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Abstract 16	

Waste Water Treatment Plants (WWTPs) are receptors for the cumulative loading of 17	

microplastics (MPs) derived from industry, landfill, domestic waste water and storm water.  18	

The partitioning of MPs through the settlement processes of waste water treatment results in 19	

the majority becoming entrained in the sewage sludge. This study characterised MPs in 20	

sludge samples from seven WWTPs in Ireland, which use anaerobic digestion (AD), thermal 21	

drying (TD), or lime stabilisation (LS) treatment processes. Abundances ranged from 4,196 22	

to 15,385 particles kg-1 (dry weight). Results of a general linear mixed model (GLMM) 23	

showed significantly higher abundances of MPs in smaller size classes in the LS samples, 24	

suggesting that the treatment process of LS shear MP particles. In contrast, lower abundances 25	

of MPs found in the AD samples suggest that this process may reduce MP abundances. 26	

Surface morphologies examined using Scanning Electron Microscopy (SEM) showed 27	

characteristics of melting and blistering of TD MPs and shredding and flaking of LS MPs. 28	

This study highlights the potential for sewage sludge treatment processes to affect the risk of 29	
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MP pollution prior to land spreading and may have implications for legislation governing the 30	

application of biosolids to agricultural land.  31	

 32	

Keywords: Microplastics; sewage sludge; biosolids; anaerobic digestion; lime stabilisation; 33	

thermal drying. 34	

 35	

1. Introduction 36	

Microplastics (MPs) are synthetic polymers measuring less than 5 mm in diameter and are 37	

derived from a wide range of sources including synthetic fibres from clothing,1,2 polymer 38	

manufacturing and processing industries,3 and personal care products. 4 They have the 39	

potential to adsorb persistent organic contaminants5,6 and priority metals7-11 from the 40	

surrounding environment. These may be released upon digestion by biota or through 41	

environmental degradation, leading to possible impacts to human health and ecosystems.12-14 
42	

Over the last 10 years, many studies have investigated the distribution1,15 and effects16-19 of 43	

MPs within the marine environment. Indeed, MPs have been found in Polar Regions20 and in 44	

a range of freshwater environments worldwide.21-24 Despite this, few studies have sought to 45	

determine land-based sources of MPs.25 Wastewater treatment plants (WWTPs) have been 46	

identified as receptors of MP pollution and effective in capturing the majority of MPs in the 47	

sludge during settlement regimes26, as first found by Habib et al. (1998) when they used 48	

synthetic fibers as a proxies for the presence of sewage.27 More than 10 million tonnes of 49	

sewage sludge was produced in WWTPs in the European Union (EU) in 2010.27 European 50	

Union policy on sustainability and recycling of resources28 favours the recycling of sludge. 51	

The introduction of EU legislation such as the Landfill Directive29 and the Renewable Energy 52	

Directive30 have diverted sewage sludge from landfill and incineration into use for energy 53	

production31 and agriculture.32 In some countries, such as Ireland, up to 80% of municipal 54	
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wastewater sludge is reused in agriculture.33,34 Guidelines stipulate that the sludge must 55	

undergo some type of treatment (after which it is commonly referred to as ‘biosolids’) prior 56	

to land application. This may include lime stabilisation (LS), anaerobic digestion (AD), 57	

composting, or thermal drying (TD).31 As approximately 99% of MPs are retained in sewage 58	

sludge generated in WWTPs, 35 there is a possibility that land applied sludge, even having 59	

undergone treatment, could be a source of MP pollution.  60	

 61	

The regulations for the use of biosolids in the EU and USA stipulate limit levels for pathogen 62	

content, maximum metal and nutrient application rates to land,36 and vector (flies and 63	

rodents) attraction reduction (USA only). Restrictions in land application of biosolids vary 64	

between the EU and USA.  Under US federal legislation, the application of biosolids to 65	

agricultural land can occur without restriction in volume or duration, if the contamination 66	

level reaches an exceptional quality “EQ”.37 In Europe, sewage sludge is dealt with very 67	

differently among member states, and application to land is banned in some countries.38-40   68	

