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Abstract

We describe a new selection method based on BODIPY (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-
indacene) staining, fluorescence activated cell sorting (FACS) and microplate-based isolation of lipid-rich microalgae
from an environmental sample. Our results show that direct sorting onto solid medium upon FACS can save about
3 weeks during the scale-up process as compared with the growth of the same cultures in liquid medium. This
approach enabled us to isolate a biodiverse collection of several axenic and unialgal cultures of different phyla.
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Background
Microalgae are aquatic photosynthetic microorganisms

able to transform carbon dioxide into biochemicals that

can later be processed into biofuels, food, feed and high-

value bioactive compounds [1]. With regard to biofuels,

algal biomass is considered likely to be one of the most

important sources of renewable energies in the near

future [2]. Although biodiesel production from microal-

gae is a proven technology, it still faces several technical

and economical constraints that need to be addressed

[3,4] in order to scale up production and thus lower the

final production costs [5].

Extraction of bioactive compounds with potential

applications in pharmacology and biomedicine is a rela-

tively new trend in microalgal biotechnology. Microalgal

biomass presents natural active compounds responsible

for distinct biological activities, such as cytotoxic, anti-

biotic, antioxidant, antifungal, anti-inflammatory and

antihelminthic compounds [6-9].

The rise of interest in these microscopic organisms for

biotechnological applications is due to the unique bio-

chemical features and their vast biodiversity, which to date

is almost entirely unexploited [6]. Although many culture

collections of microalgae have been established, the variety

of unknown species and strains present in the environ-

ment with potential application in the production of bio-

fuels and/or as a source of bioactive compounds is very

high [8,10,11]. Thus, easy and feasible high throughput

screening procedures are essential in order to isolate novel

species and strains for specific purposes.

Although several techniques for microalgae isolation

have been described previously, such as single-cell isola-

tion in liquid and solid media, serial dilutions, medium

enrichment, gravimetric separation, micromanipulation

and atomized cell spray [12,13], flow cytometry has

recently shown significant potential in improving micro-

algal strains for lipid production in an expedited fashion

[14,15]. Fluorescence activated cell sorting (FACS)

enables the selection of particular strains of microalgae

and subsequent isolation [16]. The characterization of

different populations within any mixture of cells is per-

formed through direct measurement of optical cell prop-

erties (for example, light scatter and multicolor

fluorescence emission), which in turn enables FACS of

defined cell populations that can be cultured separately

at a later stage [17-19].

Several authors have reported successful sorting pro-

cedures for microalgae. Reckermann [19] described the

sorting and culturing of a variety of unicellular species

isolated from an environmental water sample. More

recently, Doan et al. [20] reported the isolation from
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Singapore waters of microalgal strains for the purpose of

biofuel production. However, FACS has been considered

to be a technique displaying low efficiency for the isola-

tion of unialgal cultures, especially those of fragile spe-

cies such as dinoflagellates [21]. Therefore, there is a

need to develop simpler and faster methods allowing

the isolation of fast-growing strains.

In the present work, a combination of two methods was

tested: FACS combined with growing cells in 96-well

plates containing solid agar growth medium to accelerate

both the isolation procedure and culture scale-up. This

combination resulted in a high throughput screening pro-

cedure to isolate and screen for lipid-rich strains by means

of BODIPY 505/515 (4,4-difluoro-1,3,5,7-tetramethyl-4-

bora-3a,4a-diaza-s-indacene) staining that can also be used

to isolate fast-growing microalgae. These cells can then be

further tested for bioactivities. Via this approach several

strains of microalgae were isolated and easily scaled up to

higher volumes at a later stage.

Results and discussion
Selection of fast growing strains

Algal strains intended for biotechnological applications

need to be produced as fast as possible in large-scale sys-

tems in order to ensure a sustainable process. Therefore

microalgae displaying high growth rates are essential. In

this context, water samples were supplemented with Algal

growth medium and incubated for 7 days using growth

conditions as described in Methods. This enrichment step

facilitates the isolation procedure, allowing fast-growing

strains to dominate, by competition, other microalgae of

less interest under a set of desired growth conditions. If

the enrichment step is omitted, fast-growing cells might

be overlooked during the isolation procedure due to their

low concentration. Thus, this stage is a key step in the

selection of microalgae isolated by the present method.

