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Abstract 

Due to the widespread use and durability of synthetic polymers, plastic debris occurs in the environment worldwide. 
In the present work, information on sources and fate of microplastic particles in the aquatic and terrestrial environ-
ment, and on their uptake and effects, mainly in aquatic organisms, is reviewed. Microplastics in the environment 
originate from a variety of sources. Quantitative information on the relevance of these sources is generally lacking, 
but first estimates indicate that abrasion and fragmentation of larger plastic items and materials containing synthetic 
polymers are likely to be most relevant. Microplastics are ingested and, mostly, excreted rapidly by numerous aquatic 
organisms. So far, there is no clear evidence of bioaccumulation or biomagnification. In laboratory studies, the inges-
tion of large amounts of microplastics mainly led to a lower food uptake and, consequently, reduced energy reserves 
and effects on other physiological functions. Based on the evaluated data, the lowest microplastic concentrations 
affecting marine organisms exposed via water are much higher than levels measured in marine water. In lugworms 
exposed via sediment, effects were observed at microplastic levels that were higher than those in subtidal sediments 
but in the same range as maximum levels in beach sediments. Hydrophobic contaminants are enriched on microplas-
tics, but the available experimental results and modelling approaches indicate that the transfer of sorbed pollutants 
by microplastics is not likely to contribute significantly to bioaccumulation of these pollutants. Prior to being able to 
comprehensively assess possible environmental risks caused by microplastics a number of knowledge gaps need to 
be filled. However, in view of the persistence of microplastics in the environment, the high concentrations measured 
at some environmental sites and the prospective of strongly increasing concentrations, the release of plastics into the 
environment should be reduced in a broad and global effort regardless of a proof of an environmental risk.
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Introduction
World production of plastics (i.e. synthetic organic 

polymers) has strongly expanded during the last dec-

ades, from 1.7 million t in 1950 to 299 million t in 2013. 

While the amount of plastics produced in Europe has 

been relatively constant in the last 10 years, world plas-

tic production continues to increase [1, 2]. In view of the 

large production volumes and the durability of plastics, 

it is not surprising that plastics are found in the environ-

ment. Initially, scientific and public attention focused on 

larger plastic debris. However, the occurrence of small 

plastic particles in the marine environment was already 

described in the early 1970s [3, 4]. During the last few 

years, microplastics in the environment have received 

increasing attention and are now an emerging area of 

research [5–8].

Most commonly, microplastics have been defined as 

synthetic organic polymer particles with a size (or, more 
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specifically, largest dimension)  <5  mm [6, 8–11]. �e 

majority of definitions do not include a lower size limit. 

In view of the definition of nanoscale (1–100  nm [12]), 

the term microplastics is used in this review for solid 

synthetic organic polymer particles with a size between 

100  nm and 5  mm. In studies on the occurrence in the 

environment, the upper size limit of the sampled plastics 

is not always indicated. In such cases, the term micro-

plastics is used, if it can be assumed that the sampled 

plastic items are in the size range mentioned above. In 

cases where sampling included microplastics, but the 

upper size limit of the sampled plastics is somewhat 

above 5 mm (e.g. 10 mm) the term ‘small plastic items’ is 

employed. Plastic items larger than 5 mm are designated 

as macroplastics.

In the present work, currently available information 

on sources, fate and occurrence of microplastics in the 

aquatic and terrestrial environment, on their uptake by 

aquatic and terrestrial organisms and possible effects on 

these organisms is critically evaluated.

Recently, considerable public attention has focused 

on microplastics particles from personal care products, 

which was mainly triggered by reports in news media. 

�erefore, a specific focus is placed on the contribution 

of microplastics from personal care products (defined 

and regulated as cosmetic products in the EU [13]) to the 

overall pollution of the environment with microplastics.

An effort was made to report, as far as possible, numer-

ical concentrations of microplastics for studies on occur-

rence, uptake and effects. Plastic products may contain 

a number of additives including plasticisers, stabilisers, 

flame retardants, pigments and antimicrobials [14–16]. 

Potential effects of these additives, which have been dis-

cussed elsewhere (e.g. [17]), are not addressed in this 

review.

Methods to sample, process and analyse 
microplastics in the environment
A number of methods to sample, isolate, characterise, 

identify and quantify microplastics have been devel-

oped for water and sediment. In the following sections, 

the most relevant methods are briefly presented. In view 

of the comprehensive review of Hidalgo-Ruz et  al. [11] 

and available guidance on monitoring of marine litter 

including microplastics [6], emphasis is placed on recent 

developments.

Sampling

While in some cases bulk water samples were taken (e.g. 

[18]), volume-reduced sampling methods have gener-

ally been employed to sample microplastics from water: 

neuston nets for the sea surface layer, and zooplankton 

nets for sub-surface water [6, 11, 19, 20]. Mesh width of 

the sampling nets was most commonly 300–390 µm [11]. 

�e sampling method has a strong influence on the study 

results, especially concerning the smallest microplastics, 

which require a sufficiently small mesh width or bulk 

sampling, depending on their size [21].

Samples from subtidal sediments are taken with sedi-

ment sampling equipment, e.g. grab samplers [6, 11, 

22]. For coastal sediments, direct sampling of visually 

identified microplastics (e.g. by hand or using twee-

zers) has been used. �is method can be employed to 

sample larger microplastics such as plastic resin pel-

lets (typical diameter: 3.5  mm [23]) from the surface of 

sandy beaches. However, it is not suitable for sampling 

microplastics that do not have a characteristic shape, are 

smaller than plastic resin pellets or are mixed with other 

debris [6, 11]. In these cases, bulk sampling is required 

to avoid an underrepresentation of small microplastics. 

As the distribution of microplastics on beaches is often 

heterogeneous, attention needs to be paid to sample size, 

replication and the location of the sampling sites on the 

beach [8].

Sample processing

To recover microplastics from bulk or volume-reduced 

water samples, a sieving or filtration step is commonly 

used. Alternatively, microplastics have been collected 

from the surface of the water sample using tweezers. Yet, 

there is a high likelihood of bias when visually collecting 

microplastics [11, 24]: the lowest particle size in studies, 

in which sieves were used, was smaller than in studies, in 

which particles were visually collected from the samples 

[11].

Sieving and, especially, density separation are used to 

extract microplastics from bulk sediment samples. Plas-

tic particles usually have a much lower specific weight 

(Table  1) than sediments (typically 2.65  g/cm3 [11]). 

When sediment samples are mixed with salt solution of 

an appropriate density, sediment settles at the bottom, 

while microplastics can be collected from the surface [6, 

11, 25]. Examples of such salt solutions are concentrated 

sodium chloride (density: 1.2  g/cm3), sodium polytung-

state (1.4 g/cm3), sodium iodide (1.6–1.8 g/cm3) and zinc 

chloride (1.5–1.7 g/cm3) [6, 26–29]. To separate all plas-

tic resin types from the sediment, salt solutions with a 

density  ≥1.45  g/cm3 have been recommended [26, 29]. 

Several devices are available for density separation [26–

28]. �e resultant salt solution is subjected to sieving or 

filtration.

To separate microplastics from other material recov-

ered by the abovementioned sieving, filtration or density 

separation procedures, visual sorting has in most cases 

been used. However, visual differentiation of microplastic 

particles from other debris or grains of sand is difficult 
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and only suitable for microplastics larger than approx. 

1  mm [6, 11, 22, 30]. Transparent or white particles 

require careful differentiation methods, e.g. examination 

under high magnification using a fluorescence micro-

scope to confirm the absence of cellular structures [11, 

30].

Recently, methods for chemical and enzymatic clean-

up have been developed. Treatment of samples with 

chemicals (e.g. 30–35 % H2O2, 20 % HCl, 30 % NaOH), 

partly combined with increased temperatures, has been 

used to remove organic material and calcified structures. 

However, chemical treatment may lead to a partial or 

complete degradation of microplastics [24, 26, 28, 31–

33]. For this reason, digestion with enzymes (proteinase, 

cellulase, lipase and chitinase) has been recommended 

to separate microplastics from organic material [31, 32]. 

Chemical (e.g. 69 % HNO3, 10 % KOH, 30 % H2O2) and 

enzymatic (proteinase) methods have also been used to 

extract microplastics from tissues of aquatic organisms 

and from the digestive tract content of fish [32–39].

Identi�cation and quanti�cation

Characteristics such as density and colour have been used 

to identify the polymer type of microplastics. However, 

these characteristics can be affected by weathering. As 

mentioned above, non-plastic microparticles and micro-

fibers may be wrongly classified as microplastics [11, 30, 

40]. When analysing microparticles, which had been vis-

ually classified as microplastics, with Fourier transform 

infrared spectroscopy (FT-IR), up to 70 % of the particles 

were not confirmed to be plastics [11]. Using scanning 

electron microscopy combined with energy dispersive 

X-ray spectroscopy (SEM–EDS), Eriksen al. [41] showed 

that numerous particles, which had been visually identi-

fied as microplastics, were aluminium silicates from coal 

ash and coal fly ash. Consequently, further analyses are 

required (1) to unequivocally identify microplastics and 

(2) to obtain information on their resin composition [6, 

8, 11, 24, 30, 40, 41]. �e use of infrared (IR) and Raman 

spectroscopy has been highly recommended for this pur-

pose [11, 30]. In EC [6], it is suggested that all particles 

with a size between 20 and 100  µm and 5–10  % of the 

particles with a size between 100 µm and 5 mm should 

be further analysed by IR or Raman spectroscopy. Infra-

red spectrophotometry and FT-IR are probably the most 

commonly used method to identify the chemical compo-

sition of microplastics. If coupled with microscopy they 

can be used to identify microplastics with a size >20 µm 

[6, 11, 30, 31]. Raman spectroscopy combined with 

microscopy has a higher resolution (approx. 1–2  µm 

[26, 30, 42]). Several other methods such as pyrolysis–

gas chromatography combined with mass spectrometry 

(Pyr-GC/MS), high temperature gel-permeation chro-

matography (HT-GPC) with IR detection, SEM–EDS 

and thermoextraction and -desorption coupled with GC/

MS [24, 41, 43–45] have been developed. With Pyr-GC/

MS, both the polymer composition of microplastics and 

organic additives (e.g. antioxidants and plasticisers) can 

be analysed simultaneously [24, 43].

�e abundance of microplastics is commonly indicated 

as numerical or mass concentration: (1) for the sea sur-

face layer as number or weight of items per area, (2) for 

the water column as number or weight of items per vol-

ume and (3) for sediments as number or weight of items 

per sediment area or sediment weight, referring to sedi-

ment wet (ww) or dry weight (dw) (see also Additional 

file 1: Tables S1, S2). Due to the non-standardised units 

of quantification, the comparison of different studies can 

be very difficult [11, 29, 46]. It has therefore been sug-

gested that all studies should provide sufficient informa-

tion to allow converting units, e.g. from items per area 

to items per volume [11]. Preferably, both numerical and 

mass concentration should be indicated [8].

Lower size limit of the sampled microplastics

�e lower size limit of microplastics sampled in the envi-

ronment is obviously determined by the sampling and 

processing methods. Microplastics larger than 300  µm 

were sampled in most cases from seawater and micro-

plastics larger than 500  µm from sediment [11]. When 

density separation with a subsequent filtration step is 

used, smaller particles can be retrieved from sediment. 

�e smallest microplastics sampled from sediment had 

Table 1 Densities of plastic materials that are often found 

in the aquatic environment

a Note that densities of plastic items can be modi�ed by additives and 

environmental processes such as weathering and fouling

b Based on [11, 16, 25, 109]

Plastic class Abbreviation Density 
(g/cm3)a,b

Expanded polystyrene (styrofoam) EPS 0.01–0.04

Low-density polyethylene LDPE 0.89–0.93

High-density polyethylene HDPE 0.94–0.98

Polypropylene PP 0.83–0.92

Polyethylene terephthalate PET 0.96–1.45

Polyamide (nylon) PA 1.02–1.16

Polystyrene PS 1.04–1.1

Polymethyl methacrylate (acrylic) PMMA 1.09–1.20

Polyvinylchloride PVC 1.16–1.58

Polycarbonate PC 1.20–1.22

Polyurethane PU 1.2

Alkyd – 1.24–2.10

Polyester PES 1.24–2.3

Polytetrafluoroethylene PTFE 2.1–2.3
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a diameter of 1  µm. With current state-of-the-art tech-

niques it is most likely not possible to representatively 

sample and unequivocally identify microplastics with a 

size below 1–2 µm [11, 26].

