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Abstract Compounds such as pharmaceuticals, or
personal care products are only partially removed in
wastewater treatment processes. Large number of these
compounds and their degradation products is out of any
control. A small number of compounds are covered by
legal regulations. Among the compounds non-regulated by

law, the target compounds, as well as non-target
compounds can be distinguished. In the scientific
literature, number of reports on various target

compounds’ determination is increasingly growing. This
paper provides an up-to-date review on micropollutants
present in treated wastewater and their concentrations
found in literature in the years 2015-2019. Because the
obtained results of chemical analyses do not adequately
reflect the risks to ecosystems and consequently humans,
the results of chemical analyses have been supplemented
by a review of ecotoxicological studies. In addition, legal
issues linked to contamination of treated wastewater and
research related to identification of non-target compounds
in treated effluents have been discussed.
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INTRODUCTION

The global socioeconomic development generates a stream
of substances (some of them are new), which almost
immediately occur in the environment. It has been esti-
mated, that the chemical industry currently produces more
than 70 000 different chemical products, with an estimated
worldwide sales value of $5000 billion (Asthana 2014).
Many of these substances released into the aquatic
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environment pose a serious risk for the environment and
for human health.

In the last decade, the political awareness of water
quality issues has grown substantially in the European
Union (EU), as wastewater treatment plants (WWTPs)
have been identified as a major point source pollution
(Corominas et al. 2013). Conventional WWTPs are inca-
pable of eliminating many compounds found in wastewa-
ter. In last decades, much attention has been paid to
analytics compounds such as endocrine-disrupting chemi-
cals (EDCs) or pharmaceuticals. Treated wastewater
released from WWTPs can be discharged to the receiving
bodies such as surface waters (e.g., rivers, lakes) or,
preferably from the end of the last century in some regions,
sea waters. As a consequence, many compounds found in
wastewater effluents and/or their metabolites and trans-
formation products are detected in surface waters and to
great concern of scientists, end up in marine environment.
The properties of these substances and their impact on the
environment and human health are often unknown.
Knowledge about the long-term effects of exposure to a
mixture of pollutants present in the environment at low
concentration levels is still limited (HELCOM 2003). It
should be noted that only substances that are commonly
found in the environment at a significant concentration
levels and at the same time posing a threat to the envi-
ronment and/or human health are covered by legal norms
(compounds regulated by law). For example, according to
Art. 16 of the Water Framework Directive is the list of
priority substances that pose a threat to the aquatic envi-
ronment. This risk is assessed according to a procedure
based on scientific principles. To include the substance in
the list of priority substances in the field of water policy, a
reliable scientific evidence must be provided ‘regarding
the intrinsic hazard of the substance concerned, and in
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Fig. 1 Types of compounds found in the aquatic environment

particular its aquatic ecotoxicity and human toxicity via
aquatic exposure routes, and evidence from monitoring of
widespread environmental contamination, and other pro-
ven factors which may indicate the possibility of wide-
spread environmental contamination, such as production
or use volume of the substance concerned, and use pat-
terns’ (WFD 2000). Therefore, only a small number of
compounds is covered by the legal regulations (Fig. 1).
These compounds are systematically monitored in the
environment, e.g., polychlorinated biphenyls (PCBs). But
large number of compounds and their degradation products
fall outside of any control. Among the non-regulated by
law compounds, compounds which can be expected in the
wastewater due to their considerable emission into the
environment can be distinguished. Currently, these are
mostly pharmaceuticals. The second and most numerous
group constitutes unknown compounds. The number of
potential contaminants is essentially endless. For example,
over 10000 prescription drugs and about 300 over-the-
counter drugs are currently in use and produced in USA
and may be released to the environment during processing
or use (Dong et al. 2013). Furthermore, degradation and
transformation products of certain substances in the envi-
ronment can have unknown structure and properties. The
newly formed, emerging, products may pose a greater
threat to the environment (and organisms living in it) than
the parent compounds (Garnaga 2012). It should also be
noted that in an aquatic environment, substances are pre-
sent in the mixtures and still there is a lack of compre-
hensive knowledge about the effects of chemicals, their
combinations/mixtures on the environment and human
health.

The aim of our study was to review literature on the
presence of contaminants in treated sewage and their

highest concentrations. We point out that the research
articles on the pollutants present in wastewater are pri-
marily based on target analysis. On the other hand, there
are very few research papers covering problems related to
identification of non-target compounds in treated effluents.
What is more, we have indicated threats to aquatic
ecosystems as a consequence of the presence of toxic
compounds and endocrine active compounds in treated
effluents on the basis of ecotoxicological studies. The
information has been supplemented with legal issues linked
to contamination of treated wastewater and research (and
problems) related to identification of non-target com-
pounds in wastewater effluents.

METHODS

In this review, we have focused on recent studies published
from years 2015-2019. We searched Scopus database,
which provides access to STM journal articles and the
references included in those articles. We entered a com-
bination of terms/keywords such as ‘micropollutants,’
‘concentration,” ‘effluents,” and ‘wastewater’ into search
box and sorted results by relevance. In literature, we were
looking for the highest measured and reported concentra-
tions of compounds in effluents from conventional
wastewater treatment plants worldwide, collecting a mix-
ture of domestic and industrial wastewater. In our review,
we do not include concentrations of compounds found in
effluents coming from industry alone (e.g., pharmacy,
slaughter house, pulp and paper, textiles, hospital efflu-
ents), wastewater influents, potable water, surface waters.
Due to the fact that for each year we found over 600 ref-
erences and the resources are virtually infinite, the present

© The Author(s) 2019

@ Springer

www.kva.se/en



Ambio 2020, 49:487-503

489

review is a selection of just some of the major studies. Our
selection of micropollutants thus must focus on chemicals
that in our opinion pose the greatest threat to environment
is due to the following: high measured concentrations,
significant ecotoxicity, frequency of detection, and unsat-
isfactory removal efficiency. For the micropollutants with
the highest concentrations detected, we compiled ecotoxi-
city data based on laboratory results.

