPs on beaches.
Nevertheless, the absence of the relationship between MPs
occurrence and finer sediment grain size was previously observed
from tidal beaches (Browne et al., 2013; Mathalon and Hill, 2014;
Urban-Malinga et al., 2020) as well as shallow coastal sediment
(Alomar et al., 2016). Such findings in our study might be due to
the position of beaches in the river estuary (Galachiap river and

Andharmanik river), where deposition happens with substantial
domestic and industrial input.

Composition and Sources of
Microplastics
A total of 12 representative samples of a size range between
1 and 5 mm were extracted for FTIR analysis, and 11 were
found as plastic polymer, while 1 remained unidentified. Our
investigation elucidated three types of polymers, namely, PET,
polyethylene (PE), and polypropylene (PP), in the sediment
samples of Kuakata, Bangladesh. PET was found to be the most
abundant polymer type, contributing 45.5% of the total samples
identified through FTIR analysis, whereas PP was found to be
least (18.2%). The FTIR spectra of these polymers are shown in
Figure 6. Due to the aging, natural weathering, and degradation
of MPs, some identical peaks of those plastic polymers were not

FIGURE 6 | FTIR spectrum of MPs in beach sediments of Kuakata, Bangladesh, (A) PET; (B) PE; (C) PP.

Frontiers in Marine Science | www.frontiersin.org 8 April 2022 | Volume 9 | Article 860989

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-860989 April 8, 2022 Time: 16:54 # 9

Banik et al. Microplastics in Sediment of Kuakata Beach

FIGURE 7 | PLI value of each sampling site in beach sediments of Kuakata, Bangladesh.

found in the FTIR spectrum (Wang et al., 2017; Sathish et al.,
2019). However, these polymers were common MPs in the coastal
ecosystems (Sathish et al., 2019; Godoy et al., 2020; Selvam et al.,
2020; Wu et al., 2021; Zhu et al., 2021).

Recognized polymer type through FTIR analysis did not
provide enough evidence to identify the exact sources of MPs
origin (Claessens et al., 2011). We can only assume their potential
sources based on the extensive discretion of our findings (Wang
et al., 2019). The main source of MPs in the studied beach
might be river discharge, surface runoff, and plastics deposited
by tourists and locals. However, most of the fibers found in this
study were PET and fragments were either PE or PP. The possible
sources of PET and PP could be clothes and textile products
as these polymers are extensively used industrially. PP is also
used for packaging food, beverage, plastic containers, carpets, and
pipes. PE is another type of polymer found in the studied area
which is used widely as food-packaging film and containers for
oil, shampoos, soap, etc. (Hossain et al., 2020; Wu et al., 2021).

Ecological Risk Assessment of
Microplastics With Pollution Load Index
The PLI value of each sampling site (S1–S8) was calculated,
and the findings were illustrated in Figure 7. The highest value
of PLI was evaluated in the S8 sampling point (1.43 ± 0.02),
followed by S7 (1.36 ± 0.02), S1 (1.33 ± 0.02), S4 (1.27 ± 0.01),
S5 (1.20 ± 0.02), S3 (1.11 ± 0.02), S6 (1.09 ± 0.02), and S2
(1.01 ± 0.01). The PLI specified that the beach sediment of
Kuakata belonged to the risk category I of the pollution index,
indicating slightly polluted by the MPs. However, the results of
one-way ANOVA showed that the values of PLI significantly
varied (F = 211.7, p < < 0.001) among the eight stations.

The estuarine beach (i.e., S8, S7, and S1) possesses a higher
PLI value due to massive river discharge from two main estuaries
along with tourism activities (Zhang et al., 2019). Moreover, we
mentioned earlier that the estuarine sediments of Kuakata mainly
consist of fine sand, which acts as a more effective pollutant
trapping agent. Tourist activity and beachside development

programs would produce a significant number of plastic wastes
which may dispose of on the beach. On the contrary, the
S2 sampling point had a lower PLI value which might be
due to the lower touristic and beach developmental activities.
However, according to these findings, it can be concluded that
the PLI value can assess the degree of MP contamination in
an area, but it is not possible to calculate the precise MP
concentration by the PLI values (Wang et al., 2021). The toxic
effect of MPs is primarily associated with the hazard scores;
therefore, the value of PLI is not a practical endpoint of health
risk assessment. Besides, the evaluation of health risks allied
with MPs exposure is quite deficient. MPs might be ingested
through drink or food and inhaled (Rist et al., 2018; Cox
et al., 2019; Vianello et al., 2019). Hence, advanced investigation
regarding possible exposure pathways of MPs and their menace
to humans is needed.

CONCLUSION

This investigation aimed to assess the occurrence and
characteristics of MPs, for the first time, in beach sediments
from Kuakata, Northern Bay of Bengal, Bangladesh. The
results confirmed the presence of various types of MPs (fibers,
microbeads, fragments, etc.) and polymer forms (PET, PE, and
PP) in beach sediment samples with the highest density detected
at sampling points near the estuary, which could be attributed to
colossal river discharges along with tourism activities. The higher
incidence of MPs was found in finer sediment grain sizes, which
supports the assumption that finer sediments act on beaches
as pollution traps for MPs. The abundance and nature of MPs
indicate that these MPs are derived from land-based sources.
PLI analyses showed the beach sediments of Kuakata were in
category I of pollution index is slightly polluted. This finding can
help inform improved management of local and regional plastic
debris. More long-term and systematic studies on the impacts of
MPs on marine life, habitats, and eventually on human health
are recommended.
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