Quality control

Given that microplastics research is still in a relatively 

early stage, inter-laboratory comparisons of protocols for 

sampling, processing and analysis and certified reference 

materials are lacking [6, 8, 29, 37]. �ere is little informa-

tion on the recovery rates of different sampling and pro-

cessing methods [26]. Especially small microplastics have 

a strong tendency to adsorb to surfaces. �erefore, care 

has to be taken to avoid overlooking particles that adhere 

to the devices used to collect and process samples [11, 

26].

A further important issue is potential contamination 

of samples by particles originating e.g. from the cloth-

ing of workers, the used equipment and the ambient air. 

As far as possible, such contamination has to be reduced 

[6, 11, 26, 34, 47]. It has also been suggested that samples 

should be processed in cleanrooms or cleanroom cabi-

nets and that procedural controls should be included to 

verify contamination during sample processing [6, 11, 28, 

47–49].

Summary: methods to sample, process and analyse 

microplastics in the environment

Appropriate sampling, extraction and identification 

methods are required to representatively sample and 

unequivocally identify microplastics in the environment. 

Visual sampling and sorting of small particles (<0.5–1.0 

mm) and visual identification of microplastics are not 

considered reliable, since particles may be overlooked or 

wrongly classified as microplastics. Quality controls have 

to be included to verify the efficiency of the used meth-

ods and the absence of background contamination.

Sources of microplastics and routes of entry 
into the environment
Microplastics found in the environment are a very het-

erogeneous group of particles differing in size, shape, 

chemical composition and specific density that originate 

from a variety of different sources. �e following two 

sections provide an overview of sources of primary and 

secondary microplastics in the environment (see also 

Table  2). Primary microplastics are commonly defined 

as microplastics produced (and released to the environ-

ment) in a micro-size range; secondary microplastics 

result from the fragmentation of larger plastic materials 

[8, 50].

Primary microplastics

Microplastic particles are used as exfoliants in certain 

product segments of specific personal care products, 

such as hand cleaners, facial cleaners and toothpaste 

[51]. In the US patent for skin cleaners containing plas-

tic microparticles, polyolefin particles with a size of 

74–420 µm and an amorphous shape without sharp edges 

were described as appropriate for use as exfoliants [52]. 

�e used polyolefins include polyethylene (PE), polypro-

pylene (PP) and polystyrene (PS; for abbreviations for the 

plastic resins see also Table 1). Gouin et al. [53] estimated 

that in 2012, approx. 6  % of the liquid skin cleaning 

products marketed in the European Union, Norway and 

Switzerland contained microplastics. Based on a survey 

conducted by Cosmetics Europe, PE accounted for 93 % 

of the microplastics used in skin cleaning products in 

these countries in 2012. �e products typically contained 

between 0.05 and 12  % of microplastic particles, with 

the size of most particles ranging from 450 to 800  µm 

[53]. When analysing skin cleaners, spherical particles 

(mostly with a rough surface), threads and irregularly 

shaped particles consisting of PE and PS, and mainly hav-

ing a blue or white colour were identified [45, 51, 54–56]. 

Microplastics are also used in medical applications, e.g. 

in dentist tooth polish, and as carriers to deliver active 

pharmaceutical agents [51, 57]. After use, microplastics 

from personal care products and such medical products 

can reach the environment via wastewater.

Microplastics are also used in drilling fluids for oil 

and gas exploration and in industrial abrasives, i.e. for 

air-blasting to remove paint from metal surfaces and for 

cleaning different types of engines [55, 57–59]. Industrial 

abrasives contain e.g. acrylic, PS, melamine, polyester 

(PES) and poly allyl diglycol carbonate microplastics [41]. 

If not used in closed systems and disposed properly, they 

can end up in the environment [57].

Raw materials used for the fabrication of plastic prod-

ucts (pre-production plastics), namely plastic resin pel-

lets or flakes and plastic powder or fluff, are another 

important source of primary microplastics. �ey can 

reach the environment after accidental loss during trans-

port or with run-off from processing facilities, i.e. often 

as a result of improper handling. Similarly, residues from 

plastic processing factories and regranulate produced 

during plastic recycling can end up in the environment 

[9, 25, 58–62]. Concentrations of plastic resin pellets in 

the environment were high from the 1970s to the 1990s 

[63, 64]. Highest concentrations of pre-production pel-

lets (up to 100,000 pellets/m of beach) were often found 

on beaches close to plastic producing or processing 

sites [29, 60, 61]. In subsequent years, concentrations 
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of pre-production plastics in the environment gener-

ally declined, probably due to improved practice during 

handling [63, 65, 66]. Still, high concentrations have been 

found in some studies close to production facilities ([67–

69]; see also section “Occurrence of microplastics in the 

aquatic and terrestrial environment”).

Macroplastics as sources of secondary microplastics

Since secondary microplastics are generated when larger 

plastic materials fragment, sources of macroplastics and 

their routes of entry into the environment are considered 

in this section. It has been estimated that about 75–90 % 

of the plastic debris in the marine environment originates 

from land-based and about 10–25  % from ocean-based 

sources [25, 70]. General littering, dumping of plastic 

waste and loss from inappropriately managed landfill 

sites and during waste collection are assumed to be the 

most important routes of entry of plastic materials into 

the environment. Windblown litter is also lost from recy-

cling facilities [60, 70–72]. In this context, it should be 

noted that a large percentage of the produced plastics is 

used for packaging, i.e. for products with a short service 

life [1]. In industrialised countries, waste that is depos-

ited in landfills is usually covered regularly with soil or 

a synthetic material, and the landfill is surrounded by a 

fence to prevent that debris is blown away. However, in 

developing regions this is often not the case [71–73]. In 

addition, large amounts of plastic debris can enter the 

marine environment during natural disasters such as 

hurricanes, tsunamis and strong sea [18, 74, 75].

Low-density polyethylene (LDPE) films, which are 

used in large volumes to protect agricultural crops, sup-

press weeds, increase temperature and retain irrigation 

water in the soil (‘plastic mulching’), are a further rele-

vant source of microplastics in the environment. If these 

thin plastic foils embrittle, the fragments can end up in 

the soil [72, 76, 77]. Synthetic polymer particles, such as 

expanded PS flakes with a size of approx. 5–15 mm (Sty-

romull®) and polyurethane (PU) foam, are also used in 

horticulture to improve soil quality and as composting 

additive [78, 79].

Moreover, synthetic textiles are an important source of 

microplastics. In 2013, 54.4 million  t of synthetic fibres 

were produced worldwide with PES (44.6 million t) being 

the dominant fibre type [80]. Browne et al. [81] quantified 

the number of fibres released when washing PES blan-

kets, fleeces and shirts in domestic washing machines. �e 

washing machine effluent contained approx. 120 (blanket) 

to 300 fibres (fleece) per L. Overall, >1900 fibres were given 

off from the evaluated PES fleece during a single wash. Syn-

thetic textile fibres are also released to air and dust, either 

during normal use [57] or during tumble drying [77]. In 

addition, synthetic fibres are released from hygiene prod-

ucts, e.g. if improperly disposed into wastewater [31].

Table 2 Overview of sources for primary and secondary microplastics in the environment

Based on [9, 21, 25, 31, 53, 55, 57, 58, 60, 61, 70, 72, 75, 77–79, 81]

Primary microplastics

 Specific personal care products containing microplastics as exfoliants/abrasives

 Specific medical applications (e.g. dentist tooth polish)

 Drilling fluids for oil and gas exploration

 Industrial abrasives

 Pre-production plastics, production scrap, plastic regranulate: accidental losses, run-off from processing facilities

Secondary microplastics

 General littering, dumping of plastic waste

 Losses of waste during waste collection, from landfill sites and recycling facilities

 Losses of plastic materials during natural disasters

 Plastic mulching

 Synthetic polymer particles used to improve soil quality and as composting additive

 Abrasion/release of fibres from synthetic textiles

 Release of fibres from hygiene products

 Abrasion from car tyres

 Paints based on synthetic polymers (ship paints, other protective paints, house paint, road paint): abrasion during use and paint removal, spills, illegal 
dumping

 Abrasion from other plastic materials (e.g. household plastics)

 Plastic items in organic waste

 Plastic coated or laminated paper: losses in paper recycling facilities

 Material lost or discarded from fishing vessels and aquaculture facilities

 Material lost or discarded from merchant ships (including lost cargo), recreational boats, oil and gas platforms
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A number of other sources of microplastics in the envi-

ronment have been identified. Abrasion from car tyres 

has been considered as very relevant [46, 57]. In addition, 

many ship paints and other protective paints contain syn-

thetic polymers, e.g. alkyds, poly(acrylate/styrene), PU 

and epoxy resins. Microplastics may be released by spills 

during application of the paint, by abrasion during use of 

the painted product and during paint removal [21, 57]. 

Microplastics are also released as a consequence of abra-

sion from other plastic materials such as household plas-

tics [31, 57].

Ocean-based sources of marine litter include material 

lost or discarded from fishing vessels, aquaculture facili-

ties, merchant ships, recreational boats, offshore oil or 

gas platforms and during military activities. Cargo lost 

from merchant ships may lead to a significant input of 

plastics into the marine environment [25, 58, 60, 72, 82]. 

Although dumping of plastic wastes at sea is prohibited 

since 1988, there are indications that plastic waste from a 

considerable number of vessels has still been dumped at 

sea—mainly due to economic reasons [46, 58, 83].

Fate of microplastics in wastewater treatment 
plants
Primary and secondary microplastics as well as macro-

plastics may enter the environment through wastewa-

ter. During the primary (mechanical) treatment step 

in wastewater treatment plants (WWTPs), coarse sus-

pended or floating solids are removed from the wastewa-

ter by screens or sieves. Sand and other heavy particles 

are retained in sand traps; floating material is removed 

in grease separators [84]. Coarse screens have openings 

of approx. 20–50  mm, intermediate screens of approx. 

10–20  mm and fine screens of approx. 2–10  mm [84, 

85]. Such screens are suitable for removing macroplas-

tics from wastewater [72, 86, 87], while they will—based 

on the opening sizes mentioned above—not be able to 

capture smaller microplastics. Still, microplastics may 

be captured, if other materials are clogging the screens. 

Mintenig et al. [31] suggested that buoyant microplastics 

may be removed in the grease separating step. Micro-

plastics with a high density such as PU can be expected 

to sediment and, thus, to be captured in the sand trap or 

with the sludge.

To date, only relatively few (often preliminary) stud-

ies are available on the effectivity of WWTPs to remove 

microplastics from wastewater, and on microplastic levels 

in WWTP effluents and sludge. In none of these studies, 

personal care products were unambiguously identified as 

source of the detected microplastics. �is is due to the 

facts that (a)  microplastics used in personal care prod-

ucts mostly consist of PE [53], the most widely used plas-

tic resin [2], and (b) the often amorphous, irregular form 

of microplastics originating from such products is not 

typical enough to allow an identification of their source.

Effluents of two Australian WWTPs with tertiary 

treatment contained on average 1 microplastic item/L 

as identified by FT-IR. Polyester, acrylic and polyam-

ide (PA) fibres were most frequently found [81]. Higher 

numbers were found in effluents from a German munici-

pal WWTP (on average 33 granules/L, 24 fragments/L 

and 24 fibres/L [88]) and from three Dutch WWTPs (on 

average 55 microplastics/L [89]). However, in these two 

studies microplastics were only identified by visual analy-

sis. In a Dutch pilot study, Leslie et al. [90] investigated 

microplastic concentrations in influent and effluent of a 

WWTP. With approx. 200 items/L in the WWTP influ-

ent and 20 items/L in the effluent of the activated sludge 

treatment, removal efficiency of the WWTP was approx. 

90  %. A preliminary study was also performed in the 

central WWTP of St. Petersburg (Russia). Presumptive 

microplastic particles and fibres were identified by light 

microscopy. Approximately 95  % of fibres and particles 

present in WWTP influent were removed during waste-

water treatment. �e WWPT effluent contained on aver-

age 16 textile fibres, 7 coloured particles and 125 black 

particles/L [91].

A more comprehensive study was performed by Mint-

enig et  al. [31] for 12 German WWTPs. Microplastics 

(0.02–5 mm) were analysed in WWTP effluents (sampled 

before final filtration, where present) and sewage sludge. 

Microplastics were identified by FT-IR or micro-FT-IR. 