Isolation by FACS

FACS allows simultaneous measurements of individual

cells. Light scatter angles and fluorescence intensity mea-

sured in different channels allows the distinction between

different clusters of cells with heterogeneous characteris-

tics. The information given by the different channels can

be visualized in two-dimensional plots combining two of

the variables at each time. Figure 1 shows the result of

combining side scattering (SSC) with fluorescence in the

FL3 channel. The combination of these two variables

enabled us to separate cells with chlorophyll from

unwanted cells and debris, mainly non-photosynthetic

bacteria and sediments that are normally present in nat-

ural samples. This could be accomplished as flow cyto-

metry allows the separation of cells by the inner cell

complexity and endogenous fluorescence of pigments

naturally occurring in microalgae. The first property can

be estimated by the measurement of side angle light scat-

ter (SSC) [22], whereas fluorescence emitted by pigments

(for example, chlorophyll, phycoerythrin and phycocya-

nin) can be detected in different channels upon excitation

with a specific laser [19,23]. In this way, red fluorescence

correlates with cellular chlorophyll content [18,19,24],

which was measured in the FL3 channel. At this stage, all

cells present in the dot plot displaying more than 100

arbitrary units (AU) of autofluorescence, as detected in

the latter channel, were gated; this first gate was named

Chl.

The possibility of obtaining axenic cultures is one of the

main advantages of the FACS approach, since it has been

shown that the latter procedure is able to remove bacteria

from microalgal cultures [25]. After this initial gating, sev-

eral combinations of the signal obtained with the different

channels were used. From all the combined plots the best

separation between populations was obtained upon com-

bining the FL2 and FL4 channels (Figure 2). During this

acquisition, well resolved clusters of cells were clearly dis-

tinguished, which simplified the gating procedure. In this

way, five gates (P1, P2, P3, P4 and P5) were drawn. The

signal measured in the FL4 channel is associated with phy-

cocyanin-derived autofluorescence [19], while yellow-

orange fluorescence detected in the FL2 channel is related

with phycoerythrin-derived autofluorescence of cells

[18,19]. In addition to measuring endogenous fluores-

cence, cells can also be stained with different dyes, provid-

ing a wide range of information. It has recently been

shown that BODIPY is able to stain lipid bodies in photo-

synthetic unicellular organisms, allowing the establishment

of lipid-rich microalgal cultures [26], and also the develop-

ment of selection programs to improve lipid production as

demonstrated with the Nile red dye [14,15]. Although

BODIPY fluorescence can be detected in the FL2 channel,

the highest emission intensity of this fluorochrome is in

the green fluorescence bandwidth range. Hence, cell com-

plexity (SSC) was subsequently plotted against the fluores-

cence emission in the FL1 channel (centered at 530/30

nm) in addition to the FL2 channel. Results obtained

using these settings suggested that each cluster was a

different species (Figure 3). In this figure, each gated clus-

ter was represented by a different color in order to distin-

guish clusters gated in Figure 2. Interestingly, the most

discriminating factor for clusters P1, P2, P3 and P4

was the fluorescence associated with the FL1 and FL2

channels (Figure 3A, B) rather than inner cell complexity

(SSC) or chlorophyll fluorescence (Figure 1). The combi-

nation of BODIPY fluorescence emission with cell com-

plexity is shown in Figure 3A. The P4 cluster displayed the

highest BODIPY fluorescence and was thus selected as a

good candidate source for microalgal cells with potential

use for biodiesel production. P1 and P3 gates are clustered

together and cannot be resolved by this combination of

Pereira et al. Biotechnology for Biofuels 2011, 4:61

http://www.biotechnologyforbiofuels.com/content/4/1/61

Page 2 of 12



signals. Figure 3B combines signals from SSC and FL2

channels in which P1 and P3 clusters are resolved, as the

former cluster moved to the right with respect to the P3

cluster due to a higher fluorescence emission in the FL2

channel. That may be explained by higher phycoerythrin

content present in the P1 cluster cells, since the fluores-

cence detected in the FL1 channel was very low. Fluores-

cence emission detected in the FL2 channel was in fact

one of the best discriminant factors for these strains. Fig-

ure 4 presents a histogram relating event (cell) density

with PE fluorescence. This graph showed that well defined

cell populations with distinct PE fluorescence levels could

be observed and that the P4 and P5 clusters displayed the

highest cell density. The P5 cluster showed significantly

lower complexity and fluorescence as compared with

other clusters. This low degree of complexity and fluores-

cence emission indicated that the cells in the latter cluster

were most probably cyanobacteria [18,27].