 69	

As most sewage sludge undergoes treatment prior to land-spreading, the effects of these 70	

treatments on MP morphology is important but remains largely unknown, with some 71	

evidence of increased abundance of fibres at a smaller size range for LS sludge41 which is 72	

probably due to alkaline hydrolysis.42 Therefore, the aim of this study was to investigate the 73	

first stage of the MP pathway post-WWTP, and the impacts of different treatments. In 74	

particular, it aimed to determine if (1) MPs are present in treated sewage sludge from a range 75	

of WWTPs employing AD, TD and LS as treatment techniques, and (2) the type of treatment 76	

used (TD, AD, LS) employed at the WWTP impacts on MP abundance and characteristics, 77	

including size and surface morphology.  78	

 79	
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2. Methodology 80	

 81	

2.1 WWTP sludge sample collection and preparation 82	

Sewage sludge, having undergone treatment including TD, AD or LS, was collected from 83	

seven waste WWTPs with population equivalents (PEs) ranging from 6500 to 2.4 million 84	

(Table 1). These WWTPs received waste water from industry, storm water run-off and 85	

domestic sources, all of which comprised up to 30% of the influent organic loading 86	

(measured as biochemical oxygen demand, BOD) (Table1). Three replicate samples of 30 g 87	

were obtained from each WWTP and stored at -20oC prior to sample preparation. The treated 88	

sewage sludge had dry matter (DM) contents ranging from 24% (AD) to 87% (TD). Pellets of 89	

TD sludge were placed in water for 1 week to induce softening, transferred to a water bath 90	

(30oC) for 24 hr, and placed in an “end-over-end” shaker (Parvalux, UK) for 12 hr. This 91	

shaking procedure was repeated until the pellets were sufficiently softened without 92	

compromising the physical characteristics of the MPs. The samples were subsequently 93	

washed through a 250 µm sieve, which resulted in complete degradation of the pelleted 94	

clumps prior to elutriation. A proportion of the washed through fraction was retained and 95	

passed through 212, 63, and 45 µm sieves for particle size determination or particle size 96	

fractionation.  97	

 98	

Anaerobically digested and LS sludge were soaked in filtered tap water to soften and 99	

homogenise them, and were also washed through 250, 212, 63 and 45 µm sieves to determine 100	

particle size fractions.  As the LS sludge had an oily appearance, thought to be derived from 101	

the break-down of cellulosic material through alkaline hydrolysis, it was decided that the 102	

elutriation and other density separation techniques were unsuitable for extraction of MPs. 103	
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Instead, 10 g from each replicate sample were examined by passing it directly through a filter 104	

(GF/C: Whatman TM, 1.2 µm) using vacuum filtration. 105	

 106	

2.2. Microplastics Extraction  107	

2.2.1 Elutriation 108	

The principal of elutriation was used as the first step in the separation of MPs from other 109	

sample components. Elutriation separates lighter particles from heavier ones through an 110	

upward flow of liquid and/or gas, and has been widely used in the separation of biota within 111	

sediment samples.42 To separate MPs from the sludge samples, an elutriation column, based 112	

on the design of Claessens et al.43 was constructed.   113	

 114	

2.2.1.1 Column extraction efficiency estimation 115	

To check for efficiency of the column in extracting MP, three sediment samples, each 116	

weighing 40 g, were spiked with 50 MP particles of high density polyethylene (HDPE) (three 117	

colours) and PVC, and run through the column. The HDPE samples used were shavings of 118	

approximately 1.0 (L) × 4.0 (W) × 2.0 mm (B).  The PVC particles were of a similar 119	

dimension, but were more brittle. Therefore, each particle was marked with a blue marker to 120	

ensure that particles were not counted twice upon recovery. The number of particles, 121	

separated from the sediment matrix, that exited the column, was enumerated and the 122	

percentage efficiency was calculated.  123	

 124	

2.2.2. Zinc chloride (ZnCl2) extraction   125	

The MP extraction was filtered through 250 µm mesh, rinsed into a separatory funnel with 1 126	

molar ZnCl2 solution, and brought to a volume of 300 ml. The funnel was plugged, 127	

vigorously shaken for 1 min, and allowed to settle (20 min). The settled material was drained 128	
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and the remainder of the sample was filtered onto glass fibre filters (GF/C: Whatman TM, 1.2 129	

