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In this investigation, thermal radiation effect on MHD nonlinear convective micropolar couple stress nanofluid flow by non-
Fourier’s-law heat flux model past a stretching sheet with the effects of diffusion-thermo, thermal-diffusion, and first-order
chemical reaction rate is reported. &e robust numerical method called the Galerkin finite element method is applied to solve the
proposed fluid model. We applied grid-invariance test to approve the convergence of the series solution. &e effect of the various
pertinent variables on velocity, angular velocity, temperature, concentration, local skin friction, local wall couple stress, local
Nusselt number, and local Sherwood number is analyzed in both graphical and tabular forms. &e range of the major relevant
parameters used for analysis of the present study was adopted from different existing literatures by taking into consideration the
history of the parameters and is given by 0.07≤Pr≤ 7.0, 0.0≤ λ, ε≤ 1.0, 0.0≤Rd, Df , Sr, K, ≤ 1.5, 0.0≤ cE ≤ 0.9,
0.9≤ Sc≤ 1.5, 0.5≤M≤ 1.5, 0.0≤ β≤ 1.0, 0.2≤Nb≤ 0.4, 0.1≤Nt≤ 0.3.&e result obtained in this study is compared with that in
the available literatures to confirm the validity of the present numerical method. Our result shows that the heat and mass transfer
in the flow region of micropolar couple stress fluid can be enhanced by boosting the radiation parameters.

1. Introduction

Numerous mathematical models were proposed to study the
rheological properties of non-Newtonian fluids. &e fluid
model pioneered by Eringen [1] in 1996 revealed the exis-
tence of microscopic effects resulting from the local struc-
ture and micromotion of the fluid constituents. Moreover,
they can sustain couple stresses and comprise the Newtonian
models as a special case. &e importance of heat and mass
transfer and micropolar fluid flow is particularly evident in
new and emerging areas of materials processing. Materials
such as polymers, alloys, ceramics, composites, semicon-
ductors, and optical materials need thermal energy for
fabrication. For instance, temperature control helps to en-
sure the product quality and consistent production capacity
in the polymer extrusion process. It is due to this fact that the
heat and mass transfer in the boundary layer flow of non-
Newtonian fluid with diverse effects of parameters attracted
scholars from all corners [2–6]. &ese relevant parameters
are used to control the heat and mass transfer during the

extrusion process. In some studies, non-Fourier’s-law heat
flux model is applied to govern the heat and mass transfer in
the boundary layer flow region [7, 8].

&ermally radiative fluid flows are usually encountered
when the difference between the temperature at the surface
of the sheet and the ambient temperature is high. In nu-
merous industrial processes, the thermal boundary layer
thickness can be altered by the use of the thermal radiation.
Examples of such industrial processes include missile
technology, nuclear reactors, satellites, power plants, and gas
turbines. &e effect of radiation parameters in different
boundary layer flow regions has been introduced by nu-
merous scholars [9–14]. Mixed convection can be consid-
ered as a combination of free and forced convection which
occur due to a significant difference in temperature between
the surface (wall) and the ambient fluid. Mixed convection
has an essential role when the buoyancy force considerably
disrupts the flow and thermal fields. Ramzan et al. [15]
studied a mixed convection viscoelastic nanofluids past
porous media considering Soret-Dufour effect. &ey
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employed a homotopy analysis method to solve the pro-
posed problem. Some authors [16–18] analyzed the influence
of mixed convection parameters on the boundary layer flow
of Oldroyd-B fluid. Most recently, Ibrahim and Gadisa [19]
reported the nonlinear convective flow of a couple stress-
micropolar nanofluid with the effects of slip and convective
boundary conditions.

On the other hand, in chemical process engineering,
Dufour and Soret have a vital application. Moorthy and
Senthilvadivu [20] suggested that when heat and mass
transfer processes take place at the same time between the
fluxes, the driving potential is of more complex nature, as
energy flux can be generated not only by temperature
gradients but also by composition gradients. According to
the assumption of Fick’s law or Fourier’s, Soret and Dufour
effects are typically dilapidated in heat and mass transfer
processes. &ere are, however, exceptions in certain cir-
cumstances. For instance, the Soret effect can be utilized for
isotope separation and in mixtures between gases with ex-
tremely light molecular weight like H2 and He. For average
molecular weights like N2 and air, the Dufour effect was
found to be of a significant magnitude such that it cannot be
neglected [21]. Ahammad and Mollah [22] introduced the
concepts of MHD free convection flow and mass transfer
over a stretching sheet with Dufour and Soret effects. &ey
solved numerically by applying Runge-Kuta with the
shooting technique. Soret and Dufour effect on MHD
Casson fluid past a stretching sheet was studied by Hayat
et al. [23]. Later on, Ali and Shah [24] reported free-con-
vection MHD micropolar fluid considering Soret and
Dufour effects. Following this, different scholars [25–29]
scrutinized the effects of Soret and Dufour on micropolar
fluid. Most recently, Bhubaneswar et al. [30] forwarded the
concept of cross diffusion effects on MHD convection of
Casson-Williamson fluid past a stretching surface with

radiation and chemical reaction. Ibrahim and Gadisa [19]
also analyzed the nonlinear convective flow of a couple
stress-micropolar nanofluids with non-Fourier heat flux
model past the stretching surface in the presence of slip and
convective boundary conditions.