Although BODIPY, phycoerythrin and phycocyanin

fluorescence were used in the strain isolation for this

specific environmental sample, different combinations of

channels can be chosen to produce a similar two-dimen-

sional plot as shown in Figure 2. In this particular case,

FL2 and FL4 produced the best clustering for the cho-

sen gating method. Though the other channels gave

relevant information, they were not used in the proce-

dure for separation of the different naturally occurring

cell populations since they formed overlapped clusters.

The use of fluorescence emission due to BODIPY stain-

ing in the gating procedure should be done with care

since the concentration of lipids in the cells varies with

the culture growth stage. Cells normally present higher

lipid concentrations during stationary phase as com-

pared with cells growing exponentially. As in the present

work environmental samples underwent a pre-enrich-

ment step to isolate fast-growing cells able to withstand

competition from other microalgae, it is possible that

lipid-rich strains growing actively might have been

overlooked.

To assess cell morphology, the gated clusters were

then sorted directly to microscope slides and observed

in a Zeiss Axio Imager Z2 fluorescence microscope.

Figure 1 Two-dimensional dot plot combining inner cell complexity (side scattering (SSC)) and fluorescence emission by chlorophyll

(FL3). The Chl gate, defined as events with more than 100 arbitrary units of chlorophyll autofluorescence, corresponded to our first sorting trait
in order to isolate photosynthetic cells rather than non-photosynthetic microorganisms and debris.
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Cells from the P1 cluster did not survive the cell sorting

procedure, since upon microscopic observation only dis-

rupted cells were found. The same problem was

described by Reckermann [19] with Fibrocapsa japonica

that disrupted soon after sorting. Microscopic observa-

tions suggested that the established gates were able to

isolate monoalgal cultures since all observed fields from

the same cluster showed the same strain. As expected,

Figure 2 Gating procedure performed in the dot plot combining fluorescence emission by FL2 and FL4 channels. The boxes represent
the five clusters used during the gating of an environmental sample stained with the BODIPY 505/515 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-
3a,4a-diaza-s-indacene) solvatochromic dye.

Figure 3 Analysis plots combining inner cell complexity (side scattering (SSC)) with two emission channels of BODIPY (4,4-difluoro-

1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) stained cells. (A) FL1 vs SSC. (B) FL2 vs SSC-A. Colors represent different gates
established in Figure 2. P1 = green; P2 = light blue; P3 = red; P4 = yellow; P5 = dark blue.
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P5 was an exception and microscopic observation

showed different cyanobacterial strains and debris.

Microscopic observation of cells from the P4 cluster,

which presented the highest levels of fluorescence in the

FL1 channel, confirmed the presence of several lipid

bodies. As can be observed in Figure 5, several dots of

BODIPY fluorescence were detected (Figure 5B, D), con-

firming that the dye was internalized into the cells, as it

can be seen in the merged differential interference con-

trast (DIC) system plus BODIPY image (Figure 5A, C).

This observation strongly supports our FACS results,

suggesting that the combination of the gates used was

efficient in the isolation and identification of lipid-rich

microalgae that can be later tested for biodiesel produc-

tion (Figure 5).

Efficiency of cell sorting (solid medium vs liquid medium)

Growth was visible in solid medium in approximately

70% of the wells after 2 weeks of incubation (Figure 6),

whereas 20% did not show any sign of bacterial growth

(Figure 6A). Absence or presence of bacteria was later

confirmed by means of PCR amplification of bacterial

16S ribosomal DNA (Figure 7) using primers as

described by Weisburg et al. [28]. In liquid medium,

however, after 2 weeks only 45% of wells presented algal

growth and almost 95% of these displayed visible bacter-

ial growth. However, in this medium species that did not

grow on solid medium were successfully isolated. Cells

from the P3 cluster did not grow on solid growth med-

ium, although with some difficulty these microalgae were

able to proliferate in liquid medium. In fact, some strains

and even entire algal taxa (for example, dinoflagellates)

hardly grow on agar growth medium [12]. However, iso-

lation in solid medium showed obvious advantages, such

as (1) faster biomass growth at the early stages of the

scale-up process; (2) easy application and maintenance of

cultures, since in liquid medium microalgae need to be

kept afloat to promote growth efficiently; and (3) bacter-

ial growth is detected more easily.