µm). The oily appearance of the LS samples rendered this density separation technique 130	

unsuitable for extraction of MP.   131	

 132	

2.3. Characterisation of MPs 133	

The filters were examined using stereomicroscopy equipped with a polariser (Olympus 134	

SZX10) attachment and a Qimaging® Retiga™ 2000R digital camera. Microplastics were 135	

identified and enumerated based on several criteria including form, colour and sheen used in 136	

previous studies as described by Hidalgo Ruz et al. 44 The form of a synthetic fibre should not 137	

taper at either end, while not having a rigidly straight form. Any polymer will not have 138	

cellular structure or other organic structures. Artificial fibre particles also have uniformity of 139	

colour and exhibit a sheen once passed through the polarized light. Where ambiguity 140	

remained following these observations, the suspected polymer was manipulated with a hot 141	

pin by which a melted form indicated a positive result.  Microplastics were measured and 142	

allotted to the following size categories:  250-400 µm, 400-600 µm, 600-1000 µm, and 1000-143	

4000 µm.  Suspected MPs were enumerated and measured, and approximately 10% of MP 144	

samples from each filter paper were set aside for polymer identification. Microplastics for 145	

which any ambiguity remained as to if it was a polymer, were automatically selected for 146	

analyses. 147	

 148	

Attenuated total reflectance (ATR) and Fourier transform infrared spectroscopy (FTIR) 149	

(Perkin Elmer, USA, Spectrum TwoTM with Universal ATR Accessory and Thermo 150	

Scientific, UK, Nicolet iN10 FTIR microscope with germanium Tip Slide-on-ATR) were 151	

used to analyse approximately 10% of MP samples. The spectra were obtained with 3-second 152	

data collection (16 scans per sample) over the wave number range 600 – 4000 cm-1 using a 153	
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liquid nitrogen-cooled MCT-A detector at 8 cm-1 resolution. Microplastic samples extracted 154	

from the sludge (and pristine plastics for comparative purposes) were gold-coated (Emitecg 155	

K550, Quorum technologies, Ltd., UK) and subjected to variable pressure scanning electron 156	

microscopy (SEM) in secondary electron mode using a Hitachi model S2600N (Hitachinaka, 157	

Japan). The analyses were performed at accelerating voltages of 10 - 20 kv, an emission 158	

current (Ic) of 10 µA, and a working distance of 12 - 24mm.44 159	

 160	

2.4 Quality control and contamination prevention 161	

Cotton laboratory coats and nitrile gloves were used during the sample preparation and 162	

analyses.  In addition, synthetic clothing was avoided and samples were covered at all times 163	

and working surfaces were cleaned with alcohol prior to use. When analysing filter papers, a 164	

blank filter paper was exposed to the open laboratory conditions to assess the possibility of 165	

air-borne contamination.  166	

 167	

2.5. Data analyses 168	

Statistical analyses were carried out using Minitab 17 (2010) and R.45 As data were not 169	

normally distributed, non-parametric tests were used to test for differences in MP abundances 170	

amongst locations (Mann-Whitney Test). To investigate if there were any possible effects of 171	

PE on abundance, a Spearman’s rank correlation analysis test was utilised. With the 172	

exception of one WWTP, there was only one treatment method employed per site (Table 1), 173	

so in-site correlation was not possible. Each site was treated as an independent measurement 174	

and plotted using a box plot. A generalised linear mixed effect model (GLMM) was used 175	

(Eqn. 1) to investigate the high number of MP particles in the smaller class sizes at WWTPs 176	

in which LS was employed.  177	

 178	
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Microplastic	counts = Treatment	Type + Population	Equivalent +
8