In the WWTP effluents, 0.08–8.9 microplastic particles 

with a size <500 µm were detected per L. Particles with 

a whitish/transparent colour and an irregular and, partly, 

foil-like form were most common. �e most frequently 

detected polymers were PE, polyvinyl alcohol, PES, PS 

and PA. �e number of microplastic particles  >500  µm 

ranged from 0 to 0.05 per L of effluent. Again, most par-

ticles had an irregular, partly foil-like shape. PE and PP 

were the most frequently found polymers. Plastic fibre 

content of the effluents ranged from 0.1 to 4.8 fibres/L. 

Effluent from one WWTP equipped with a final filtration 

step was also sampled after filtration. Filtration removed 

all microplastic particles >500 µm, 93 % of the microplas-

tic particles <500 µm and 98 % of the microplastic fibres. 

Sewage sludge contained 1041–24,129 microplastic par-

ticles/kg dw (fibre content was not analysed). Since single 

samples were investigated for each WWTP and matrix 

and small subsamples were evaluated for sludge, Mint-

enig et al. [31] point out that their results should be con-

sidered as indicative values.

Size and form of microplastic fibres in sewage sludge 

can be affected during sludge stabilisation, e.g. as a con-

sequence of mechanical mixing, increased temperature 

and increased pH [92, 93]. Sewage sludge is incinerated, 
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disposed of in landfills or used to fertilise agricultural 

land [93], i.e. can represent a source of microplastics for 

the terrestrial environment. Microplastics may remain 

in the soil, be mobilised and distributed by wind, or be 

transported with surface run-off to the aquatic environ-

ment [31, 77, 94, 95]. When sewage sludge is disposed 

into oceans, microplastics directly reach the aquatic 

environment. In most industrialised countries, ocean dis-

posal of sewage sludge is prohibited. However, in some 

countries sewage sludge is still disposed at sea [96].

During heavy rainfall events, sewer overflow may 

occur, i.e. untreated wastewater may reach the environ-

ment. Sewer overflow events have been assumed to be 

relevant with regard to the entry of microplastics into 

the environment [46, 72]. Furthermore, untreated sewage 

is in many regions of the world directly discharged into 

the receiving waters [82]. In the OECD countries, waste-

water of approx. 80 % of the population is discharged to 

WWTPs [97]. However, worldwide only about 15–20 % 

of wastewater is treated [98].

Relevance of di�erent sources of microplastics 
in the environment
In most cases, it is not possible to derive conclusions on 

the origin of microplastics when evaluating and charac-

terising their occurrence in an environmental compart-

ment. So far, the contribution of specific sources has only 

been identified for microplastics with a typical and dis-

tinct size and shape. Examples include pre-production 

plastic resin pellets, especially if released by localised 

spills [60, 63, 99, 100], and styrofoam particles found 

close to intensive aquaculture facilities, where styro-

foam buoys and floats are used [8, 101, 102]. By contrast, 

microplastics from personal care products lack such 

distinct characteristics that would allow an unequivocal 

identification of their source as has been discussed in the 

previous section.

Based on produced or consumed amounts, estimates 

have been derived on the contribution of various sources 

to the overall amount of microplastic debris in the envi-

ronment. However, such estimates are hampered by the 

complexity of the sources of micro- and macroplastics, 

the lack of quantitative data on transport and fate in the 

environment (see next section), and the high geographic 

variability of the relevance of different sources and intro-

duction routes, which is caused by differences in the 

infrastructure, especially with regard to waste manage-

ment [70, 72, 73, 99, 103].

Consequently, quantitative information on the con-

tribution of different sources to the overall amount of 

macro- and, especially microplastics in the environment 

is generally lacking [8, 104, 105]. �ere are, e.g. no reli-

able estimates of the percentage of plastic packaging 

material reaching the marine environment [25]. Given 

the large amount of macroplastics entering the environ-

ment, it is generally assumed that most microplastics in 

the environment are secondary microplastics, i.e. a result 

of weathering of larger plastic debris [11, 25]. However, 

fragmentation rates of macroplastics are largely unknown 

[57, 59, 99]. As a result, no quantitative information is 

available on the relative contribution of primary and sec-

ondary microplastics to the overall amount of microplas-

tics in the environment [50].

A first estimate of the relative contribution of micro-

plastics from personal care products to the plastic debris 

entering the North Sea has been provided by Gouin et al. 

[53]. Based on sales data for liquid skin cleaning prod-

ucts and the estimates that (a) 6 % of liquid skin clean-

ers contains microplastic particles and (b) these products 

contain 10  % of microplastics, a mean annual amount 

of 4130  t of microplastic particles was derived for the 

European Union, Norway and Switzerland for 2012. �is 

value is consistent with the result of the previously men-

tioned survey of Cosmetics Europe (4360 t for the same 

region and year). For the countries in the watershed of 

the North Sea (Norway, Denmark, Germany, Belgium, 

�e Netherlands, France, Switzerland, Czech Republic 

and the UK), annual use of microplastics in personal care 

products was estimated to be 2,300 t. Assuming removal 

of 90  % of the microplastics in WWTPs [90] and dis-

charge of all water from these countries to the North Sea, 

microplastics from personal care products would consti-

tute approx. 1 % of the overall amount of marine debris 

that has been estimated to enter the North Sea each year 

(20,000 t [106]). Since it is not specified how the amount 

of 20,000 t was estimated (see also [107]), the abovemen-

tioned information on the relative contribution of micro-

plastics to the overall amount of plastic debris in the 

North Sea should be considered as a very rough estimate.

Sundt et al. [57] evaluated the most relevant sources for 

direct release of microplastics to the Norwegian environ-

ment. Such ‘primary sources’ of microplastics exclude 

macroplastic litter, but include abrasion of microplastics 

(e.g. from paints and tyres), i.e. are not confined to pri-

mary microplastics as defined in the present review. As 

far as possible, first estimates were provided for annually 

released amounts. �ese amounts are upstream or ‘start 

of the pipe’ amounts; transport processes are not consid-

ered. �e estimated annually used amount of microplas-

tics in personal care products (40 t) is in good agreement 

with the estimate of Gouin et al. [53] for Norway (43 t). 

According to Sundt et  al. [57] microplastics from per-

sonal care products account for approx. 0.5 % of all direct 

emissions of microplastics in Norway. Other sources 

such as losses of pre-production plastics during transport 

and spills (approx. 5 %), abrasion from ship paints, other 
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protective paints, house and road paints (approx. 17 %), 

release of textile fibres during household and commercial 

laundry (approx. 8 %) and, especially, abrasion from tyres 

(approx. 54  %) were considered more relevant. Sundt 

et  al. [57] assumed that macroplastic litter substantially 

contributes to the overall release of microplastics to the 

Norwegian environment. However, the available data 

were not considered sufficient for deriving estimates of 

this contribution. First estimates were only provided 

for annual amounts of three types of macroplastic litter 

in Norway: plastic waste from fisheries and aquaculture 

(>1000  t), littered plastic bags (60  t) and macroplastics 

released during sewer overflow events (460 t). Estimates 

derived for Germany and Denmark also indicate that per-

sonal care products are a minor source of microplastics 

in the environment and that other sources such as the 

fragmentation of plastic debris and abrasion from tyres 

are more relevant [51, 59]. For Denmark, emissions of 

microplastics from personal care products to the aquatic 

environment were estimated to account for 0.1 % of the 

overall emissions to the aquatic environment [51].

Recently, a number of companies producing personal 

care products have announced a phase-out of micro-

plastic particles in their products. In addition, several 

US states have banned the manufacture and sale of per-

sonal care products containing microplastic particles [53, 

57, 59, 108, 109]. It can thus be assumed that at least for 

Europe and the USA emissions from personal care prod-

ucts will decrease in the near future. However, the issue 

of microplastics in the environment will certainly not be 

solved by these actions, since primary microplastics from 

this source only contribute a small percentage based the 

rough calculations mentioned above.

Fate of macro- and microplastics  
in the environment
Once released into the environment, plastic material can 

be transported by wind, washed from land to surface 

waters during rainfall, especially with stormwater run-

off, and be transported in freshwater and seawater [61, 

63, 72]. It is assumed that large rivers transport consider-

able amounts of macro- and microplastics to the oceans, 

but few quantitative data are available [96, 110–112]. For 

macroplastics, transport by wind to the oceans may be 

significant, especially since approx. 50  % of the human 

population live within 80  km distance from the sea [9]. 

Airborne transport might also be relevant for very small 

microplastics, which could e.g. be mobilised from uncov-

ered landfills [77].

Fate in the aquatic environment depends on the den-

sity: plastics with a lower density than freshwater (approx. 

1.0 g/cm3) or seawater (approx. 1.03 g/cm3) are buoyant, 

those with a higher density are submerged [25]. Most 

consumer plastic materials (including PE) are buoyant in 

seawater (Table 1). In aquatic environments, plastics are 

often colonised by a variety of organisms. �is fouling 

can increase the density so that formerly buoyant items 

sink below the water surface. If other organisms graze on 

the foulants, density of a plastic item can decrease again 

so that it returns to the water surface [25, 71]. Erosion of 

plastics may also change their specific density [66], and 

mixing of the upper water layer by wind may lead to sub-

mersion of previously buoyant microplastics [19].

Given that plastic is persistent (see below) it can be 

transported over long distances, depending on local 

winds, ocean currents and geography of the coastline [11, 

71]. Floating plastic debris accumulates on beaches and 

in oceanic gyres, benthic debris on the sea bed in areas 

with low circulation [9, 11, 71]. �e transport of micro-

plastics in surface waters may differ from that of macro-

plastics, because smaller particles at the water surface 

are less exposed to wind. Distribution of microplastics 

may also be affected by particle aggregation and activity 

of animals [113, 114]. On beaches and in subtidal sedi-

ments, microplastics can be covered by sediment [11] 

and, hence be found at considerable depth [115].

So far, little is known on the transport of microplastics 

within the terrestrial environment. Rillig [77] assumed 

that terrestrial organisms such as earthworms and moles 

contribute to the incorporation of micro- and macroplas-

tic material into the soil.

Disintegration of common polymers such as LDPE, 

high-density polyethylene (HDPE) and PP in the envi-

ronment is mainly initiated by UV radiation. As a result 

of this photo-oxidative degradation, the plastic becomes 

brittle and fragments. Disintegration is facilitated by 

increased temperatures, but reduced by stabilisers, low 

temperature, low oxygen levels and by fouling or coverage 

with water or sediment reducing exposure to UV radia-

tion. Hence, photo-oxidative disintegration of plastics is 

relatively effective on a beach surface, but extremely slow 

in the deep ocean [25, 71, 116] and for plastics buried in 

beach sediment or soil [72, 82]. Water turbulences, wave 

action, physical abrasion and freeze–thaw cycles add to 

the disintegration of the plastics [116]. In addition, the 

boring activity of isopods substantially contributed to the 

fragmentation of expanded polystyrene (EPS) floats used 

in aquaculture facilities and docks [117]. Similarly, soil 

organisms that ingest plastic debris together with earth 

could contribute to the fragmentation of the plastics [77].

During disintegration of the polymer matrix, particles 

of different sizes and shapes are formed [11, 71, 72]. Note 

that strongly weathered, brittle plastic material still con-

sists of polymers with a mean molecular weight of tens 

of thousands g/mol, which are not biodegraded to con-

siderable extent under relevant environmental (especially 
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marine) conditions [25]. Based on the data available so 

far, mineralisation of plastics appears to be an extremely 

slow process [25, 116]. For example, sheets of LDPE, 

HDPE and PP that had been immersed for 6 months in 

sea water only lost 1.5–2.5 % (LDPE), 0.5–0.8 % (HDPE) 

and 0.5–0.6  % (PP) of their initial weight [118]. Conse-

quently, estimates of the lifetime of plastics are in the 

range of hundreds of years [9, 71]. It has therefore been 

assumed that all conventional plastic, which has entered 

the environment, is still present in the environment, 

either in an unfragmented or in a fragmented form [74].

Occurrence of microplastics in the aquatic 
and terrestrial environment
Marine environment

Triggered by the detection of unexpectedly high levels 

of microplastics in oceanic convergence zones (e.g. [3, 

25, 119]), the occurrence of microplastics has mainly 

been investigated in the marine environment (including 

shorelines). Microplastics have been found in the oceans 

worldwide [71, 120], including remote regions such as 

Antarctica and the deep sea [58, 121–124]. �e distribu-

tion of microplastics in the oceans is very heterogeneous. 