&e present scrutiny is motivated by the results of the last
two papers. As far as we revised and mentioned above, the
problem of nonlinear convective flow of micropolar couple
stress nanofluid using the Cattaneo-Christov model past the
stretching sheet with the effects of thermal radiation and
Soret, Dufour, and chemical reaction is still unnoticed.&us,
the main objective of the present study is to fill this gap. We
employed the robust numerical technique called GFEM
explained in equations (21)–(31). We performed the grid-
independence test or grid convergence test to confirm the
convergence of the series solution. &e effect of the relevant
parameters on linear velocity, angular velocity (micro-
rotation), temperature, concentration, local skin friction,
local wall couple stress, local Nusselt number, and local
Sherwood number is elaborated in both graphical and
tabular forms.

2. Problem Formulation

In this study, we consider the two-dimensional steady in-
compressible laminar MHD boundary layer flow of a
nonlinear convective micropolar couple stress nanofluid
using the Cattaneo-Christov heat flux model in the presence
of thermal radiation with the effects of Soret, Dufour, and
chemical reactions past the stretching sheet as plotted in
Figure 1 below. &e sheet is stretched linearly with velocity
uw(x) � ax, where a is constant. Applying these supposi-
tions, the governing boundary layer equations with Bous-
sinesq approximations are as follows (Wubshet and Gosa
[19]):
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with the following boundary conditions at the surface (i.e.,
y � 0). u � uw(x) � ax, v � 0, N � − 0.5(zu/zy),
T � TW, C � CW, and boundary conditions at the far field
(i.e., y⟶ C∞):

u⟶ 0, N⟶ 0, T⟶ T∞, andC⟶ C∞, (6)

where u and v are the velocity components in the x and y
directions, ] � (μ/ρf) is the kinematic viscosity,
]′ � (n/ρf) is the couple stress viscosity, n is the couple
stress viscosity parameter, μ is the dynamic viscosity, k is the
vortex viscosity, kf is the thermal conductivity of the fluid, j
is the microinertia density,Dm is the mass diffusivity, and Ω
is the spin-gradient viscosity and given by
Ω � (μ + (k/2))j � μ(1 + (β/2))j, where β � (k/μ), uw is
the stretching velocity, g is the gravitational acceleration, λ1
and λ2 are the relaxation time and the retardation time,
respectively, λE and λC are the Deborah numbers with re-
spect to relaxation time of heat flux and nanoparticles
concentration, respectively, Λ1 andΛ2 are the linear and
nonlinear thermal expansion coefficients due to tempera-
ture, Λ3 andΛ4 are the linear and nonlinear thermal ex-
pansion coefficients due to concentration, ρf is the density
of base liquid, cs is the concentration susceptibility, cp is the
specific heat capacity of the base fluid, T is the temperature,
C is the concentration, σ is the electric conductivity, B20 is the
magnetic parameter, k1 is the reaction rate, kT is the
thermal-diffusion ratio, Tm is the mean fluid temperature,
qr � − (4/3)(σ∗/k∗)(zT4/zy) is the radiative heat flux, where

σ∗ is the Stefan-Boltzmann constant, and k∗ is the mean
absorption coefficient.

&e coupled nonlinear partial differential equations
(PDEs) 1 − 5 with boundary conditions (6) above can be
reduced to the appropriate coupled nonlinear ordinary
differential equations (ODEs) by using the following simi-
larity and dimensionless variables.
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&e continuity equation can be satisfied if we define the
stream functions as follows:

u � zψ

zy
, v � − zψ

zx
. (8)

Using the introduced similarity transformation above
(7), we reduced equations (1)–(5) with the boundary con-
dition (6) to the following coupled highly nonlinear ODEs:
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Figure 1: Geometry of the flow problem.
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with the corresponding boundary conditions:

f(0) � 0,
f′(0) � 1,
p(0) � − 0.5f″(0),
θ(0) � 1,
ϕ(0) � 1 at η � 0 and,
f′(η)⟶ 0,

p(η)⟶ 0,

θ(η)⟶ 0,

ϕ(η)⟶ 0 as η⟶∞.