9:;<=>;?=	@A<?=
	     179	

Eqn. 1 180	

 181	

Where 1/Treatment Plant specifies a random intercept model.  182	

 183	

A separate GLMM for each size class was carried out using a Poisson distribution and a 184	

random effect term to account for nesting of replicates within WWTPs to determine which 185	

explanatory variable was responsible for larger proportions of smaller MP particles at 186	

WWTPs in which LS was employed.  187	

 188	

3. Results and Discussion 189	

 190	

3.1 Characterisation of treated sewage sludge 191	

The characteristics of the sewage sludge treated using AD, LS and TD had varying physical 192	

characteristics. The particle size fractionation (g/kg) of the AD samples was smaller than the 193	

LS and TD samples (Table 2), and had a sandy appearance. The AD samples were very dark 194	

and heavy with some cellulosic material, whereas the TD samples had a lot of cellulosic 195	

material entrained, which was difficult to separate during elutriation and zinc chloride 196	

extraction. Although this cellulosic material was distinctive from MP material (in that its 197	

fibres tapered at the ends and it was often branched) and therefore easy to disqualify, its 198	

presence in the samples greatly increased the time and consumables (filter papers) utilised 199	

during the filtration process. High levels of cellulose derived from toilet paper in sewage may 200	

merit the inclusion of a digestion process using the cellulase enzyme, as has been previously 201	

used for the isolation of MPs in North Sea sediments.46 202	

 203	
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3.2 Microplastics Extraction 204	

3.2.1 Elutriation column extraction efficiency estimation 205	

The average extraction efficiency rate of the elutriation column for the spiked sediment 206	

samples was 90%, 94% and 91% for the red, blue and black HDPE particles, respectively.  207	

The elutriation process was less efficient for the PVC particles, which resulted in an average 208	

extraction efficiency of 80%. This is an indication that results of MP abundance in this study 209	

may be an underestimation.  As the efficiency test was conducted only for fragments at one 210	

size only, it may not be representative of efficiency of fibre removal. 211	

 212	

3.3 Characterisation of Microplastics 213	

3.3. 1 Microplastics abundance 214	

Microplastics extracted from the biosolids ranged from an average of 4,196 to 15,385 215	

particles kg-1 (DM) among the seven sites, with significant differences in MP abundances 216	

between some sites and within Site 1 (1A, 1B) between AD samples and TD samples (Mann 217	

Whitney, w = 15, p = 0.0809; Figure 1). This is likely to be an underestimation due to losses 218	

in column efficiency (approx. 20%) and through the use of a 250 µm	 sieve	 from	which	 a	219	

proportion	of	fibres	may	be	lost. The abundances found in this study are in the same order of 220	

magnitude to the study by Zubris et al.42 who reported between 3,000 and 4,000 particles kg-
221	

1. In the current study, a lack of correlation between PE and MP abundance kg-1 (Spearman’s 222	

rank, r = - 0.308, p = 0.458) implies that these differences may have been due to the variation 223	

of input sources (industrial, storm water, landfill etc.). However, as no data exist for the 224	

temporal variation of MPs in sewage sludge, there is a possibility that these variations are a 225	

result of fluxes in MP input, which could be a result of peak MP emission times in relation to 226	

household or industrial activity. The significantly lower abundance of MPs in an 227	

anaerobically digested biosolid sample compared to all other sample except Site 3, which was 228	
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also treated with AD, posits an interesting question over the possible role of AD in the 229	

degradation of polymers  collected from the same site as sample 1A (taken roughly at the 230	

same time). Without pre-treatment samples, there is no evidence to prove that the mesophilic 231	

anaerobic digestion (MAD) used at the AD WWTPs in this study, facilitated the breakdown 232	

of MPs. Indeed, few studies have examined the breakdown of polymers in anaerobic 233	

digesters.  However, one pilot study investigated the effect of plastic waste on the functioning 234	

of anaerobic digestion and found that digesters from which plastic was removed, produced 235	

less gas than those to which plastic was added.47 As there is already substantial evidence of 236	

microbial breakdown of polymers through the activity of exoenzymes (promoting 237	

depolymerisation) and assimilation of smaller articles resulting in mineralisation, 49 50,51 the 238	

role of degradation by microorganisms within the AD systems should be further investigated.  239	