High concentrations have been found close to indus-

trial centres and metropolitan areas [22, 58, 110, 125], 

in enclosed or semi-enclosed seas such as the Caribbean 

and the Mediterranean Sea and in gyres [8, 64, 71, 126].

Clear increases in the abundance of microplastics in 

seawater have been found over larger temporal scales. 

�ompson et  al. [127] evaluated archived plankton 

samples collected with continuous plankton recorders 

in the northeast Atlantic at 10  m depth. Samples were 

examined microscopically and unusual fragments were 

identified by FT-IR. �e concentration of microplastics 

significantly increased from the 1960s and 1970s (approx. 

0.01 items/m3) to the 1980s and 1990s (approx. 0.04–0.05 

items/m3). Based on published data and own investiga-

tions using a manta trawl and visual identification of 

microplastics Goldstein et  al. [128] evaluated temporal 

changes in microplastic levels in the surface layer of the 

North Pacific gyre. �ey found that between 1972–1987 

and 1999–2010 the median numerical concentration of 

microplastics had increased by a factor of approx. 140 

(from 0.003 to 0.425 items/m3) and the median mass 

concentration by a factor of 1000 (from 0.003 to 3  mg/

m3). Law et al. [20] re-analysed the temporal trend using 

a combined dataset including the data of Goldstein et al. 

[128] and their own data obtained by sampling using 

neuston nets and visual identification of small plastic 

items (typically mm-sized; see Additional file  1: Table 

S1). To reduce the bias, which is caused by an increased 

sampling frequency in areas with high plastic levels in 

recent years, they calculated average concentrations 

of small plastic items for each 1°  ×  1° (latitude × lon-

gitude) area. On the basis of these data, Law et  al. [20] 

concluded that both mean and median numbers of small 

plastic items in the surface layer of the North Pacific gyre 

increased by a factor of approx. 10 between 1972–1985 

and 2002–2012. It is controversially discussed if the 

increasing trend has continued since the 1990s [20, 65, 

71, 128, 129]. Due to large spatial and temporal variabil-

ity in the concentrations of microplastics, it is difficult to 

detect smaller increases [19]. High variability of the levels 

of small plastic items at a smaller scale (i.e. within tens 

of km) is caused by local wind-driven turbulences and 

local circulation patterns [20]. Higher concentrations in 

the sea surface layer are e.g. measured during low-wind 

conditions [19, 126]. Temporal variability can be high, 

e.g. due to variations in oceanic circulations related to El 

Niño events [71, 99]. Due to the embrittlement and frag-

mentation of larger plastic items present in the oceans, it 

has been predicted that the overall abundance of micro-

plastics will increase in the future [25, 71, 99, 120].

In the following, an overview is provided of the con-

centration ranges of microplastics in the marine environ-

ment (including estuaries) that is based on the review of 

Hidalgo-Ruz et al. [11] and selected recent publications. 

�e compiled data shall primarily serve as background 

information when evaluating the environmental rel-

evance of test concentrations in studies on uptake and 

effects of microplastics. For this reason, main focus is 

placed on studies reporting numerical concentrations per 

water volume, sediment weight or sediment volume. As 

outlined above, most data on the occurrence of micro-

plastics in the marine environment have been obtained 

using visual selection and often also visual identifica-

tion of microplastics [11]; the results of quality controls 

are only reported in some cases (e.g. [49, 110, 123]). 

Although data obtained by visually selecting and/or iden-

tifying small microplastics should be considered with 

care, they provide a first impression on the abundance 

of microplastics in marine systems and were, thus, not 

excluded from the present review. However, an attempt 

was made to especially include recent publications using 

state-of-the-art sampling, extraction and identification 

techniques (see Additional file  1: Table S1 for informa-

tion on the used methods).

As most consumer plastics are at least initially buoy-

ant in seawater, the abundance of microplastics in the 

sea surface layer, the upper approx. 20  cm of the water 

column, was addressed in many studies. Buoyant micro- 

and macroplastics have been found to accumulate in 

the North Atlantic, South Atlantic, North Pacific, South 

Pacific and Indian Ocean gyre [65, 119, 128–130]. In the 

North Pacific gyre, mean abundance of visually identified 

plastic items (0.33  items/m2, mostly fragments, plastic 
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films and fibres with a size <5 mm) in 3 out of 11 samples 

was found to be higher than plankton abundance [119]. 

Based on the review of Hidalgo-Ruz et  al. [11] and the 

evaluated recently published studies (Additional file  1: 

Table S1), concentrations of microplastics in the sea sur-

face layer range from 0 to 12.3 items/m2 [20] and from 0 

to approx. 8700 items/m3 (i.e. 8.7 items/L [11]). A much 

higher abundance of synthetic polymer particles was 

found in the sea surface microlayer, i.e. the upper 1 mm 

of the water column (Additional file  1: Table S1). Mean 

abundance was 195  items/L for paint particles, mainly 

alkyd and poly(acrylate/styrene) polymers and 16 items/L 

for non-paint microplastics [21].

In the water column below the sea surface layer, con-

centrations of microplastics can be expected to be lower 

than at the water surface. According to the evaluation of 

Hidalgo-Ruz et  al. [11], concentrations of microplastics 

in the water column ranged from 0.014 to 12.5  items/

m3. Considerably higher concentrations were detected 

in a recent study [18] in the north-eastern Pacific and 

close to the coast of British Columbia (Canada). Con-

centrations of microplastics in seawater sampled from 

a depth of 4.5 m ranged from 8 to 9180  items/m3. �ey 

were lowest at offshore sites in the north-eastern Pacific 

(mean: 279 items/m3) and higher at nearshore sites 

(1710–7630 items/m3). Approx. 75 % of the microplastics 

were fibres; the percentage of fibres increased near the 

shores. As noted by the authors, fibre content was under-

estimated: brightly coloured brittle fibres were observed 

in most samples, but could not be quantified since they 

were eliminated during acid digestion. High concentra-

tions of microplastics (0.5  mm to approx. 5  mm) were 

also found in the Yangtze estuary in China [131]. In water 

samples collected at 1  m depth, the average concentra-

tion of microplastics was 4137 items/m3.

Coastal and, especially, subtidal sediments appear to 

be sinks for microplastics [89, 115, 123]. As pointed out 

by Hidalgo-Ruz et  al. [11] microplastic concentrations 

in sediments tend to be much higher than those in the 

sea surface layer and in the water column. Microplastics 

have been detected in coastal sediments (in most cases 

beaches) around the world [81, 99]. At some sites, they 

accounted for 80 % of the intertidal plastic debris [132].

Microplastic levels vary greatly between beaches. 

Claessens et al. [110] and Van Cauwenberghe et al. [105] 

evaluated microplastics (≤1  mm) on Belgian beaches. 

Claessens et al. [110] recorded an average concentration 

of 93 items/kg sediment dw with plastic fibres accounting 

for 88 % of the microplastics, granules for 7 % and plas-

tic films for 5  %. Van Cauwenberghe et  al. [105] found 

a mean concentration of 13  items/kg sediment dw. In 

both studies, highest microplastic levels were observed 

at the high tide line, where resuspension of particles 

during flooding occurs less frequently. In sediments from 

a beach on the East Frisian Island Norderney (Germany), 

levels of microplastic particles (<1 mm) were low (mean 

values: 1.7, 1.3 and 2.3 particles/kg sediment dw). Due to 

background contamination with fibres, fibre content of 

the sediment was not evaluated [49].

Much higher concentrations of microplastics (at 

least 2 dimensions  <5  mm) were found on beaches of 

three Canary Islands [133]. �ey ranged from 1 to 30 

(Fuerteventura), <1–109 (Lanzarote) and <1–90 g/L sedi-

ment (La Graciosa). Low microplastic levels were found 

on rocky shores and on beaches being completely sub-

merged at high tide (i.e. offering no space for deposition 

of plastics). Highest levels were recorded on the north-

ern coasts, which are reached by currents likely to trans-

port plastic debris. Carson et  al. [134] detected partly 

extremely high levels of small plastic particles (<10 mm) 

on southern Hawaii, on two beaches located close to the 

North Pacific subtropical convergent zone. Kamilo beach 

sediment contained on average 1.3 % (w/w) of small plas-

tic particles. More than 50 % of the particles were found 

in the upper 5 cm of the sediment, which contained on 

average 3.3 % (w/w) of small plastics (the maximum value 

was 30  %). At Waikapuna beach, mean plastic content 

was 0.03 %. Again, most plastic occurred in the top 5 cm 

of the beach, where plastic content was 0.1 %. �e plas-

tic particles analysed by FT-IR mainly consisted of PE 

(85  %) and PP (14  %). Elevated concentrations of small 

plastic particles (mean: 805 items/m2) were also found 

on beaches on the Easter Islands [101]. Lee et  al. [102] 

recorded high microplastic levels (mean values: 8205 

items/m2 before and 27,606 items/m2 after the rainy sea-

son) on South Korean beaches close to the estuary of the 

Nakdong River, which flows through a densely populated 

metropolitan area.

Microplastic levels in subtidal sediments from har-

bours, coastal and offshore areas of the Belgian conti-

nental shelf were investigated by Claessens et  al. [110]. 

Harbour sediments contained significantly more micro-

plastics (mean: 167  items/kg sediment dw) than coastal 

(92  items/kg sediment dw) and offshore sediments 

(105  items/kg sediment dw). In harbour sediments, 

fibres accounted for 40  % of the microplastics, granules 

for 34  %, plastic films for 4  % and PS spheres for 22  %. 

Microplastics in coastal and offshore sediments consisted 

of 68 % fibres, 30 % granules and 2 % plastic films. High 

concentrations in harbour sediments were thought to 

be related to local input and to the fact that the studied 

harbour areas were partly enclosed. �e analysed fibres 

consisted of PA, polyvinyl alcohol and PP, the granules of 

PS, PE and PP. Concentrations of microplastics (<1 mm) 

in sediments sampled at approx. 1 m depth in the Lagoon 

of Venice (Italy) were studied by Vianello et  al. [22]. 
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Levels of microplastics ranged from 672 to 2175 items/

kg sediment dw. �ey were higher in the inner area of 

the lagoon, where water currents were low (i.e. more 

sedimentation occurred). Most microplastics consisted 

of PE (48 %) or PP (34 %). Irregularly shaped fragments 

accounted for 86  % of all microplastics, fibres for 11  %, 

films for 2 % and pellets/granules for 1 %.

In an early study using polarised light microscopy and 

semi-quantitative evaluation, Habib et  al. [92] found 

that abundance and size of textile fibres in subtidal sedi-

ments decreased with increasing distance from a WWTP. 

Browne et al. [81] sampled subtidal sediments from two 

sites, where sewage sludge had been disposed, and two 

reference sites (Additional file  1: Table S1). Although 

disposal of sewage sludge had been stopped more than 

10  years before, the former disposal sites contained 4 

times (North Sea) and 2.5 times (English Channel) more 

microplastics than the reference site.

Microplastics were also detected in deep sea sedi-

ments, e.g. in the northeast North Atlantic and south-

west Indian Ocean and in the Mediterranean Sea at water 

depths between 300 and 3500  m [123]. �e sediments 

contained 28–800 microplastics/L. Notably, exclusively 

fibres were found. Likewise, fibres were the dominant 

type of microplastics found in sediments from the Kuril-

Kamchatka Trench (northwest Pacific) at water depths 

of 4869–5766 m. In addition, paint chips and fragments 

were recorded. �e microplastics did not only occur in 

the upper 2 cm of the sediment, but also in deeper sedi-

ment layers [124].

Freshwater environment

So far, there are only relatively few studies on microplas-

tics in the freshwater environment. �ese studies have 

focused on larger rivers and lakes, while there are no data 

on the occurrence of microplastics in smaller streams or 

lakes [72, 95, 111].

During a 2-year survey, Lechner et  al. [68] evaluated 

the abundance of small plastic items (0.5–20 mm) in the 

surface layer of River Danube between Vienna (Austria) 

and Bratislava (Czech Republic). In 2010, mean concen-

tration of small plastic items was 0.938 items/m3; 86 % of 

these items were pre-production plastics. In 2012, plastic 

abundance was much lower (0.055  items/m3); pre-pro-

duction plastics accounted for 31  % of these items. �e 

high levels of pre-production plastics in 2010 were appar-

ently caused by leakages in the pipe system of a plastic 

producer and by a strong rain event, during which pel-

lets were washed into the Danube [135–137]. Recently, 

a similar mean microplastic concentration (0.29  items/

m3) was derived for the surface layer of the River Rhône 

[138]. �e microplastics mainly consisted of fragments 

(40 %), foams (37 %) and fibres (14 %). A clear effect of 

a municipal WWTP on microplastic levels was dem-

onstrated in North Shore Channel (Chicago, USA). 