(10)

Here, we affirm the dimensionless parameters as follows:

Pr �
ρf]fcp

kf
,

cE � λEa,

M � σB0
aρf

,

K � ]′a
]

,

β � k
μ
,

λ � Gr
R2ex

,

βt �
Λ2
Λ1

Tw − T∞( ),
βc �
Λ4
Λ3

Cw − C∞( ),
N∗ � Gr

∗

Gr

Gr∗ � gΔ3
]
2 Cw − C∞( )x3,

Sc � v

Dm

,

ε � k1
a
,

Gr � gΛ1
]
2 Tw − T∞( )x3,

Rd �
4σ∗T3∞
kfk
∗ ,

Df � DmKT

vcfcp

Cw − C∞
Tw − T∞

( ),

Sr � DmKT

vTm

Tw − T∞
Cw − C∞

( ),

Nb � DBσ Cw − C∞( )
]

,

Nt � DTσ Tw − T∞( )
T∞]

,

(11)

where Pr is the Prandtl number, cE is the Deborah number
with respect to the relaxation time of the heat flux,M is the
magnetic field parameter, λ is the mixed convection pa-
rameter/local buoyancy parameter, βt is the nonlinear
convection parameter due to temperature, βc is the non-
linear convection parameter due to concentration,N∗ is the
ratio of concentration to thermal buoyancy forces, Gr is the
Grashof number in terms of temperature, Gr∗ is the Grashof
number in terms of concentration, Sc is the Schmidt
number, Sr is the Soret, Df is the Dufour number, ε is the
chemical reaction rate, β is the material parameter, K is the
couple stress parameter, Nb is the Brownian motion pa-
rameter, and Nt is the thermophoresis parameter.

&e engineering physical quantities of interest in this
paper are skin friction coefficient, wall couple stress, Nusselt
number, and Sherwood number defined as follows:
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where the wall shear stress τw, wall heat flux qw, and wall
mass flux qnp are defined as follows:

After substituting the values introduced in the similarity
transformation above, we get
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3. Numerical Simulations

3.1. Finite Element Method. We applied the robust nu-
merical technique called the Galerkin finite element method
to obtain the solution of coupled nonlinear partial differ-
ential equations governing the boundary layer flow. &e
fundamental steps needed to apply GFEM are dividing the
domain into elements/discretization of the domain, the
element formulation/derivation of the element equation, the
assemblage of the element equation into its global form, and
the imposition of boundary conditions and solving a system
of linear equations, respectively, (see [19]). &e following
steps are crucial to apply the finite element method.

3.1.1. Discretization of the Domain. &e fundamental concept
of the FEM is to divide the domain or region of the problem
into small connected parts, called finite elements. &e collec-
tion of elements is called the finite element mesh. &ese finite
elements are connected in a nonoverlappingmanner, such that
they completely cover the entire space of the problem.

3.1.2. Generation of the Element Equations

(i) A typical element is isolated from the mesh and the
variational formulation of the given problem is
constructed over the typical element.

(ii) Over an element, an approximate solution of the
variational problem is supposed, and by substituting
this in the system, the element equations are
generated.

(iii) &e element matrix, which is also known as the
stiffness matrix, is constructed by using the element
interpolation functions.

3.1.3. Assembly of the Element Equations. &e algebraic
equations obtained are assembled by imposing the inter-
element continuity conditions. &is yields a large number of
algebraic equations known as the global finite element
model, which govern the whole domain.

3.1.4. Imposition of Boundary Conditions. On the assembled
equations, both Dirichlet and Neumann boundary condi-
tions are imposed.

3.1.5. Solution of the Assembled Equations. &e assembled
equations so obtained can be solved by any of the numerical
techniques, namely, LU decomposition method, Gauss
elimination method, and so forth.

Assuming,

f′ � g. (15)

&e system of differential equations above will be re-
duced to the following equations:

(1 + β)g″ + fg′ − g2 + βp′ − Kg(iv) − Mg

+ λθ 1 + βtθ( ) + λN∗ϕ 1 + βcϕ( ) � 0, (16)
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with the following corresponding boundary conditions:

f(0) � 0,
g(0) � 1,
p(0) � − 0.5g′(0),
θ(0) � 1,
ϕ(0) � 1 at η � 0, and,
g(η)⟶ 0,

p(η)⟶ 0,

θ(η)⟶ 0,

ϕ(η)⟶ 0 as η⟶∞.

(20)

3.2. Variational Formulation. &e variational formulations
used in solving differential equations by the finite element
method are considered in detail by different scholars
[19, 31–34].

&e variational formulation related to the equations
(15)–(19) over a typical element [η, ηe+1] is given by

∫ηe− 1

ηe

w1 f′ − g{ }dη � 0, (21)

∫ηe+1

ηe

w2{(1 + β)g″ + fg′ − g2 + βp′ − Kf(iv)

− Mg + λθ 1 + βtθ( ) + λN∗ϕ 1 + βcϕ( )}dη � 0, (22)

∫ηe+1

ηe

w3 1 + β

2
( )p″ − β 2p + g′( ) + fp′ − gp{ }dη � 0,

(23)
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∫η+1
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(25)
subjected to the boundary condition (20), where w1w2w3,
w4, andw5 are arbitrary weight functions may be regarded as
variations in f, g, p, θ , and ϕ, respectively.