 240	

3.3.2 Morphological categorization and polymer identification of microplastics 241	

This study confirmed that MPs are retained in the sewage sludge and are largely composed of 242	

fibres, similar to what was found by Talvite et al.46 and Magnusson and Norén.35 243	

Approximately 75.8% of the MP consisted of fibres, followed by fragments, films, other 244	

unidentified particles, and spheres, which accounted for only 0.3% of total MP abundance 245	

(Table 3). The greatest proportion of MP fragments was found at the LS WWTPs, with Site 6 246	

being the only site to have marginally more fragments than fibres (Table 3; Figure 2). 247	

Polymers, identified by FTIR, comprised HDPE, polyethylene (PE) polyester, acrylic, 248	

polyethylene terephthalate (PET), polypropylene, and polyamide (Figure 3). Some of these 249	

contained minerals.  Although waste water derived from households generate high quantities 250	

of fibres, principally derived from clothes washing of >1900 fibres per wash1, other industrial 251	

sources of fibres such as the fibre manufacturing industry may also be important contributors. 252	

 253	
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3.3.3. Size of micrplastics 254	

Using the fitted coefficients from the GLMM, a study hypotheses of no difference between 255	

all pairwise combinations of the treatment effects were tested. At small and medium particle 256	

sizes, the LS treatment was significantly different from both TD and AD treatments (Figure 257	

4; P < 0.001; sizes classes A and C; P < 0.05 size class B). The larger number of smaller MP 258	

particles in LS samples corresponded with the larger proportion of smaller particle sizes 259	

determined from the particle size fractionation. As it was not possible to obtain pre-treatment 260	

samples, it is not possible to wholly assign the differences in size classes to the treatment 261	

processes.  However, the elevated numbers at the small size classes for LS samples are in 262	

agreement with results reported by Zubris and Richards 42 , where there was some evidence of 263	

elevated abundance of MPs at smaller size classes. Further investigations are required to 264	

investigate accelerated proliferation of MP pollution through sludge treatment processes. 265	

 266	

3.3.4 Surface morphologies of microplastics 267	

Scanning electron micrographs of surface textures of polymers entrained in the treated 268	

biosolids had some surface morphologies, which varied among treatment type. An unknown 269	

polymer fibre, which was thermally dried, had distinct blistering and fracturing, particularly 270	

in the fibre curves (Figure 5: A-C).  Additionally, polymer fragments from TD samples, 271	

identified as HDPE and PE fragments, showed wrinkling, melding and some fracturing, 272	

which was quite distinct from pre-treatment samples (Figure 6: G-I; Figure 7: D-F).  Surface 273	

morphologies of MPs originating from LS biosolids had a more shredded and flaked 274	

appearance for the unknown polymer (Figure 5: D-F) and a HDPE sample (Figure 5: D-F). 275	

Anaerobically digested samples of an unknown polymer had deep cleavage, which was 276	

distinct from any other observations (Figure 5: G-I). 277	

 278	
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4. Conclusions 279	

Although it was not possible to assign wholly the abundances or size distributions to the 280	

treatment processes, results suggest that treatment processes may have an effect. If MPs are 281	

altered by treatment, the potential for impact may also be influenced depending accordingly. 282	