Mean microplastic concentration in the surface layer 

increased from 1.94 items/m3 upstream of the WWTP to 

17.93 items/m3 downstream of the WWTP [139]. In sedi-

ments from St. Lawrence River (Canada), plastic granules 

with diameters of 0.4–2.2 mm and mainly grey or black 

colour were detected. Based on their melting point, it 

was assumed that the granules consist of PE. Personal 

care products were mentioned as possible source. How-

ever, highest concentrations (136,926  items/m2) were 

found in the effluent canal of a nuclear power plant, while 

concentrations at the other nine sampling sites ranged 

from 0 to 243 items/m2 [140]. �is suggests that the gran-

ules may originate from a source other than personal care 

products that remains to be identified.

In a preliminary study of microplastic (0.3–5  mm) 

levels in the surface layer of Lake Geneva (Switzer-

land), a microplastic concentration of 0.048  items/m2 

was derived [141]. A similar mean microplastic level 

(0.091 items/m2) was determined in six lakes located (or 

partly located) in Switzerland [138]. Fragments, foams, 

films and fibres were dominant. Microplastics (0.355 to 

approx. 5 mm) were also analysed in three of the Great 

Lakes: Lake Superior, Lake Huron and Lake Erie [41]. 

�e mean concentration in the surface layer of these 

lakes was 0.043 items/m2; 81 % of all microplastics had 

a size  ≤1  mm. �e highest microplastics levels (0.463 

items/m2) were detected in Lake Erie, downstream of 

the cities of Detroit, Cleveland and Erie. Fragments, pel-

lets and foams were found most frequently. �e parti-

cles also included green, blue and purple spheres, which 

had a similar size, shape, colour and elemental compo-

sition as microbeads from facial cleansers analysed by 

Eriksen et al. [41]. However, more specific information 

on the abundance of the coloured spheres in the surface 

layer from the Great Lakes is not provided. Only slightly 

lower levels of microplastics (0.355  mm to approx. 

5 mm) were recorded in the surface layer of Lake Hov-

sgol, a large mountain lake in northern Mongolia [103]. 

Fragments, films and lines/fibres were the dominant 

items. �e average microplastic concentration was 

0.0203 items/m2. Around the lake, there is no industry, 

and population density is low. Free et al. [103] assumed 

that the complete lack of a waste management system 

(waste is burned, buried or dumped) and of wastewater 

treatment are the causes for the relatively high micro-

plastic levels. Microplastic concentrations were high-

est in the most populated and most touristic part of 

the lake. A parallel survey of macroplastic showed that 

household plastics (plastic bottles and bags) and fishing 

gear were the dominant macroplastic items at the lake 

shores.
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In sediments sampled at the shores of the rivers Rhine 

and Main in Germany, microplastic concentrations of 

228–3763 items/kg dw (River Rhine) and 786–1368 

items/kg dw (River Main) were recorded with PE, PP and 

PS being the dominant polymers [112].

Imhof et  al. [142] evaluated levels of microplastics 

(<5 mm) in sediment samples from two beaches of Lake 

Garda (Italy). Microplastic concentration was much 

higher at the northern (1108 items/m2) than at the south-

ern lake shore (108 items/m2). �is difference was attrib-

uted to the prevailing wind direction and the resulting 

water circulation. PS, PE and PP particles were most fre-

quently found. With regard to the smallest microplastics 

(<500  µm), PA and polyvinyl chloride (PVC) were also 

relevant. Most particles were classified as fragments; 

signs of degradation/fragmentation were identified by 

SEM. At beaches of six lakes in Switzerland, microplastic 

levels ranged from 20 to 7200 items/m2. Foam, fragments 

and fibres were found most frequently [138].

Terrestrial environment

Although microplastics obviously enter the terrestrial 

environment (e.g. due to littering and application of sew-

age sludge to land) and soils have been assumed to be a 

sink for microplastics, there are only extremely few data 

on microplastic concentrations in the terrestrial envi-

ronment [71, 72, 77]. It was suggested to use synthetic 

fibres as indicators of previous sludge application to land 

[92, 93]. Using polarised light microscopy, Zubris and 

Richards [93] showed that up to 15  years after sludge 

application, levels of plastic fibres in soil of a long-term 

experimental field site clearly exceeded levels at control 

sites.

Summary: occurrence of microplastics in the aquatic 

and terrestrial environment

As a consequence of their persistence and long-range 

transport, microplastics are ubiquitous in the marine 

environment. Notably, beaches (where extremely high 

levels have been recorded at some cases) and subtidal 

sediments appear to be sinks for microplastics. Based on 

first investigations, microplastic levels in large rivers and 

lakes are similar to those in the marine environment. �e 

occurrence of microplastics in smaller streams and lakes 

and, especially, in the terrestrial environment remains to 

be investigated.

In aquatic environments, fibres, fragments, granules, 

films and styrofoam particles are the most commonly 

found particle types, while PE, PP and PS are the most 

frequently found polymers. Due to the lack of distinct 

characteristics, it is generally not feasible to unequivo-

cally identify personal care products as source of micro-

plastics detected in the environment.

Uptake of microplastics by organisms in the 
environment and trophic transfer
Due to their low size, microplastics are ingested by a 

variety of species ranging from protozoans to marine 

mammals [7, 75, 143, 144]. �eir uptake depends on 

properties such as size, shape, density and colour. For 

instance, low-density (i.e. buoyant) microplastics are 

ingested by pelagic filter feeders, high-density microplas-

tics by benthic deposit feeders [7, 132, 145]. Many filter 

feeding and deposit feeding organisms are indiscriminate 

feeders: they capture food of a suitable size without fur-

ther selection [9]. �e following four sections provide an 

overview of uptake, translocation within the body, excre-

tion and trophic transfer of microplastics as investigated 

in laboratory studies with aquatic organisms. Afterwards, 

field studies with aquatic organisms and studies with ter-

restrial organisms are discussed.

Uptake by aquatic organisms

In laboratory experiments, ingestion of microplastics has 

been demonstrated for a number of marine invertebrates 

including ciliates, cnidarians, rotifers, annelids, copep-

ods, cladocerans, amphipods, mysids, euphausiids, bar-

nacles, mussels and tunicates [8, 127, 145–147] and fish 

[148]. For example, Lee et al. [149] investigated the uptake 

of nano- (50 nm) and microsized (0.5 and 6 µm) fluores-

cently labelled PS spheres by the copepod Tigriopus japoni-

cus. Copepods were exposed for 24  h to concentrations 

of 9.1 × 1014 (50 nm), 9.1 × 1011 (0.5 µm) and 5.3 × 108 

items/L (6  µm). Spheres of all three sizes were detected 

in the gut of the copepods. In the marine amphipod 

Allorchestes compressa, which had been exposed for 72  h 

to a very high concentration (100 g/L) of PE microplastics 

(11–700 µm), on average 19 particles per amphipod were 

detected [150]. Ingestion of microplastics was also dem-

onstrated in larvae of the sea urchin Tripneustes gratilla 

held for 5  d at concentrations of 103–3 ×  105 items/L of 

fluorescent PE microspheres (10–45  µm). At the highest 

concentration up to 31  % of sea urchin larvae contained 

microplastics in their stomachs, at the lowest concentration 

up to 5 % (on average 1–2 microspheres per larva; [151]).

In addition to being ingested, small microplastics might 

also be taken up via the gills [8]. For mussels, it has been 

suggested that uptake via the gill surface (endocytosis) 

may be relevant for smaller microplastics, while larger 

particles are taken up via the digestive system ([152], see 

next section for further details on this study). In shore 

crabs (Carcinus maenas) exposed to PS microspheres 

(8–10  µm), exclusively via the ventilation route, micro-

spheres were detected on the gill surface but not in the 

gill tissue [153].

Uptake of microplastics by freshwater organisms has so 

far only been addressed in relatively few studies. As to be 
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expected, the available data show that microplastics are 

also ingested by freshwater organisms. Fluorescent PS 

microparticles (1 µm) were ingested by protozoans (Par-

amecium sp.) and Daphnia sp. [144]. Nano- (20 nm) and 

microsized (1 µm) fluorescent carboxylated PS spheres 

were taken up by neonates and adults of Daphnia magna 

[154]. Ground fluorescent polymethyl methacrylate par-

ticles (approx. 30  µm) were ingested by D.  magna, the 

ostracod Notodromas monacha, the amphipod Gam-

marus pulex, the snail Potamopyrgus antipodarum and 

the oligochaete Lumbriculus variegatus [142].

Transfer from the intestinal tract to the surrounding  

tissue or circulatory system

After ingestion, microplastics can remain in the diges-

tive tract, be excreted or absorbed from the digestive 

tract into the body tissue [132, 145]. Lugworms (Areni-

cola marina) exposed to sediment containing pre-pro-

duction PS particles (400–1300  µm, 7.4  % of sediment 

dw) ingested these microplastics. However, no trans-

location of the relatively large PS particles from the gut 

to the tissue was recorded [155]. Hämer et  al. [156] fed 

marine isopods (Idotea emarginata) with food contain-

ing fluorescent PS microspheres (10  µm), PS fragments 

(1–100  µm) or acrylic fibres (0.02–2.5  mm). Micro-

plastics were detected in stomach and intestine, but 

not in the midgut where nutrients are resorbed. Pas-

sage of the microplastics to the midgut was most likely 

impeded by filter structures in the isopods’ proventricu-

lus. In D. magna, fluorescent-carboxylated PS nano- and 

microspheres (20  nm and 1  µm diameter) were mainly 

observed in the gastrointestinal tract, but also in struc-

tures assumed to be oil storage droplets. It was concluded 

that the PS spheres are able to cross the gut epithelium 

[154]. In shore crabs (C.  maenas), which were fed with 

mussels (Mytilus edulis) pre-exposed to PS microspheres, 

translocation from the intestinal tract to haemolymph, 

hepatopancreas, ovary and gills was demonstrated for 

microspheres with 0.5  µm diameter [157]. By contrast, 

larger microspheres (8–10  µm diameter) were only 

detected in the intestine but not in the haemolymph of 

shore crabs [153].

Browne et al. [145] kept mussels (M. edulis) for 3 h in 

a suspension of fluorescent PS microspheres (3.0 and 

9.6 µm; 4.3 × 104 items/L). Microspheres were detected 

in the haemolymph and inside the haemocytes. �e 

smaller microspheres occurred in significantly higher 

abundance in the haemolymph than the larger ones. Von 

Moos et al. [152] exposed mussels for 3–96 h to 2.5 g/L of 

HDPE fluff consisting of non-uniformly shaped particles 

with a size between 0 and 80  µm. �e concentration of 

HDPE fluff corresponds to approx. 2.7 × 107 to 3.6 × 107 

items/L (NR von Moos, personal communication). HDPE 

microparticles were detected on the gill surface and 

in blood lacunae of the gills, as well as in the intestine, 

digestive gland and connective tissue.

In a very recent study, mullets (Mugil cephalus) were 

held for 7 days in water containing 33.8 mg/L of PE or PS 

particles with a size of 0.1–1 mm (nearly 2500 particles/L 

[33]). Microplastics were not only found in the gastroin-

testinal tract (approx. 10 PE particles and 90 PS particles 

per fish), but also in the liver of the fish (approx. 1–2 par-

ticles per fish for both PE and PS).

�us, based on the results of laboratory experiments, 

translocation from the intestinal tract to the circulatory 

system or surrounding tissue depends on the size of the 

microplastics with an upper size limit for translocation 

that appears to be specific for the species or taxonomic 

group.

Excretion by aquatic organisms

In laboratory experiments, microplastics, which had 

only entered the organisms’ intestinal tract, were gener-

ally excreted within hours or few days. Rapid excretion of 

microplastics was e.g. reported for the copepod Euryte-

mora affinis [147]. After 3 h exposure to fluorescent PE 

spheres (10 µm; 2 × 106 items/L), 67 % of the copepods 

had ingested microspheres. Following a 12 h post-expo-

sure, only 4  % of the copepods still contained micro-

spheres. In marine amphipods (A.  compressa), most 

ingested PE microplastics were excreted within 2 d [150]. 