3.3. Finite Element Formulation. At the third step, we look
for the approximation solution of the following form:

f �∑3
j�1
fjψj,

g �∑3
j�1
gjψj,

p �∑3
j�1
pjψj,

θ �∑3
j�1

θjψj,

ϕ �∑3
j�1

ϕjψj,

(26)

with w1 � w2 � w3 � w4 � w5 � wi(i � 1, 2, 3), the qua-
dratic shape functions ψi are defined as

ψe1 �
ηe+1 − η( ) ηe+1 + ηe − 2η( )

ηe+1 − ηe( )2 ,

ψe2 �
4 η − ηe( ) ηe+1 − η( )

ηe+1 − ηe( )2 ,
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ηe+1 − ηe( )2 .

(27)

where ηe ≤ η≤ ηe+1.
At the fourth step, substituting the approximate solution

of equation (26) into equations (21)–(25), we acquire the
finite element model equation which is given by

Ke[ ] Ye[ ] � Fe[ ], (28)

where [Ke] denotes the elemental stiffness matrix, [Ye] is the
vector of elemental nodal variables (unknowns), and [Fe] is
the force vector expressed as follow:

Ke[ ] �
K11[ ] K12[ ] K13[ ] K14[ ] K15[ ]
K21[ ] K22[ ] K23[ ] K24[ ] K25[ ]
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Fe[ ] �
r1{ }
r2{ }
r3{ }
r4{ }
r5{ }
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,

(29)

where each [Kmn] is of the order 3x3 and
[rm], (m, n � 1, 2.3, 4, 5) is of order 3x1. &ese matrices are
defined as

K11
ij � ∫ηe+1

ηe

ψi
zψj

zη
dη,

K12
ij � − ∫ηe+1

ηe

ψiψjdη,

K13
ij � 0, K

14
ij � 0, K

15
ij � 0,

K22
ij � − (1 + β)∫ηe+1

ηe

zψi
zη

zψj

zη
dη + ∫ηe+1

ηe

ψif
zψj

zη
dη

− ∫ηe+1

ηe

ψigψjdη − K∫ηe+1

ηe

z2ψi

zη2
z2ψj

zη2
dη

− M∫ηe+1

ηe

ψiψjdη,

K23
ij � β∫ηe+1

ηe

ψi
zψj

zη
,

K21
ij � 0,

K24
ij � λ∫ηe+1

ηe

ψiψjdη + λβt ∫ηe+1

ηe

ψiθψjdη,

K25
ij � λN∗ ∫ηe+1

ηe

ψiψjdη + λN∗βc ∫ηe+1

ηe

ψiϕψjdη,

K31
ij � K

34
ij � K

35
ij � 0,
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K32
ij � − β∫ηe+1

ηe

ψi
zψj

zη
dη,

K33
ij � − 1 + β

2
( )∫ηe+1

ηe

zψi
zη

zψj

zη
dη − 2β∫ηe+1

ηe

ψiψjdη

+ ∫ηe+1

ηe

ψif
zψj

zη
dη − ∫ηe+1

ηe

ψigψjdη,

K44
ij � −

1

Pr
1 + 4Rd

3
( )∫ηe+1

ηe

zψi
zη

zψj

zη
dη + ∫ηe+1

ηe

ψif
zψj

zη
dη

− cE ∫ηe+1

ηe

ψifg
zψj

zη
dη − cE ∫ηe+1

ηe

ψiff
z2ψj

zη2
dη

+Nb∫ηe+1

ηe

ψiϕ′
zψj

zη
dη +Nt∫ηe+1

ηe

ψiθ′
zψj

zη
dη,

K45 � − Df ∫ηe+1

ηe

zψi
zη

zψj

zη
dη,

K41 � K42 � K43 � K51 � K52 � K53 � 0,

K54
ij � − Sr + Nt

Nb
( )∫ηe+1

ηe

zψi
zη

zψi
zη

dη,

K55
ij � −

1

Sc
∫ηe+1

ηe

zψi
zη

zψi
zη

dη + ∫ηe+1

ηe

ψif
zψi
zη

dη

− ε∫ηe+1

ηe

ψiψjdη,

r1i � 0,

r2i � − (1 + β) ψi
zg

zη
( )ηe+1

ηe

,

r3i � − 1 + β

2
( ) ψi

zp

zη
( )ηe+1

ηe

,

r4i � −
1

Pr
1 + 4Rd

3
( ) ψi

zθ

zη
( )ηe+1

ηe

− Df ψi
zϕ

zη
( )ηe+1

ηe

,

r5i � −
1

Sc
ψi
zϕ

zη
+ Srψi

zθ

zη
( )ηe+1

ηe

,

(30)
where

f′ �∑3
j�1
fj

zψj

zη
,

g′ �∑3
j�1
gj

zψj

zη
,

p′ �∑3
j�1
pj

zψj

zη
,

θ′ �∑3
j�1

θj
zψj

zη
,

ϕ′ �∑3
j�1

ϕ′
zψj

zη
.