The efficiency of the sorting procedure obtained in this

work (70%) was considerably higher than that reported

by Sensen et al. [25] for the removal of bacteria from uni-

algal cultures (20% to 30%). Global recovery, however,

was lower than reported by Doan et al. [20] in novel iso-

lates from an environmental water sample (82% to

100%). Still, sorting efficiency is highly dependent on the

original sample, including the starting group of species

and their abundance, thus demonstrating the importance

of the initial enrichment step. For instance, Sinigalliano

et al. [21] compared the isolation efficiency of dinoflagel-

lates between FACS and manual picking using a micro-

pipette and the former approach appeared to be less

efficient than the latter (0.5% vs 2%, respectively). This

could be due to the frailness of algae belonging to this

taxonomic group. The enrichment step can also lead to a

selective enrichment of some species. In our work, Algal

growth medium, which contains low levels of silica, was

used [29]. Therefore, domination of mixed cultures by

diatoms and other silicate-requiring algae was not

favored during the enrichment process.

To ensure algal growth and estimate the best starting

number of cells for an expedited recovery, different

Figure 4 Event density versus fluorescence in the FL2 channel. This result shows that all gated clusters emit distinct fluorescence signals,
suggesting the isolation of five different strains. Gates P4 and P5 present the highest density of events among all clusters. P1 = green; P2 =
light blue; P3 = red; P4 = yellow; P5 = dark blue.
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numbers of events (cell-containing droplets) were tested.

For each well 1, 2, 10 or 20 events were sorted. Interest-

ingly, the starting number of cells per well was not a

constraint in the scale-up procedure on solid medium.

Regardless of the number or events sorted per well,

visual growth was obtained after a 2-week incubation

period. Single cell sorting in solid medium (one event)

yielded a single axenic colony in most wells (Figure 6A),

which was easily transferred onto a Petri dish with solid

medium. Wells with > 1 event (2, 10, 20 events) gave

rise to a large number of colonies; however, all of them

presented visible bacterial growth (Figure 6B-D).

In liquid medium, after a 2-week incubation period

algal growth was only visible in the wells with 10 or 20

events. Most of the obtained cultures were not unialgal

and showed abundant bacterial contamination as

Figure 5 Cells from the P4 gate internalized BODIPY (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) in lipid bodies.
Cells were stained and sorted directly onto microscope slides after the sorting procedure. BODIPY dots could be observed with the FL1 channel
(B, D), and in the merged differential interference contrast (DIC) system + BODIPY fluorescence (A, C). We clearly detected that BODIPY
effectively stained lipid bodies in this strain (DIC in grey, BODIPY in green; scale bar = 5 μm).
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Figure 6 Sorted cells were able to grow on 96-well plates containing solid agar growth medium. After a 2-week incubation period,
sorting a single event resulted in an axenic microalgal colony (A). The growth of several microalgal colonies obtained from more than one
sorted event is shown in panels (B), (C) and (D). However, unlike in (A), these wells contained contaminating bacteria as well (brightfield images,
scale bar = 50 mm).
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verified by microscopic observation (data not shown).

Algal growth in wells with one or two events was only

visible after 4 weeks. A few of these cultures were, how-

ever, axenic, though at a very low frequency (5%).

Therefore, in liquid medium, increased culture growth

can be achieved by sorting more events, which results in

a faster scale-up, but the use of several replicates is

recommended when sorting to liquid medium to isolate

axenic cultures as this improves the scale-up procedure

efficiency. Overall, the scale-up procedure was consider-

ably faster in solid medium (4 weeks) than the required

period for achieving the same growth and culture

volume using liquid medium (7 weeks).