Sea urchin larvae (T.  gratilla) egested PE microspheres 

(10–45 µm) within 7 h [151].

In cases, where microplastics had translocated to the 

circulatory system and/or the surrounding tissues, excre-

tion was also demonstrated, but was slower. In shore 

crabs (C.  maenas), concentrations of fluorescent PS 

microspheres (0.5  µm) in the haemolymph decreased 

from 24  h to 21  days post-exposure. Yet, on day  21 the 

haemolymph still contained a few microspheres [157]. In 

mussels (M. edulis), fluorescent PS microspheres (3.0 and 

9.6  µm) were—despite excretion with the faeces—still 

detected in the haemolymph 48 d post-exposure [144].

Trophic transfer

Several laboratory studies have demonstrated that micro-

plastics are transferred in the food chain, i.e. from prey to 

predator. Trophic transfer of fluorescent PS microspheres 

(10 µm) from zooplankton to the mysid shrimp Mysis rel-

icta was observed by Setälä et al. [147]. M. relicta, which 

had been kept together with zooplankton (copepods and 

polychaete larvae) pre-exposed for 12 h to microplastics, 

contained PS microspheres in their stomach. Trophic 

transfer of microplastics from mussels (M.  edulis) to 

shore crabs (C.  maenas) was shown for fluorescently 

labelled PS microspheres with 0.5 µm [157] and 8–10 µm 
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diameter [153]. So far, it is not known if microplas-

tics biomagnify, i.e. if concentrations in the organisms 

increase at higher trophic level [158].

Field studies with aquatic organisms

�e uptake of microplastics has also been investigated in 

a number of field studies, mainly with marine organisms. 

Note that in these studies no differentiation between 

direct ingestion of microplastics and uptake with the 

food (i.e. trophic transfer) is possible.

Desforges et  al. [36] analysed microplastics in two 

zooplankton species, the copepod Neocalanus cristatus 

and the euphausiid Euphausia pacifica, sampled in the 

Northeast Pacific. On average, 0.03 microplastic items/

individual were found in N. cristatus, 0.06 in E. pacifica. 

Goldstein and Goodwin [159] evaluated plastic inges-

tion by gooseneck barnacles (Lepas anatifera, Lepas 

pacifica, Lepas sp.), rafting organisms attached to floating 

substrates at the sea surface. Gooseneck barnacles were 

sampled from floating debris in the North Pacific gyre; 

microplastics in their stomachs and intestines were iden-

tified visually. Due to the possibility of airborne contami-

nation, fine microfibers were not considered. A subset of 

microplastic particles was analysed by Raman spectrom-

etry. Microplastics were found in 34 % of the barnacles, 

with most barnacles having ≤5 particles in their intesti-

nal tract. Nearly all (99 %) particles were degraded frag-

ments (median diameter: 1.4  mm). No blockage of the 

stomach or intestine was recorded. Analysis by Raman 

spectrometry revealed that 58  % of the particles con-

sisted of PE, 5 % of PP and 1 % of PS (polymer type of the 

remaining particles could not be analysed).

Van Cauwenberghe and Janssen [38] investigated levels 

of microplastics in cultured mussels (M.  edulis) reared 

in the North Sea and Pacific oyster (Crassostrea gigas) 

reared in the Atlantic. Mussels were either analysed 

directly for their microplastic content or kept for 3 days in 

filtered artificial seawater to allow clearing of the gut. Soft 

tissues were digested in concentrated nitric acid, boiled, 

diluted with deionised water and filtered (5 µm). Micro-

plastics were identified microscopically, and a subset was 

analysed by micro-Raman-spectrometry. Samples were 

processed in a laminar flow cabinet; procedural controls 

were free of microplastics. In M. edulis, 0.36 microparti-

cles per g soft tissue ww were detected without depura-

tion. After the depuration period, 0.24 items/g soft tissue 

ww were found. In C. gigas, 0.47 items/g soft tissue ww 

were found before and 0.35 items/g tissue ww after depu-

ration. As discussed by Van Cauwenberghe and Janssen 

[38] tissue digestion by nitric acid and boiling may have 

led to destruction of smaller microplastics and, hence, 

to an underestimation of microplastic levels in the mus-

sels. With micro-Raman-spectrometry, no unambiguous 

identification of the particles as microplastic was possi-

ble. �e authors assumed that this might be due to effects 

of the digestion procedure on the plastic matrix. Similar 

microplastic concentrations were reported for M. edulis 

collected at the French, Belgian and Dutch North Sea 

coast [122], and slightly lower levels for Mediterranean 

mussels (Mytilus galloprovincialis) sampled in the estuar-

ies of the rivers Tagus (Portugal) and Po (Italy) and in the 

Ebro delta (Spain [37]). A. marina from the French and 

Belgian North Sea coast contained on average 1.2 micro-

plastic particles/g tissue [122].

Plastic concentrations in the gut of small (up to 10 cm 

standard length) pelagic fish in the North Pacific gyre 

were studied by Boerger et al. [160]. Fish from six species 

were caught with manta trawls. Approx. 35 % of the fish 

had plastic particles (on average 2 items) in their stom-

ach. Most of the ingested plastics were fragments (94 %) 

and had a size of 1.0–2.8 mm. Lusher et al. [161] evalu-

ated the plastic content in the gastrointestinal tract of 5 

pelagic and 5 demersal fish species caught in the English 

Channel. All items, which were not classified as natu-

ral prey of the fish, were analysed by FT-IR. Items con-

sisting of plastic or the semi-synthetic fibre rayon were 

found in 37 % of the analysed fish (on average 1.9 items/

fish). �ere was no significant difference in the number 

of ingested items between pelagic and demersal species. 

�e ingested material mainly consisted of fibres (68  %), 

fragments (16  %) and beads (12  %); 92  % of the items 

were smaller than 5  mm, with particles of 1.0–2.0  mm 

size being most common. More than half of the items 

(58 %) were identified as rayon, 36 % as PA, 5 % as PES, 

1 % as PS, 0.3 % as PE and 0.3 % as acrylic. Polymers with 

a lower density were predominantly detected in pelagic 

fish species, those with a higher density in demersal spe-

cies. Microplastic particles (0.2–5 mm; due to the possi-

bility of airborne contamination fibres were not included 

in the evaluation) were found in the intestinal tracts of 5 

out of 7 fish species sampled in the North Sea. Overall, 

2.6  % of the fish had ingested microplastics [34]. In an 

analysis of the microplastic content in the gastrointesti-

nal tract of fish from five commercially used species sam-

pled in the Adriatic Sea, microplastic items were found in 

28 % of the fish (1–2 items/fish [33]).

Plastic items, including microplastics, have also been 

shown to be ingested by seabirds and marine mammals. 

For instance, plastic content in the stomach of dead, 

beach-washed northern fulmars (Fulmarus glacialis) is 

monitored in the context of the OSPAR ecological qual-

ity objective for marine litter stating that less than 10 % 

of northern fulmars should have >0.1 g plastic particles 

in their stomachs [162]. Fulmar stomachs were shown to 

contain macro- and microplastics. However, the latter 

were not quantified separately [163, 164]. Microplastics 
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and small macroplastics (0.5–30 mm) were detected in 

the scats (faeces) of fur seals (Arctocephalus tropicalis, 

Arctocephalus gazella) on Macquarie Islands, between 

New Zealand and Antarctica [165]. Plastic particles 

were collected visually and analysed by SEM and FT-IR. 

Most scats contained 1 plastic item; particles mainly 

consisted of PE and had a size between 2 and 5 mm. 

Microplastics were also found in the digestive tract of 

a whale (Mesoplodon mirus) stranded on the Irish coast 

[166].

Little information is available on the uptake of micro-

plastics by freshwater organisms in the field. In a prelimi-

nary study, Sanchez et al. [167] examined wild gudgeons 

(Gobio gobio), caught in French streams. �e digestive 

tract of the fish was analysed visually for microplastics. 

Based on first results, 12 % of the gudgeons had micro-

plastics in their intestine. �e abundance of microplastics 

increased with the anthropogenic impact on the rivers. 

While no microplastics were found in the intestine of 

fish captured at three sites characterised by a low anthro-

pogenic influence, the highest percentage of fish with 

microplastics in their intestine (approx. 20–30  %) was 

recorded at two sites in urban areas.

Uptake and excretion by terrestrial organisms

Very little information is available on the uptake of 

microplastics by terrestrial organisms. Ugolini et al. [168] 

performed a laboratory study with the sand hopper Tali-

trus saltator, an amphipod inhabiting sandy coasts. In 

T. saltator, which had been fed with dry fish food mixed 

with 10 % (w/w) of PE microspheres (10–45 µm), inges-

tion of the microspheres was demonstrated. Within 

24 h most microspheres were excreted, within a week all 

microspheres.

Summary: uptake and trophic transfer

A wide variety of aquatic organisms have been shown 

to ingest microplastics. In most cases, particles were 

only detected in the intestinal tract and excreted rapidly. 

Translocation from the intestinal tract to the circulatory 

system or surrounding tissues was observed in some spe-

cies for very small microplastics. In field studies, micro-

plastics were ingested, but the ingested quantities were 

low. Microplastics are transferred in the food chain. Yet 

so far, there are no data demonstrating their bioaccumu-

lation or biomagnification.

E�ects of microplastics on the environment
Microplastics may have very different types of effects 

on the environment: they may physically (mechanically) 

affect organisms, act as vectors for hydrophobic pollut-

ants and as substrates for organisms, and affect sediment 

properties.

Physical e�ects of microplastics

Macroplastics physically affect marine organisms. Espe-

cially for air-breathing animals, entanglement may result 

in death. �e ingestion of macroplastic items may reduce 

the amount of consumed food and, consequently, the 

organisms’ fitness. Macroplastics can also block the intes-

tinal tract and cause internal injuries [58, 75, 169–171]. It 

has been assumed that microplastics cause similar effects 

in smaller organisms, mainly with regard to the physical 

obstruction of feeding and digestion [6, 7, 71, 75]. Sharp-

edged microplastics may injure gill tissues and the intes-

tinal tract [7, 144]. In the following, the available data on 

physical effects of microplastics on aquatic organisms are 

summarised (see also Additional file 1: Table S3). While 

studies dealing exclusively with effects of nanoplastics 

were not considered, results of comparative studies of 

nano- and microplastics have been included.

Physical e�ects of microplastics on marine organisms

To date, most studies were performed with marine inver-

tebrates. In larvae of the sea urchin T.  gratilla exposed 

for 5  days to fluorescent PE microspheres (10–45  µm, 

103–3 ×  105 items/L), effects were only observed at the 

highest tested concentration. Body width was signifi-

cantly lower than in the control; survival was reduced to 

approx. 50 % of the control level, but this effect was not 

significant [151].

In the marine copepod Centropages typicus, a 24-h 

exposure to concentrations  ≥7  ×  106 items/L of fluo-

rescent PS microspheres (7.3  µm) led to significantly 

reduced ingestion of algae [146]. Similarly, Calanus 

helgolandicus exposed for 24  h to PS spheres (20  µm, 

7.5  ×  104 items/L) ingested 11  % less algae than the 

controls. In addition, exposed copepods preferentially 

ingested smaller algae. During a 6-day exposure of C. hel-

golandicus to the same type and concentration of PS 

spheres, egg production was not significantly affected, 

but egg size was reduced during the second half of expo-

sure. �is effect was attributed to energy depletion [172].

In 96-h acute tests, survival of adults and nauplii of the 

copepod T. japonicus was not affected by nano- (50 nm) 

and microsized (0.5 and 6 µm) PS spheres at concentra-

tions up to 1.1 × 1015 (50 nm), 1.1 × 1012 (0.5 µm) and 

6.6 × 108 items/L (6 µm). Chronic effects of these three 

sizes of PS spheres were studied in a two-generation test 

with T.  japonicus. �e nanosized (50 nm) spheres led to 

a significant reduction in survival of the first (F0) and the 

second generation (F1) at concentrations  ≥4.6  ×  1012 

items/L. In F0 and F1, the development from nauplius 

to copepodid was delayed at 4.6  ×  1012 items/L (see 

also Additional file 1: Table S3). For both sizes of micro-

spheres, the pattern of toxicity was different. �e 0.5-µm 

microspheres caused an increased development time 
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(both from nauplius to copepodite and from nauplius to 

adult) and a reduced survival of the F1 at the highest con-

centration (9.1 × 1010 items/L). �e 6-µm microspheres, 

for which the highest concentration contained 5.2 × 107 

items/L, had no effect on survival and development of 

both copepod generations. However, microspheres of 

both sizes significantly reduced fecundity of the F0 and 

the F1 at all tested concentrations, i.e. the lowest observed 

effect concentration (LOEC) was ≤4.6 × 108 items/L for 

the 0.5 µm spheres and ≤2.6 × 105 items/L for the 6 µm 

spheres. �e effects on fecundity may have been a conse-

quence of a reduced quantity of ingested food associated 

to the presence of larger amounts of ingested micro-

spheres [149]. It is well known that reduced growth often 

leads to a reduced fecundity [173–175].