(31)

3.4. Assembly of the System of Equations. At this step, we
assemble the elemental systems to obtain the global system,
given as follows:

[K] Y{ } � F{ }. (32)

&is results in a large number of algebraic equations that
govern the entire domain. And then, the global matrix will
be modified by imposing the boundary conditions defined in
equation (20). &e last step is solving the assembled system
of equations by the standard techniques like the Gauss
elimination method, LU decomposition, Gauss Jordan
method, or any iterative scheme.

4. Results and Discussion

&e main target of the present study is to analyze the effects
of thermal radiation, diffusion-thermo (Dufour), thermal-
diffusion (Soret), chemical reaction, and Cattaneo-Christov
model on nonlinear convective MHD micropolar couple
stress nanofluids past a linearly stretching surface. &e ro-
bust numerical method called the Galerkin finite element
method (GFEM) is applied to solve the proposed model. We
performed grid-invariance test or grid convergence test to
confirm the convergence of the series solution.&e impact of
these pertinent parameters on velocity, angular velocity,
temperature, concentration, local skin friction, local wall
couple stress, local Nusselt number, and local Sherwood
number was analyzed in both graphical and tabular forms.
&e default values of the present parameters used to plot the
graphs are chosen based on the existing literature and pa-
rameter history and given below (Wubshet and Gosa [19]):
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Pr � 0.733,

λ � 0, 2,

ε � o.2,

K � 0.3,

cE � 0.5,

Sc � 0.9,

M � 0.5,

Sr � o.5,

Df � 0.4,

βt � βc � 0.2,

N∗ � 0.3,

Rd � 0.4,

β � 1.0,

Nb � 0.2,

Nt � 0.1.

(33)

Figures 2 and 3 are plotted to anticipate the control of
radiation parameter Rd on linear velocity and temperature
distributions. Enlarging radiation parameter in the
boundary layer flow of micropolar couple stress nanofluid is
to enhance the velocity of the fluid flow as revealed in
Figure 2. Radiation in the boundary layer flow region rises as
Rd increases; this in turn result enlargement in thermal
boundary layer thickness as indicated in Figure 3. &at is, to
increase the radiation parameter is to initiate the temper-
ature rise of the fluid flow. &e Dufour parameter also
produces similar effects on the velocity and temperature
profiles of the laminar flow as illustrated in Figures 4 and 5. It
is shown that the larger values of Df influenced the fluid to
flow with faster speed and higher temperature. &e en-
hancement of the Df caused increases in the concentration
gradient which caused mass diffusion taking place more
rapidly. In this circumstance, the rate of energy transfer
associated with the particles became higher. &at is why the
temperature profile was boosted in the boundary layer flow
region as plotted in Figure 5. &e Dufour number has
influenced insignificantly the concentration species to be
lower in the laminar flow as indicated in Figure 6.

Figures 7 and 8 notice the impacts of Soret number on
the concentration profile and temperature profile, respec-
tively. For larger values of Soret parameter, the concen-
tration contour increases significantly whereas the
temperature contour decreases insignificantly as noted in
Figures 7 and 8, respectively. Figures 9–11 illustrated the
impacts of the material parameter β on linear velocity,
angular velocity, and temperature of the micropolar-couple
stress fluid, respectively. It is revealed that increasing the
material parameter β is to increase the linear velocity of the
fluid and lower temperature in the flow region. In this

circumstance, the angular velocity has not shown consis-
tence as plotted in Figure 10.&is result is in good agreement
with the study reported by Wubshet Ibrahim and Gosa
Gadisa [19]. As plotted in Figures 12 and 13, the couple stress
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Figure 2: Velocity distribution for different values of radiation
parameter.
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Figure 3: Temperature distribution for different values of radiation
parameter.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Df = 0.0, 0.5, 1.0, 1.5

f′
(η

)

η

Figure 4: Velocity distribution for different values of Dufour
parameter.
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parameter K has quite opposite effect on velocity and
temperature of the boundary layer flow. &e larger value in
the couple stress parameter has the tendency to resist the

fluid flow as noted in Figure 12 and caused higher tem-
perature as shown in Figure 13. &e control of mixed
convection parameter λ on velocity, angular velocity,
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Figure 5: Temperature distribution for different values of Dufour
parameter.
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Figure 6: Concentration distribution for different values of Dufour
parameter.
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Figure 7: Concentration distribution for different values of Soret
parameter.
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Figure 8: Temperature distribution for different values of Soret
parameter.
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Figure 9: Velocity distribution for different values of material
parameters.
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Figure 10: Angular velocity distribution for different values of
material parameters.
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temperature, and concentration distributions is plotted in
Figures 14–17. It is revealed that, in Figure 14, the en-
hancement in the mixed convection parameter initiates the
fluid to flow more rapidly. &is is due to the fact that the