This could add to the unknown risks associated with MPs in sewage sludge. Regardless of 283	

treatment regimes, over time, there may be consequences for the accumulation of MPs in 284	

terrestrial, freshwater, or marine ecosystems derived from land-spreading of sewage sludge or 285	

biosolids. 286	

 287	

Microplastics entrained in biosolids which are applied to land, may be degraded through 288	

photo-degradation and thermo-oxidative degradation49,53 exacerbating the problem of land-289	

spread MP pollution. The interaction of MPs with contaminants in the soil, could have major 290	

consequences for the absorption and transportation of contamination elsewhere. Surface 291	

weathering and the subsequent attachment of organic matter and the resulting negative charge 292	

attracts metals including cadmium, lead and zinc.53 Whether agricultural land is a sink or a 293	

source of MP pollution remains unclear.  Microplastic fibres have been found on land 15 294	

years post application, and some evidence of vertical translocation through the soil has also 295	

been found.41 Possible impacts arising from land-applied MPs begin in the terrestrial 296	

ecosystem with implications for terrestrial species such as earth worms55 and birds feeding on 297	

terrestrial ecosystems.56 As legislation in the EU and the US generally permit the land 298	

application of sewage sludge, there is a strong possibility that large amounts of MPs are 299	

emitted to freshwater, where currently little is known about their impacts on species and 300	

habitats.57 Furthermore, buffer zones around freshwater bodies, which may be stipulated in 301	

“codes of good practice”, do not take into account the mechanisms of transportation of MP 302	

vertically through the soil or with surface runoff following a precipitation event. While 303	



13	

	

legislation currently takes into account pathogens as well as nutrient and metal concentrations 304	

of treated sludge,58 it does not consider the presence of MPs within the sludge, and their 305	

associated risks. The predicted exponential growth of the plastics industry for the coming 306	

years59 may be accompanied by a significant increase in MPs in the waste stream. Therefore, 307	

vigilant management of cumulative sources of MPs such as sewage sludge or biosolids is 308	

necessary. In particular, this study has highlighted the potential for treatment processes to 309	

alter the counts of MPs which, in turn, increases the available area for absorption/desorption 310	

of organic pollutants.  311	

 312	

A review of sewage sludge treatment processes and their implications for MP pollution 313	

should be more thoroughly investigated, with before and after treatment comparisons. In 314	

particular, the role of degradation by microorganisms within the AD systems should be 315	

further investigated. Knowledge gaps regarding the factors critical for the mobilisation and 316	

transport of MPs likely to affect the pathway of land-spread sewage sludge MP pollution 317	

should to be addressed in order to determine MP flow within the terrestrial system and to 318	

freshwater systems.  Only when experimental data are acquired, can we estimate exposure 319	

and associated risks to the environment from MP pollution.  320	

 
321	

 322	

Supporting Information 323	

Detailed description of the dimensions of the elutriation column, accompanied by a 324	

photograph and schematic representation. Flow rates and technique used for extraction of 325	

MPs using the elutriation column are also included. 326	

 327	

 328	
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Table 1. Characteristics of municipal wastewater treatment sites investigated (adapted from 509	

Healy et al., 2016) 	510	

Site 

 

WWTP/ 

agglomeration 

size (PEs) 

Landfill 

leachate as % 

of influent 

BOD load  

Industrial, and domestic 

septic tank sludge1 as % 

of influent BOD load	

Type of treatment 

1A 2,362,329  <0.01  <0.01  Thermal drying, anaerobic 

digestion 

1B 284,696  0.3 24 Thermal drying 

2 179,000  unknown 30  Anaerobic digestion 

3 130,000  unknown 0.008  Thermal drying 

4 101,000  2.0 unknown Lime stabilisation 

5 31,788  0.25 unknown Lime stabilisation 

6 25,000  0.7 0 Thermal drying 

7 6,500 Unknown Unknown Thermal drying 

1 Most recent available figures in all WWTPs (2013)	511	

 512	

 513	

 514	

 515	

 516	

 517	

 518	

 519	

 520	

 521	

 522	

 523	

 524	
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Table 2. Particle size fraction (g) of lime stabilised (LS), anaerobically digested (AD) and 525	

thermally dried (TD) samples (40 g).	526	

 