In juveniles of the marine isopod I.  emarginata fed 

for 6–7  weeks (2  moult cycles) with agar-based food 

containing seaweed powder and fluorescent micro-

spheres (10 µm, approx. 12 items/mg food), PS fragments 

(1–100  µm, 20 fragments/mg food) or acrylic fibres 

(0.02–2.5  mm, 0.3  mg/g food), no significant effects on 

survival, growth and duration of the intermoult period 

were recorded [156].

Mussels (M. edulis) were exposed for 3 h to fluorescent 

PS microspheres (3.0 and 9.6 µm, 4.3 × 104 items/L) and 

then transferred to control water. Effects on their feed-

ing rate, and on haemocyte viability, phagocytic activ-

ity of the haemocytes and ability of the haemocytes to 

cope with oxidative stress were evaluated 3–48  days 

after transfer to control water. Neither the 3.0  µm nor 

the 9.6 µm microspheres had any significant effect on the 

evaluated endpoints [145]. Von Moos et al. [152] exposed 

M.  edulis for 3–96  h to 2.5  g/L (approx. 2.7  ×  107 to 

3.6 × 107 items/L, see above) of HDPE fluff (0–80 µm). In 

exposed mussels, granulocytoma formation (indicating 

an inflammatory response) was significantly increased, 

and lysosomal membrane stability was significantly 

reduced. No effects were recorded on the condition 

index, the neutral lipid content and the accumulation of 

lipofuscin (a biomarker of oxidative stress) in the diges-

tive tract. A 14-day exposure of M. edulis to PS micro-

spheres (1.1 × 105 items/L) with diameters of 10, 30 and 

90  µm led to a significant increase in energy consump-

tion, but did not significantly affect the overall energy 

budget of the mussels [39].

Acute effects of PE microspheres (1–5  µm) were 

studied in juveniles of common goby (Pomatoschistus 

microps). After 96  h exposure to two concentrations of 

microspheres (18.4 and 184  µg/L), acetylcholinesterase 

activity was significantly reduced (to approx. 80 % of the 

control level), while survival and other biomarkers (see 

Additional file 1: Table S3) were not affected [176].

In a water/sediment study, lugworms (A. marina) were 

exposed for 28 days to sediment containing unplasticised 

PVC (uPVC) granules (mean size: 130  µm; 5, 10 and 

50  g uPVC/kg sediment ww). During the first 2  weeks 

of exposure, feeding rate of lugworms was significantly 

reduced at 50  g/kg  sediment ww. However, during the 

third and fourth week of exposure, feeding rate in the 

controls decreased to levels close to those observed at 

50 g/kg ww. No clear effect on feeding was seen at 5 and 

10 g/kg ww. Phagocytic activity of coelomic fluid was sig-

nificantly increased at 5 and 50, but not at 10  g/kg  ww. 

At 10 and 50  g/kg  ww, total available energy reserves 

were significantly lower than in the controls. Yet, weight 

of the uPVC exposed worms at the end of the experi-

ment did not significantly differ from the control value. 

In a second experiment, A. marina was exposed for 51 h 

to 50  g  uPVC/kg  ww. �e frequency of egestion events 

(evaluated during the last 3  h of exposure) was signifi-

cantly reduced at 50  g/kg  ww. In a further experiment, 

lugworms were exposed for 7 days to sediment with 10, 

50 and 100  g silica/kg  ww. Since exposure to silica did 

not significantly affect the number of faecal casts, the 

reduced organic content did not appear to be the cause 

for the reduced feeding activity. It was assumed that the 

reduced egestion frequency of the worms at 50 g uPVC/

kg  ww might be due to a lower feeding activity or a 

reduced uptake efficiency, possibly caused by reduced 

adhesion of uPVC particles (as compared to sediment) to 

the feeding apparatus of A. marina [177].

In a recent 14-days water/sediment test with A. marina 

exposed to PS microspheres (1.1  ×  105 items/kg sedi-

ment) with diameters of 10, 30 and 90 µm, protein con-

tent of the exposed lugworms was significantly increased, 

but the overall energy budget was not affected [39]. �e 

shorter exposure duration and the more regular form of 

the microplastics in this study [39] have probably con-

tributed to the difference between the results of the two 

water/sediment studies. In addition, the LOEC of 10 g/

kg  sediment ww obtained in the 28-days test [177] cor-

responds to a numerical concentration of roughly 

8  ×  105  items/kg sediment ww (see Additional file  1: 

Table S3), i.e. a higher concentration than used in the 

14-days test [39].

Physical e�ects of microplastics on freshwater organisms

So far, very few data are available on effects of micro-

plastics on freshwater organisms. Rochman et  al. [178, 

179] performed a study with Japanese medaka (Ory-

zias latipes) to evaluate the uptake of contaminants 

from microplastics into fish and resultant effects (see 

next section). �is study included a treatment with vir-

gin microplastics (pre-production LDPE pellets ground 
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to <500 µm). Fish were fed for 2 months at a rate of 2 % 

bodyweight per day with a diet containing 10  % (w/w) 

virgin microplastics. �is diet was prepared by reducing 

the dextrin content of the food and, instead, adding the 

microplastics. Consequently, it had a lower energy den-

sity than the control diet. An appropriate negative con-

trol receiving food with the same energy density as the 

fish exposed to microplastics would have been desir-

able (see e.g. [180]) but was not included. Survival of the 

fish receiving the microplastics-containing diet was not 

affected. However, 46 % of these fish exhibited severe gly-

cogen depletion in the liver. �is effect, which was not 

observed in the controls, was most likely caused by the 

reduced energy content of the microplastics-contain-

ing food. Following exposure to microplastics, the inci-

dence of fatty vacuolar degeneration in medaka liver was 

slightly increased, while gonad histology was not affected. 

�e microplastic treatment had no significant effect on 

expression of cyp1a, vitellogenin  I and oestrogen recep-

tor α in male and female fish, and on expression of cho-

riogenin  H in male fish. In female fish, choriogenin  H 

expression was significantly reduced after 2  months 

exposure, an effect interpreted by Rochman et  al. [179] 

as early warning sign of endocrine disruption. However, 

in view of the lower energy density of the microplastics-

containing food it appears likely that the reduced chori-

ogenin expression is an effect of the glycogen depletion 

described above, i.e. should not be considered as endo-

crine disruption as defined in [181]. Unfortunately, Roch-

man et al. [178, 179] do not provide any information on 

effects of the microplastics treatment on fish growth.

Summary: physical e�ects of microplastics

Physical effects on marine organisms were shown to 

occur at high concentrations of microplastics. �e 

observed effects appear to be mainly due to the inges-

tion of microplastics leading to a reduced uptake of food, 

which in turn results in lower energy reserves and asso-

ciated effects on other physiological functions. Studies 

on possible toxic effects of microplastics on freshwater 

organisms are scarce, effects on terrestrial biota have so 

far not been investigated [72, 77].

Microplastics as vectors for pollutants

Sorption of pollutants to microplastics

Hydrophobic organic pollutants sorb to microplastics, 

which are hydrophobic and have a large surface to vol-

ume ratio. �ere is clear evidence that contaminants such 

as hexachlorinated hexanes, polycyclic aromatic hydro-

carbons (PAHs), polychlorinated biphenyls (PCBs) and 

polybrominated diphenyl ethers (PBDEs) are enriched on 

microplastics [11, 14, 56, 62, 71]. Sorption and desorp-

tion processes depend on the polymer type. For instance, 

phenanthrene reached much higher equilibrium con-

centrations on PE than on PP and PVC granules (200–

250 µm): distribution coefficients (Kd) are 38,100 L/kg for 

PE, 2190  L/kg for PP and 1650  L/kg for PVC. �ese Kd 

values are much higher than those for sorption of phen-

anthrene to two sediments (19 and 135 L/kg). However, 

when normalising distribution coefficients to the organic 

carbon content of plastics and sediments (i.e. when com-

paring KOC rather than Kd values), differences between 

plastics and sediments are strongly reduced. �e KOC for 

sorption of phenanthrene to PE granules (44,500  L/kg) 

is by a factor of 2–4 higher than those for the sediments 

(10,400 and 20,100 L/kg), while the KOC values for PP and 

PVC granules (2560 and 4340 L/kg) are lower than those 

derived for the sediments [182]. For PCBs, Velzeboer 

et al. [183] also found a similar magnitude of sorption to 

microplastics (PE microspheres of 10–180 µm size) and 

sediment organic matter.

Transport of pollutants sorbed to microplastics

Since microplastics can be transported over long dis-

tances, it has been proposed that they may function as 

vectors for sorbed hydrophobic pollutants. Such pollut-

ants might e.g. be transported to remote sites as the Arc-

tic [121, 182]. �e relevance of marine plastics (including 

both micro- and macroplastics) as transport vectors for 

PCBs, PBDEs and perfluorooctanoic acid (PFOA) to the 

Arctic was evaluated by Zarfl and Matthies [121]. Based 

on estimated amounts of plastics and pollutants in the 

oceans, sorption of the pollutants to plastics, and ocean 

current velocities they derived a rough estimate of plas-

tic-mediated mass fluxes of PCBs, PBDEs and PFOA. 

�ese mass fluxes were by factors of 103–106 lower than 

mass fluxes via atmospheric transport and transport with 

water. �erefore, it was concluded that for most sub-

stances, plastics are no relevant vectors for transport to 

the Arctic. Yet, plastic-mediated transport might increase 

the mobility of highly hydrophobic substances, which are 

due to their sorption to sediment quickly removed from 

the water column.

Uptake of pollutants sorbed to microplastics  

and resultant e�ects

Given that (1) concentrations of pollutants on microplas-

tics can be several orders of magnitude higher than in the 

surrounding water and (2) microplastics are ingested by 

a wide variety of organisms, it has been postulated that 

microplastics may lead to an increased uptake of pol-

lutants by aquatic organisms (see e.g. [25]). Such an 

uptake requires desorption of the contaminants in the 

organisms. Addition of the digestive surfactant sodium 

taurocholate was shown to enhance desorption of phen-

anthrene from PE, PP and PVC microplastics [182]. 
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Similar results were obtained by Bakir et  al. [184] for 

various organic pollutants sorbed to PE and PVC micro-

plastics. Several studies have demonstrated that con-

taminants, which had been sorbed to microplastics, are 

transferred to organisms ingesting these microplastics. 

For instance, nonylphenol and phenanthrene that had 

been sorbed to PVC microplastics were detected in the 

tissue of A. marina exposed for 10 days to these micro-

plastics [185].

Besseling et  al. [155] exposed A. marina for 28 d to 

sediment contaminated with low PCB concentrations 

(5.28  µg PCBs/kg dw)—either alone or in combination 

with pre-production PS particles (400–1300  µm; 0.074, 

0.74 and 7.4  % of sediment dw) previously equilibrated 

for 6 weeks with the sediment. In the presence of 0.074 % 

PS particles, PCB concentrations in A.  marina were by 

a factor of approx. 1.1–1.5 higher than in PCB-contam-

inated sediment without microplastics. At 0.74 and 7.4 % 

PS particles, PCB concentrations in the worms were 

lower than with 0.074 % PS, but remained in most cases 

above levels in the PCB-contaminated sediment without 

microplastics. �e authors concluded that PS micropar-

ticles had a relatively limited effect on uptake of PCBs by 

A.  marina. Feeding activity of the lugworms decreased 

with increasing microplastics content. Worms in all 

treatments lost weight, and weight loss increased with 

increasing microplastics concentration. It was suggested 

that ingestion of the relatively large microplastic parti-

cles might have led to physical stress. In addition, organic 

matter content of the sediment was reduced in the pres-

ence of microplastics, i.e. the worms had to ingest larger 

amounts of sediment.