higher mixed convection parameter associates with the
larger thermal buoyancy force which is responsible for the
improvement of the linear velocity distribution and decline
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Figure 11: Temperature distribution for different values of material
parameters.
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Figure 12: Velocity distribution for different values of couple stress
parameters.
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Figure 13: Temperature distribution for different values of couple
stress parameters.
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Figure 14: Velocity distribution for different values of mixed
convection parameters.
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Figure 15: Angular velocity distribution for different values of
mixed convection parameters.
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Figure 16: Temperature distribution for different values of mixed
convection parameters.
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in temperature and concentration distribution contours
(Figures 16 and 17). However, for the increasing values of
mixed convection parameter, the angular velocity profile
contour has not shown consistency as indicated in Figure 15.

It is observed that the microrotation distribution very close
to the sheet declines and at some distant from the sheet
varies quite opposite with the larger values of mixed con-
vection parameter. Figure 18 demonstrates the influence of
first-order chemical reaction rate ε on concentration con-
tour. It shows that concentration diminishes on elevated
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Figure 17: Concentration distribution for different values of mixed
convection parameters.
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Figure 18: Concentration distribution for different values of
chemical reaction parameters.
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Figure 19: Temperature distribution for different values of cE.
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Figure 20: Local skin friction for different values of Rd versus λ.
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Figure 21: Local wall couple stress for different values of Rd versus
λ.
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Figure 22: Local Nusselt number for different values ofRd versus λ.
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values of chemical reaction parameters. Figure 19 inspects
that the temperature in the boundary layer region is higher
in Fourier’s model than in the Cattaneo-Christov heat flux
model.

Figures 20–23 are plotted to analyse the effects of ra-
diation parameter Rd versus mixed convection parameter on
local skin friction, local wall stress, local Nusselt number,
and local Sherwood number, respectively. It is concluded

that, for higher values of radiation parameter in the
boundary layer region of the flow, both local skin friction
and Local wall couple stress decrease insignificantly, while
both heat and mass transfer significantly increase. Figure 24
illustrates the effects of Dufour number Df versus cE on
heat transfer rate in the laminar flow. It is observed that, with
the rise of Dufour number (diffusion-thermo), the heat
transfer decrease for micropolar couple stress nanofluid and
Soret number (thermal-diffusion) has a decreasing impact
on the mass transfer rate as indicated in Figure 25.
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Figure 23: Local Sherwood number for different values of Rd
versus λ.
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Figure 24: Local Nusselt number for different values of Df versus
cE.
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Figure 25: Local Sherwood number for different values of Sr
versus ε.
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Figure 26: Grid-independence test showing every fifth element of
the mesh for velocity profile.
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Figure 27: Grid-independence test showing every fifth element of
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&e grid-invariance test is performed to maintain the
four-decimal point accuracy. It is also called the grid-in-
variance test or grid convergence test. We used this test to
improve the results using a successively smaller step size for
the calculations. We started by choosing a coarser mesh with
100 number of elements having step size of h � 0.1. &en,
enhancing the number of elements ten times, we obtained a
medium mesh with 1000 elements having a step size of
h � 0.01. Finally, we have a fine mesh of 1500 elements with
step size of h � 0.0067 and get four-decimal point-accuracy
in velocity, angular velocity, temperature, and nanoparticle
concentration values. After increasing the number of

elements more than 1500, the accuracy is not affected but
only to enlarge the compilation time. &is is shown in
Tables 1–4. Figures 26–29 are plotted to show the
course, medium, and fine meshes for every fifth element of
mesh.

&e assembled system of equations above is nonlinear in
nature, and therefore, the iterative scheme is used to find the
numerical solution. &e system is linearized after incorpo-
rating the functions f, g, p, θ, andϕ which are expected to
be known at the beginning of the iteration. &e iterative
process is completed or terminated when the following
condition (convergence formula) is satisfied:
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Figure 28: Grid-independence test showing every fifth element of the mesh for temperature profile.
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Figure 29: Grid-independence test showing every fifth element of the mesh for concentration profile.
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∑
i,j

χn
∗

i,j − χn
∗− 1
i,j

∣∣∣∣∣ ∣∣∣∣∣≤ 10− 4 , where χ denotes eitherf, g, p, θ , and ϕ and n∗ stands for the iterative step. (34)

Excellent convergence has been realized for all results,
and it has been confirmed through the tabular and graphical
forms for grid-invariance test mentioned above.