The fact that BODIPY cell staining did not affect cell

recovery in both solid and liquid medium is essential for

present and future work in the detection and isolation of

lipid hyper-producing algae. Although it has already been

reported that culturing cells after Nile red staining is pos-

sible [14,15], BODIPY presents several advantages when

compared with Nile red: (1) BODIPY is able to stain a

wide range of algae groups without the need of using

high concentrations of dimethylsulfoxide (DMSO) or

acetone to carry the dye in, which can be key to wider

and faster cell recovery and scale-up; and (2) BODIPY

preferentially traces lipid bodies instead of other cyto-

plasmic compartments [26].

Identification of microalgae

Although light and electron microscopy have been tradi-

tionally used to identify microalgae, small subunit riboso-

mal RNA gene (16S or 18S rDNA) sequences are

considered as an ideal tool in the identification of microor-

ganisms, including microalgae [30-32]. Thus, after the

scale-up procedure, isolated strains were identified by

microscopy and amplification with specific primers by

PCR of the 18S rDNA sequences. All cyanobacteria were

kindly identified by the microbiology company AquaExam

by means of microscopy. Isolates belong to three different

phyla (Table 1). Strains P4 and P2 are chlorophytes,

Figure 7 Axenicity assessment of established culture by means of 16S rDNA PCR amplification. The 16S rDNA was amplified with specific
primers as described by Weisburg et al. [28]. PCR products were separated by electrophoresis in a 1.5% agarose gel and were stained with
GelRed. Lane 1: negative control in which DNA was omitted. Lanes 2 and 3: PCR product derived from cultures scored visually as non-axenic
cultures. Lanes 4 and 5: PCR reaction from DNA samples of cultures scored visually as axenic cultures. Lane 6: positive control (Vibrio shiloi DNA
sample). Lane M: molecular weight marker (Gene Ruler 100 bp Plus DNA ladder, 100 to 3,000 bp; Fermentas GmbH, St. Leon-Rot, Germany).

Table 1 Strains isolated during the sorting procedure

Cluster Strain Phylum

P1 Unidentified

P2 Nannochlorum sp. Chlorophyta

P3 Unclassified chrysophyte Ochrophyta

P4 Tetraselmis sp. Chlorophyta

P5 Synechococcus sp. Cyanobacteria
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Tetraselmis sp. and Nannochlorum sp., respectively. The

P3 gate corresponded to an unclassified chrysophyte.

From the P5 gate one cyanobacterial strain of the genus

Synechococcus was successfully isolated. The monoalgal

status of the cultures was ensured by repeated subcultur-

ing from isolated colonies followed by 18S rDNA sequen-

cing, which yielded sequences 100% identical when

comparing different colonies of a given strain.

Upon its optimization, this method, coupling fluores-

cence activated cell sorting with BODIPY staining, was

efficiently applied to several water samples collected in

different marine habitats, namely salt marsh inlets (Ria

Formosa, Almargem) and former salt ponds near the

estuary of the Guadiana river used nowadays for fish

farming (Atlantik Fish), which resulted in the isolation

of 56 strains. From these, 12 fast-growing strains were

selected, isolated and successfully scaled up to higher

volumes (Table 2). The majority of strains isolated by

this method belong to the phylum Chlorophyta

(approximately 70%), Nannochloris and Tetraselmis

being the most abundant genera. During this work, only

10% of the isolated strains were diatoms due to the

unfavorable conditions of the initial enrichment step of

the water samples. Accordingly, only two diatom strains

(phylum Heterokontophyta) were successfully scaled up:

Nitzschia sp. and Cyclotella sp. Cyanobacteria was the

second most abundant phylum isolated by this method,

representing 20% of the total isolates and included Pseu-

danabaena sp., Leptolyngbya sp. and Synechococcus sp.

In order to isolate more cyanobacterial strains a differ-

ent gating method will be needed.

Growth and lipid assessment

In order to confirm the assessment of lipid-rich micro-

algae by BODIPY staining (Figure 3A, B), the growth

curve and total lipid contents of the Nannochlorum sp.