Size fraction 

                         Treatment type 

LS AD TD 

> 212 µm    3.004 ± 0.550 31.753± 0.578 35.503± 0.661 

> 63 µm 27.410± 0.840 7.948± 0.7778 3.593± 0.894 

> 45 µm 9.400± 1.166 0.327± 0.241 0.930± 0.486 

< 45 µm 0.200 ± 0.213 0.000± 0.00 0.000± 0.000 

 527	

 528	

 529	

 530	

 531	

 532	

 533	

 534	

 535	

 536	

 537	

 538	

 539	

 540	

 541	

 542	

 543	

 544	

 545	

 546	

 547	
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Table 3. Breakdown of types of average microplastic abundance kg-1 (dry matter) among 548	

sites. 	549	

  Microplastic Types 
Site no. Treatment Fibres Fragments Films Spheres other 

1A TD 9,113 511 255 89 44 
1B AD 2,065 611 67 0 0 
2 TD 5,583 588 222 44 67 
3 AD 4,007 855 111 33 150 
4 TD 13,675 1,143 366 33 178 
5 LS 10,778 3,075 122 11 78 
6 LS 4,762 5,228 11 0 11 
7 TD 3,463 511 167 0 56 

Total - 53,447 12,521 1,321 211 583 

% - 78.5 18.4 1.9 0.3 0.9 
 550	

 551	

 552	

 553	

 554	

 555	

 556	

 557	

 558	

 559	
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 560	

Figure 1. Average abundances and corresponding population equivalents of microplastics at 7 561	

sites.   Sites sharing the same letter are not significantly different (Mann- Whitney-U test, p > 562	

0.005) 563	

 564	

 565	

 566	

 567	

 568	

 569	

 570	

 571	

 572	

 573	

 574	

 575	

 576	

 577	

 578	
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	579	

 580	

Figure 2.  Stereomicrograph of mircoplastics fibres (A), other (B) and fragment (C). 581	

 582	
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	598	

Figure 3.  Fourier Transform Infrared Spectroscopy (FTIR) spectra within specimen 599	

photographs of polyamide, polypropalene and Polyethylene terephthalate (PET). 600	
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	613	

	614	

	615	
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	617	

	618	

	619	

	620	

	621	

	622	

	623	

Figure 4. Abundance of microplastics in different size classes (A: 250-400 µm, B: 400-600 624	

µm, C: 600-1000 µm, D: 1000-4000 µm) as a function of treatment type. 625	
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 641	

 642	

 643	

 644	

 645	

 646	

 647	

 648	

 649	

Figure 5. Diversity in morphology and surface texture of microplastics isolated from treated 650	

sewage sludge. Scanning electron micrographs of fibrous particle from thermally dried (TD) 651	

biosolids (A-C). Multi fibrous particle from lime stabilised (LS) biosolids (D-F). Overview of 652	

non-fibrous particle from anaerobically digested (AD) biosolids (G-H). Presence of lamellae 653	

or cleavage planes (arrow heads) on microplastic surface (I). 654	
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 673	

 674	

 675	

 676	

 677	

 678	

 679	

 680	

 681	

Figure 6. Morphological and surface texture comparison between pre-treatment high density 682	

polyethylene (HDPE) and HDPE particles isolated from treated sewage sludge. Scanning 683	

electron images of pre-treatment HDPE (A-C) showing smooth non-degraded surface. 684	

Scanning electron micrographs of HDPE particle from lime stabilised (LS) biosolids (D-F) 685	

showing altered and weathered surface texture. Scanning electron micrograph of HDPE 686	

particle from thermally dried (TD) biosolids (G-I) with evidence of blistering effect (arrow 687	

heads) on polymer surface (I). 688	
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 711	
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 713	

Figure 7.  Morphological and surface texture comparison between pre-treatment polyethylene 714	

(PE) and PE particle isolated from sewage sludge. Scanning electron images of pre-treatment 715	

PE (A-C) with unaltered surface. Scanning electron micrographs of PE particle from 716	

thermally dried (TD) biosolids (D-F) showing wrinkling and fracturing of polymer surface.  717	

 718	