Table 5 indicates that our result is in good agreement
with that in the existing literature, whereas Table 6 elaborates
the effects with different parameters on local skin friction,

Table 1: Grid-independence test for velocity distribution.

|f″(η)|
η Coarse mesh with 100 elements (h � 0.1) Medium mesh with 1000 elements (h � 0.01) Fine mesh with 1500 elements (h � 0.0067)
1.5 1.09251 1.09254 1.09269
2.0 0.98187 0.98184 0.98184
2.5 0.93139 0.93135 0.93134
3.0 0.90580 0.90575 0.90574
3.5 0.89176 0.89169 0.89170
4.0 0.88359 0.88351 0.88350
4.5 0.87868 0.87857 0.87856
5.0 0.87567 0.87554 0.87553
5.5 0.87382 0.87366 0.87366
6.0 0.87270 0.87251 0.87251
6.5 0.87203 0.87181 0.87181
7.0 0.87164 0.87138 0.87138
7.5 0.87113 0.87113 0.87113

Table 2: Grid-independence test for angular velocity distribution.

|p′(η)|
η Coarse mesh with 100 elements (h � 0.1) Medium mesh with 1000 elements (h � 0.01) Fine mesh with 1500 elements (h � 0.0067)
1.5 0.49407 0.49408 0.49417
2.0 0.41274 0.41271 0.41270
2.5 0.38452 0.38447 0.38447
3.0 0.37363 0.37358 0.37357
3.5 0.36909 0.36902 0.36902
4.0 0.36707 0.36697 0.36697
4.5 0.36613 0.36600 0.36600
5.0 0.36568 0.36552 0.36552
5.5 0.36546 0.36528 0.36528
6.0 0.36537 0.36515 0.36515
6.5 0.36534 0.36509 0.36509
7.0 0.36535 0.36505 0.36505
7.5 0.36503 0.36504 0.36503

Table 3: Grid-independence test for temperature distribution.

|θ′(η)|
η Coarse mesh with 100 elements (h � 0.4) Medium mesh with 1000 elements (h � 0.01) Fine mesh with 1500 elements (h � 0.0067)
1.5 0.88770 0.88770 0.88770
2.0 0.67683 0.67683 0.67683
2.5 0.55536 0.55536 0.55536
3.0 0.47965 0.47965 0.47965
3.5 0.43072 0.43071 0.43071
4.0 0.39873 0.39873 0.39873
4.5 0.37789 0.37789 0.37789
5.0 0.36447 0.36446 0.36446
5.5 0.35594 0.35594 0.35594
6.0 0.35061 0.35061 0.35061
6.5 0.34734 0.34734 0.34734
7.0 0.34536 0.34536 0.34536
7.5 0.34418 0.34418 0.34418
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Table 4: Grid-independence test for concentration distribution.

|ϕ′(η)|
η Coarse mesh with 100 elements (h � 0.1) Medium mesh with 1000 elements (h � 0.01) Fine mesh with 1500 elements (h � 0.0067)
1.5 0.91868 0.91867 0.91867
2.0 0.83704 0.83703 0.83703
2.5 0.80762 0.80761 0.80761
3.0 0.79926 0.79924 0.79924
3.5 0.79940 0.79938 0.79938
4.0 0.80253 0.80251 0.80251
4.5 0.80622 0.80619 0.80619
5.0 0.80947 0.80944 0.80944
5.5 0.81200 0.81196 0.81196
6.0 0.81383 0.81378 0.81378
6.5 0.81508 0.81502 0.81502
7.0 0.81591 0.81584 0.81584
7.5 0.81636 0.81636 0.81636

Table 5: Comparison of the values of heat transfer rate − θ′(0) forε � β � Κ �M � cE � λ � Sr � Df � Nt � Nb � 0.

Pr [35] [36] [37] Present solution

0.07 0.0663 0.0656 0.0656 0.0667
0.20 0.1691 0.1691 0.1691 0.1691
0.70 0.4539 0.4539 0.5349 0.4539
2.00 0.9113 0.9114 0.9114 0.9113
7.00 1.8954 1.8954 1.8905 1.8954

Table 6: Numerical values of local skin friction coefficient − f″(0), local wall couple stress − p′(0), local Nusselt number –θ′(0), and
local Sherwood number − ϕ′(0).