Rochman et  al. [178, 179] performed a two-month 

experiment with adult medaka (O.  latipes) that received 

control food, or food containing virgin microplastics (see 

previous section) or contaminated (‘marine’) microplas-

tics. �e latter were prepared by exposing pre-produc-

tion LDPE pellets for 3  months at a marine site. Pellets 

were then ground to  <500  µm and incorporated into 

fish food. �e diets containing microplastics (10 % w/w) 

had a lower energy density than the control diet. At the 

end of exposure, levels of PAHs, PCBs and PBDEs in 

fish that had received marine microplastics were higher 

than in the control and in the virgin microplastic treat-

ment. Marine microplastics had no significant effect on 

survival and expression of cyp1a. However, they caused 

more pronounced histopathological changes in the liver 

than virgin microplastics: 74  % of the fish exposed to 

marine microplastics exhibited severe glycogen depletion 

(virgin microplastics: 46  %), 47  % fatty vacuolar degen-

eration (virgin microplastics: 29  %) and 11  % single cell 

necrosis (virgin microplastics: 0 %). In female medaka fed 

with marine microplastics, the expression of vitellogenin, 

choriogenin  H and oestrogen receptor  α was slightly 

lower than in fish fed with virgin microplastics and signif-

icantly lower than in the control fish. �ese effects were 

considered as indicators of endocrine disruption [179], 

but are most likely related to the observed energy deple-

tion. In this context, it is of note that reduced vitellogenin 

levels can only be interpreted as indicator for endocrine 

activity, if there is no systemic toxicity [186].

Relevance of microplastics as vector for pollutants

As outlined above, there is clear evidence that hydro-

phobic contaminants are enriched on microplastics and 

transferred to organisms ingesting these microplastics. 

However, it has been questioned, if the transport of 

sorbed pollutants by microplastics is a relevant factor 

contributing to accumulation and adverse effects in the 

environment, i.e. if microplastics transport pollutants in 

sufficiently high concentrations to biota [99, 187]. In this 

context, the contribution of the uptake via microplastics 

to the total uptake of a pollutant (including uptake via 

integument, gills and food) has to be considered. Since 

microplastics are in most cases excreted by the organ-

isms that have ingested them, desorption rates of the 

pollutants from the microplastics in the intestinal tract 

are important. Modelling approaches have been used to 

assess the relative contribution of microplastics as vec-

tors to the overall uptake of hydrophobic organic pollut-

ants by A. marina [187, 188] and piscivorous fish [104].

Koelmans et  al. [187, 188] developed a biodynamic 

model for PCB accumulation by A.  marina in an envi-

ronment containing PS and PE microparticles. Differ-

ent uptake processes and desorption in the intestinal 

tract were considered. Bioaccumulation of various PCBs 

was modelled in the presence of three concentra-

tions (0.1, 1 and 10  % of sediment dw) of microplastics 

(approx. 1 mm) and in the absence of microplastics. PS 

microparticles had no significant effect on bioaccumula-

tion of PCBs in lugworms. For PE, the model predicted 

a decrease in steady-state bioaccumulation for PCBs 

with log KOW values  >5–6. When tissue concentrations 

increase to levels typical for substances with such high 

KOW, the gradient between concentrations in tissue and 

on the ingested PE microparticles may become negative. 

Consequently, PCBs may be resorbed to the microplas-

tics, i.e. bioaccumulation is attenuated. Based on these 

results, Koelmans et  al. [187] concluded that the con-

tribution of microplastics to bioaccumulation can be 

assumed to be not very relevant.

Similar results were obtained by Gouin et al. [104] with 

two modelling approaches. Using an equilibrium parti-

tioning model significant (>1  %) partitioning to plastics 

was only predicted for environments with very high plastic 

concentration and limited natural organic matter. Based 
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on the steady-state food-web component of the bioac-

cumulation model of Arnot and Gobas [189], into which 

10 % PE microplastics were included as additional compo-

nent of the diet, a reduced bioaccumulation was obtained 

for substances with log KOW values between 5.5 and 6.5. 

As outlined above, this reduction is due to the high affin-

ity of the microplastics to the pollutants, which prevents 

transfer of the pollutants to the fish. Gouin et  al. [104] 

concluded that microplastics have a limited relevance as 

vector for the transfer of hydrophobic pollutants to fish. A 

number of uncertainties were identified, which include the 

effects of fouling on sorption of pollutants to microplas-

tics, gut retention times of microplastics and uptake rates 

of microplastics into the tissue of an organism.

Microplastics as substrates for organisms

Many marine organisms live attached to debris [190, 

191]. Due to plastics, the amount of floating debris in 

the oceans has greatly increased [190]. �is is most rel-

evant in the open ocean, where only very limited float-

ing substrate is available [128, 192]. Plastic debris is 

often colonised by microorganisms and—depending on 

its size—also by larger organisms. PE microplastics and 

small macroplastics collected in the surface layer of the 

North Atlantic were colonised by a variety of organisms 

including bacteria, cyanobacteria, diatoms, ciliates and 

radiolaria [191]. Bryozoans were identified on 3–5 mm-

sized microplastics sampled in the surface layer at differ-

ent sites around Australia [193]. Microplastic particles 

are also used as oviposition sites by the sea skater Halo-

bates, an insect living at the sea/air interface in the open 

ocean [128, 192]. �e strong increase in microplastics 

in the North Pacific gyre, which was observed between 

1972–1987 and 1999–2010, was associated with a con-

siderable increase in the number of eggs, juveniles and 

adults of Halobates sericeus. Possible effects of the 

increased abundance of H. sericeus on other species have 

so far not been investigated [128].

Given that plastics can be transported over long dis-

tances, they may contribute to the dispersal of species 

[75, 190]. �is includes invasive species [190] and species 

causing harmful algal blooms [194]. Due to their low size, 

microplastics may especially facilitate transport of micro-

organisms (including pathogens) and other very small 

organism. So far, it is not known if the transport of spe-

cies with microplastics has any significant effect on spe-

cies assemblages [158, 195].

E�ects of microplastics on sediment properties

Carson et al. [134] used artificially constructed beach sed-

iment cores containing 1.5, 7.3, 15.9 and 29.4 % (w/w) of 

small plastic particles (<10 mm) to investigate effects on 

water permeability and heat transfer. Notably, mean size 

of plastic particles was higher than mean grain size of the 

sediment. At 15.9 and 29.4 % (w/w) plastics, water perme-

ability was significantly increased. With increasing plastic 

content, sediments warmed more slowly. A 16 % decrease 

in heat transfer was recorded at the highest plastic con-

centration. Possible implications of such effects on physi-

cal properties of sediments remain to be investigated.

Do microplastics cause environmental risks?
In the context of risk assessment, polymers are—given 

their high molecular weight—generally considered as 

being of low concern. It is of note that, for this reason, 

registration and evaluation of polymers under REACH 

is usually not required unless triggered by certain addi-

tives [15]. As a first estimate of possible concern for the 

environment, the highest measured levels of microplas-

tics in the environment, which were identified based on 

Hidalgo-Ruz et  al. [11] and selected recent publications 

(Additional file  1: Table S1), are compared to the con-

centrations of microplastics, which were shown to cause 

physical effects in laboratory tests. In the surface layer 

and the water column of the oceans, maximum concen-

trations of 9 [11] and 10 items/L [18], respectively, were 

found. �ese concentrations are by a factor of approx. 104 

lower than the acute LOEC of 3 × 105 items/L [151] and 

the chronic LOEC of ≤2.6 × 105 items/L [149] obtained 

for marine invertebrates exposed via the water phase. 

Note that in the chronic test [149] a clear effect was 

observed at the lowest tested concentration (Additional 

file 1: Table S3), i.e. significant effects may be caused at 

a lower microplastic level. �e highest microplastic con-

centrations measured in subtidal sediments, 2175 items/

kg dw in the lagoon of Venice [22] and 3600  items/kg 

dw in the Rhine estuary [89], are lower than the LOEC 

of 10  g/kg sediment ww (1  %  w/w [177]) derived in a 

water/sediment test with marine polychaetes, which 

corresponds to a numerical concentration of roughly 

106 items/kg sediment dw (Additional file 1: Table S3). In 

beach sediments, maximum levels of 109 g microplastic 

items/L (on the Canary Island Lanzarote [134]) and 30 % 

(w/w) small plastic particles (in the upper layer of Kamilo 

beach, Hawaii [133]) were determined. �ese values are 

higher than the LOEC obtained in the water/sediment 

test mentioned above (no toxicity data for organisms 

inhabiting beaches are available).

It should be noted that to date only relatively few stud-

ies are available on the effects of microplastics in marine 

organisms and even fewer on those in freshwater organ-

isms. In several cases, only single concentrations were 

tested and threshold concentrations, below which no 

significant effects are observed in the respective test 

organisms, were not determined (Additional file 1: Table 

S3). Effects on terrestrial organisms have so far not been 
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studied at all. Furthermore, microplastics are a very het-

erogeneous group of particles differing e.g. in size, shape, 

chemical composition and specific density. Little is 

known on the influence of these factors on the effects of 

microplastics [196].

In addition, there are a number of knowledge gaps 

concerning fate and occurrence of microplastics in the 

environment. Little information is available on fragmen-

tation and degradation rates of macro- and microplastics. 

Due to methodological limitations, size distributions in 

the environment are only partly known, especially with 

regard to the smallest microplastics and nanoplastics 

[8, 11, 99, 196]. While there are many studies on micro-

plastic abundance in the marine environment, data on 

the occurrence of microplastics in freshwater systems 

are limited. Information on possible hotspots and sinks 

is missing [97]. For the terrestrial environment, there are 

nearly no data on the occurrence of microplastics. �ese 

data gaps need to be filled prior to being able to perform 

a comprehensive assessment of possible environmental 

risks caused by microplastics.

Moreover, a number of possible effects of microplas-

tics on the environment are not covered by current envi-

ronmental risk assessment procedures, which have been 

developed for chemical substances. �ese include poten-

tial effects on sediment properties, and the function of 

microplastics as vector for the transport of pollutants, 

invasive species or pathogens. Assessment factors, which 

have been derived for the environmental risk assessment 

of chemicals, may not be appropriate for microplas-

tics. For these reasons, assessing possible environmen-

tal risks caused by microplastics is not straightforward. 

An approach that enables a comprehensive assessment 

of possible environmental risks caused by microplastics 

remains to be developed [14, 97]. As suggested by Syberg 

et  al. [196], such an approach should build on frame-

works, which have been developed for assessing environ-

mental risks of nanomaterials and mixtures.

It should be pointed out that based on available infor-

mation microplastics are extremely persistent. For this 

reason and due to the fragmentation of macroplastic 

debris, which is abundant in the environment, concentra-

tions of microplastics in the environment will increase 

at least as long as the release of plastics to the environ-

ment is not stopped [8, 25, 99]. In this context, the high 

concentrations in coastal sediments, which have been 

recorded at some sites [133, 134], are of specific concern.

Conclusions
As a result of the widespread use of plastics there are 

a great number of sources of primary and secondary 

microplastics in the environment. First estimates indi-

cate that the contribution of personal care products to 

the overall amount of microplastics in the environment is 

of minor relevance. Abrasion and fragmentation of larger 

plastic items and of materials containing synthetic poly-

mers have been considered as much more relevant.

Based on the evaluated data, the lowest concentrations 

eliciting adverse effects in aquatic organisms exposed 

via the water are by a factor of approx. 104 higher than 

maximum microplastic concentrations found in marine 

waters. �e effect concentration in a water/sediment test 

with lugworms is higher than microplastic levels meas-

ured in subtidal sediments but in the same range as high-

est levels recorded in beach sediments.

Before we are able to perform a comprehensive assess-

ment of possible environmental risks caused by micro-

plastics, a number of data gaps (e.g. fate and effects in 

freshwater and soil, and size distributions in all envi-

ronmental compartments) need to be filled and avail-

able environmental risk assessment procedures have to 

be adapted. However, given that (1) very high concen-

trations of microplastics have already been observed at 

some sites (especially in sediments and on beaches), (2) 

plastics are extremely persistent in the environment, (3) 

microplastics in the environment originate from a mul-

titude of sources and (4) the abundance of microplastic 

is expected to further increase due to fragmentation of 

the macroplastic present in the environment, strategies 

should be developed to address the issue of nano-, micro- 

and macroplastics in the environment on a broad and 

global basis in order to avoid exceeding critical environ-

mental threshold concentrations.
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