P2 and Tetraselmis sp. P4 strains were determined (Fig-

ure 8). Both strains presented high growth rate, reach-

ing the exponential growth stage in approximately 10

days and cell concentrations of about 2.5 × 108 (P2)

and 4.0 × 106 cells/ml (P4) in the stationary phase. The

disparity in number of cells at the stationary phase

between the two strains is most probably due to low

cell size of Nannochlorum sp. P2 (approximately 2 μm)

when compared to Tetraselmis sp. (approximately 9

μm). Total lipid concentration was significantly higher

(P < 0.01) in Tetraselmis sp. P4 (25.4% of dry weight) as

compared to Nannochlorum sp. P2 (18.1% of the dry

weight). These results confirm that cells derived from

the P4 cluster accumulate higher amounts of lipids as

anticipated by the fluorescence measurements obtained

during FACS.

Conclusions
Flow cytometry coupled with fluorescence activated cell

sorting is an efficient tool for isolating strains of micro-

algae, which can be used either as biodiesel raw mate-

rial, or as a source for bioactive compounds. Our FACS

approach is a user-friendly, fast procedure than most

common methods for the isolation of microalgae, with

the advantage of being able to obtain axenic, unialgal

cultures in a matter of weeks. This resulted in a 4-week

culture scale-up (instead of a 7-week scale-up) if cells

were sorted directly onto solid rather than liquid

medium.

A wide range of microalgae groups has already been

isolated by this method. This suggests that the method

described here is a promising high throughput proce-

dure to isolate lipid-rich strains as well as microalgae

for other biotechnological purposes. The gating proce-

dure and culture medium added in the initial enrich-

ment step are key to favor the isolation of fast-growing

microalgal taxa with high lipid contents.

Methods
Sampling and microalgal growth

Water sampling was performed in aquaculture ponds at

the facilities of Atlantik Fish SA on the south-eastern

coast of Portugal. In every sampling spot the water was

collected and stored in 1 l bottles and kept at room

temperature. At a later stage, the water samples were

transferred to 80 ml test tubes containing liquid Algal

growth medium, which was prepared with sterile sea-

water supplemented with an Algal stock solution con-

centrated 1,000 × [29]. Cultures were kept in an

incubator for 7 days at 21°C, with a 12:12 h dark/light

photoperiod, at a photon flux density of 80 μmol/m2/s.

Growth on solid medium was carried out in either Petri

dishes or 96-well plates containing Algal growth med-

ium solidified with 1.5% agar.

Table 2 Species and strains isolated throughout this

work, corresponding phylum and methods applied in the

identification of each strain

Strain Phylum Identification method

Pseudanabaena sp. Cyanobacteria Microscopy: AquaExam

Synechococcus sp. Cyanobacteria Microscopy: AquaExam

Leptolyngbya sp. Cyanobacteria Microscopy: AquaExam

Chlorella sp. Chlorophyta 18S rDNA sequencing

Tetraselmis sp. Chlorophyta 18S rDNA sequencing

Tetraselmis sp. Chlorophyta 18S rDNA sequencing

Tetraselmis sp. Chlorophyta 18S rDNA sequencing

Nannochlorum sp. Chlorophyta 18S rDNA sequencing

Nannochlorum sp. Chlorophyta 18S rDNA sequencing

Unclassified chrysophyte Ochrophyta 18S rDNA sequencing

Cyclotella sp. Heterokontophyta 18S rDNA sequencing

Nitzschia sp. Heterokontophyta 18S rDNA sequencing
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Cell staining

Lipid bodies were stained with a solvatochromic fluoro-

chrome, BODIPY 505/515 (Life Technologies Europe

BV, Porto, Portugal), as described by Cooper et al. [26].

Cells were stained with a 1 mM aqueous solution of

BODIPY dissolved in DMSO (0.2%) to attain a final

concentration of 1 μM. Upon addition of the fluoro-

chrome, tubes were vortexed for 1 minute and incu-

bated at room temperature in darkness for 10 minutes.

FACS

The flow cytometer used in our studies was a Becton

Dickinson FACS Aria II (BD Biosciences, Erembodegem,

Belgium). Fluorescence readings were performed by exci-

tation with a blue and red laser (488 and 633 nm, respec-

tively). The emission signal was measured in three

channels upon excitation with the blue laser: FL1 channel

centered at 530/30 nm; FL2 centered at 585/42 nm; and

FL3 centered at 695/40 nm. A fourth channel, FL4, regis-

tered the emission at 660/20 nm after excitation with the

red laser.