Pr λ Κ cE M Rd Sr Df Sc β ε Nt Nb − f″(0) − p′(0) –θ′(0) − ϕ′(0)
0.72 0.2 0.2 0.3 0.5 0.3 0.3 0.4 0.9 1 0.2 0.1 0.2 0.87083 0.36505 0.35420 0.77366
1.00 — — — — — — — — — — — — 0.87975 0.40984 0.40984 0.78631
1.20 — — — — — — — — — — — — 0.88446 0.36802 0.44153 0.79387
0.72 0.5 — — — — — — — — — — — 0.70965 0.28433 0.39561 0.80501
— 1.0 — — — — — — — — — — — 0.46798 0.15266 0.44175 0.84252
— 0.2 0.5 — — — — — — — — — — 0.87083 0.36505 0.35420 0.77366
— — 1.0 — — — — — — — — — — 0.87083 0.36505 0.35420 0.77366
— — 0.2 0.5 — — — — — — — — — 0.87326 0.36540 0.36315 0.77436
— — — 1.0 — — — — — — — — — 0.83617 0.32736 0.45194 0.68164
— — — 0.3 1.0 — — — — — — — — 1.02372 0.44399 0.31913 0.74550
— — — — 1.5 — — — — — — — — 1.08394 0.44947 0.33095 0.65811
— — — — 0.5 0.6 — — — — — — — 0.86399 0.36376 0.40495 0.76530
— — — — — 0.9 — — — — — — — 0.85877 0.36285 0.45056 0.75959
— — — — — 0.3 0.6 — — — — — — 0.87075 0.36498 0.34987 0.79075
— — — — — — 0.9 — — — — — — 0.87068 0.36491 0.34575 0.80706
— — — — — — 0.3 0.8 — — — — — 0.86065 0.36190 0.22236 0.72602
— — — — — — — 1.2 — — — — — 0.85112 0.35902 0.10804 0.68622
— — — — — — — 0.4 1.2 — — — — 0.87074 0.36489 0.32551 0.88681
— — — — — — — — 1.5 — — — — 0.87066 0.36476 0.30043 0.98566
— — — — — — — — 0.9 1.5 — — — 0.81175 0.31635 0.35527 0.82618
— — — — — — — — — 2.0 — — — 0.76402 0.27927 0.36653 0.83395
— — — — — — — — — 1.0 0.5 — — 0.87077 0.36495 0.32069 0.90032
— — — — — — — — — — 0.8 — — 0.87070 0.36486 0.29019 1.01546
— — — — — — — — — — — 0.2 — 0.86991 0.36468 0.32836 0.83265
— — — — — — — — — — — 0.3 — 0.86901 0.36436 0.31559 0.84398
— — — — — — — — — — — 0.2 0.3 0.87012 0.36480 0.33036 0.80542
— — — — — — — — — — — — 0.4 0.86942 0.36457 0.31742 0.79865
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local wall couple stress, heat, and mass transfer in the
boundary layer flow region of micropolar couple stress fluid.

5. Conclusion

In this study, micropolar couple stress nanofluid flow past
the stretching surface with the impact of relevant parameters
is analyzed. &e heat transfer in the boundary layer flow is
modeled by the Cattaneo-Christov heat flux model. &e
robust numerical method called the Galerkin finite element
method (GFEM) is applied to solve the proposed model. We
performed grid-invariance test or grid convergence test to
confirm the convergence of the series solution. &e effect of
numerous pertinent variables on velocity, angular velocity,
temperature, concentration, local skin friction, local wall
couple stress, local Nusselt number, and local Sherwood
number is analyzed in both graphical and tabular forms, and
the following remarks are forwarded:

(1) Both velocity and temperature distributions are in-
creasing functions of radiation parameter and
Dufour number.

(2) Chemical reaction and mixed convection parameters
have a tendency to retard the concentrations of the
species while Soret number revealed quite opposite
effect.

(3) Material parameter and couple stress parameter
effects are reversed on the velocity and temperature
profiles.

(4) Heat and mass transfer in the flow region can be
enhanced by boosting the radiation parameters.

Nomenclature

a: Constant
f: Dimensionless stream function
C: Concentration
GFEM: Galerkin finite element method
cp: Specific heat at constant pressure
p: Dimensionless microrotation function
Cf: Skin friction coefficient
T: Temperature
Dm: Mass diffusivity
g: Gravitational acceleration
Tm: Mean fluid temperature
u, v: Velocity components
]: Kinematic viscosity
uw: Stretching velocity
Λ1,Λ2: Linear and nonlinear thermal expansion

coefficients due to temperature
Λ3,Λ4: Linear and nonlinear thermal expansion

coefficients due to concentration
Ω: Spin gradient
j: Microinertia density
Gr: Grashof number in terms of temperature
Gr∗: Grashof number in terms of concentration
Rex: Reynolds number
qw: Surface heat flux
]′: Couple stress viscosity

kf: &ermal conductivity
ρf: Density of base liquid
Df: Dufour number
αf: &ermal diffusivity of the base fluid
β: Material parameter
Sc: Soret number
Sc: Schmidt number
K: Couple stress parameter
Nux: Nusselt number
κ: Vortex viscosity
Shx: Sherwood number
ε: Chemical reaction term
∞: Condition at the free stream
δ: Electric conductivity
w: Condition at the surface
βc: Nonlinear convection parameter due to

concentration
N∗: Ratio of concentration to thermal buoyancy forces
τw: Wall shear stress
Rd: Radiation parameter
qw: Wall heat flux
ψ: Stream function (nonlinear convection parameter

due to temperature)
cE: Deborah number with respect to the relaxation

time of the heat flux
cs: Concentration susceptibility
Pr: Prandtl number
M: Magnetic field parameter
Ec: Stefan-Boltzmann constant
qnp: Wall mass flux

Mw: Wall couple stress
λ: Mixed convection parameter
η: Dimensionless similarity variable.
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