Samples were acquired with the software FACSDiva

version 6.1.3 (BD Biosciences, Erembodegem, Belgium).

After the acquisition of samples, images were treated

with the analysis software, Infinicyt 1.5.0 (Cytognos S.L.,

Santa Marta de Tormes, Spain).

The settings and compensations of all channels and

lasers were the same for all sorting procedures. The

flow cytometry sheath fluid used in all experiments was

sterile filtered seawater. Filters (PALL) used had a pore

size of 0.2 μm. Sorting was performed at 2,000 events/s

flow rate using ‘single cell’ sort precision mode, with a

100 μm nozzle.

Cells were sorted directly into wells of 96-well plates

containing 250 μl of either liquid or solid (agar) Algal

growth medium. In order to assess the best number of

cells needed to achieve visible culture growth in a feasible

time, sorting conditions were set in order to direct 1, 2,

10 or 20 droplets into each well. After the cell sorting

procedure, cells were incubated for 2 weeks in the same

incubator and growth conditions as described above.

Microscopy

Microscopic images were acquired in a Zeiss AXIOMA-

GER Z2 microscope, with a coollSNApHQ2 camera and

AxioVision software version 4.8 (Carl Zeiss MicroIma-

ging GmbH, Gõttingen, Germany), using the 100 × lens.

For the fluorescence images, we used Zeiss 38 He filter

set (Carl Zeiss MicroImaging GmbH, Gõttingen, Ger-

many) for fluorescein isothiocyanate (FITC) and the

transmitted light images were acquired using differential

interference contrast. Z stacks were acquired and the

resulting image was a maximum intensity projection of

the stacks. For the plate cultures the images where

acquired in a Zeiss SteREO Lumar.V12 stereoscope,

equipped with an Axiocam MRC, using AxioVision soft-

ware release 4.8 (Carl Zeiss MicroImaging GmbH, Gõt-

tingen, Germany). Images were treated using Image J

software (Research Service Branch, NIH, Bethesda, MD).

Culture scale-up

The scale-up procedure was carried out by streaking a

single colony from a well that did not show any signs of

bacterial growth onto a Petri dish containing solid Algal

growth medium. After 1 week axenic plates were

scrapped to 100 ml Erlenmeyer flasks with liquid Algal

growth medium. A week later the 100 ml culture was

transferred to 1 l reactors with aeration. In liquid med-

ium, the scale-up was performed by transferring the 250

μl of the 96-well plates into 5 ml test tubes containing 1

ml of liquid Algal growth medium under minor aera-

tion. Cells were allowed to grow for 1 week and were

then transferred successively to 20 ml test tubes, 100 ml

test tubes and finally 1 l reactors with aeration.

Figure 8 Growth curve of established isolates with potential application as lipid sources. Nannochlorum sp. P2 (A) and Tetraselmis sp. P4
(B) were able to grow exponentially and reach stationary phase in approximately 10 days. Cellular concentration was obtained upon cell
counting in a Neubauer chamber (n = 6).
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Gravimetric determination of total lipids

Lipid extraction was performed according to a modified

protocol by Bligh and Dyer [33]. Briefly, the obtained algal

biomass was homogenized at room temperature with an

IKA Ultra-Turrax disperser (IKA-Werke GmbH, Staufen,

Germany), in a mixture of chloroform, methanol and

water (2:2:1). The mixture was centrifuged to allow phase

separation, and a known volume of the organic phase was

pipetted into a new preweighed tube. The extract was

then evaporated until dryness in a warm bath (50°C) and

weighed carefully to estimate lipid contents.

Taxonomic identification

The resulting unialgal cultures were identified by optical

microscopy and 18S rDNA sequencing. DNA extraction

was performed with the EZNA DNA plant extraction kit

(Omega Bio-Tek, Norcross, GA) according to the manu-

facturer’s procedure. The obtained DNA was amplified

by PCR with specific primers (Table 3) and sequenced at

an in-house DNA sequencing facility equipped with an

Applied Biosystems 3130XL DNA sequencer (Life Tech-

nologies BV, Porto, Portugal).
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