The occurrence of micropollutants in wastewaters was
revised by many authors: Das et al. (2017), Jiang et al.
(2013), Luo et al. (2014), Petrie et al. (2015), and Ratola
et al. (2012). These reviews mainly indicate compounds
detected in treated wastewaters, and efficacy and methods
of wastewater treatment. Therefore, in our review we
decided to fill in the knowledge gap and added ecotoxicity
data for the micropollutants with the highest measured
concentrations mentioned in literature.

MICROPOLLUTANTS IN TREATED
WASTEWATER

Legal aspects of contaminants in treated wastewater

In Europe, the state of the aquatic environment is con-
trolled by legislation outlined by the European Commis-
sion. Directive 2000/60/EC setting out the framework for
community action in the field of water policy has reformed
the water quality policy of the community, and is the first
attempt to move towards ecosystem-based management
that should ensure the good ecological status (WFD 2000;
Corominas et al. 2013). Its aim is the prevention of water
pollution within the European Union through such steps as
identifying the pollutants which pose the greatest risks to or
via the water environment. The priority under this directive
is to identify and eliminate the sources of harmful emis-
sions. A supplementary of WFD is Directive 2008/105/EC
of the European Parliament and of the Council of 16
December 2008 on environmental quality standards in the
field of water policy and Directive 2013/39/EU of the
European Parliament and of the Council of 12 August 2013
amending Directives 2000/60/EC and 2008/105/EC as
regards priority substances in the field of water policy
which includes the list of 45 priority substances. Enactment
in 2008 Directive 2008/56/EC of the European Parliament
and of the Council of 17 June 2008 establishing a frame-
work for community action in the field of marine envi-
ronmental policy called the Marine Strategy Framework
Directive (MSFD), widens the scope of the European
Union (EU) legal framework to cover the marine envi-
ronment for a new EU-integrated ecosystem policy for the
protection of the water environment.
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Requirements for the quality of wastewater discharged
from the plant are included in Council Directive 91/271/
EEC of 21 May 1991 concerning urban wastewater treat-
ment. Directive determines the inter alia requirements for
discharges from urban wastewater treatment plants,
including emission limit values for these. Treated
wastewater discharged from the WWTPs are characterized
only by chemical and biochemical oxygen demand and
total suspended solids. In the case that treated effluents
from WWTPs are discharged to sensitive areas which are
prone to eutrophication, provisions of the Directive require
also the determination of total nitrogen and total phos-
phorus. Specifically, WWTPs effluents are controlled by a
‘combined’ approach of emission limit values, load
reduction, and environmental quality standards, along with
the restriction or phasing out of particularly priority and
dangerous priority substances under these Directives
(Corominas et al. 2013).

Analyzing the provisions of Directives it should be
noted that:

1. The European Commission carries out a regular review
of a list of priority substances in the field of water
policy. The European Commission also prepares a list
of observational material. Substances to be placed on
the watch list are selected from among those for which
the available information suggests that they may
represent the significant risk to the aquatic environ-
ment or through, and for which monitoring data are
insufficient (WFD 2000). However, what has already
been mentioned, for the relatively small number of
organic pollutants in the environment changes are fully
understood, and the majority of these impurities cannot
be identified (HELCOM 2003).

2. Treated wastewater discharged from the WWTPs are
characterized by total nitrogen/phosphorus, total sus-
pended solids, and chemical/biochemical oxygen
demand.

3. Legal provisions do not take into account the interac-
tions between pollutants (even those included in the
list of priority substances) such as synergism, additiv-
ity, or antagonism.

Contaminants in treated wastewater

Conventional secondary processes (activated sludge and
trickling filters) represent the most extensively used
method of wastewater purification. However, these pro-
cesses fail to remove large number of chemical com-
pounds. For example, some pharmaceuticals such as
paracetamol or ibuprofen are efficiently removed through
conventional treatment methods (> 99% and 72-100%,
respectively) (Ratola et al. 2012; Luo et al. 2014), while
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others, such as sulfamethazine or carbamazepine are being
removed from wastewater less effectively (13% and
7-23%, respectively) (Ratola et al. 2012). As a result,
compounds belonging to groups of pharmaceuticals, per-
sonal care products, surfactants, biocides, or flame retar-
dants may be released to surface waters (rivers, lakes, or
coastal waters) (Petrie et al. 2015). Many pharmaceuticals
may undergo various transformations in the environment,
animal, or human body. Pharmaceuticals can be completely
or partially metabolized in the organisms, what may lead to
the unchanged parent drugs and the produced metabolites
excretion via urine and/or feces (Ribeiro et al. 2016).
Particular interest is also aroused by transformation prod-
ucts that can be formed during water disinfection and
wastewater treatment, as well as due to various processes
occurring in natural waters such as biodegradation, pho-
todegradation, hydrolysis (Nikolaou 2013; Deeb et al.
2017). What is more, compounds found in wastewater can
degrade and/or react with other compounds in the envi-
ronment re-emitting products of higher toxicity than the
original compounds. The determination of the toxic effects
of pharmaceuticals, their transformation products and
mixtures in the environment, is a subject requiring urgent
attention, and a great challenge for scientists. Moreover,
they are present in trace concentrations (Nikolaou 2013).
Number of papers related to multiresidue analytical
methodologies has increased over recent years; however,
most of them are focused on target analysis methods
(Kotowska et al. 2014; Gurke et al. 2015; Garcia-Galan
et al. 2016; Knopp et al. 2016; Roberts et al. 2016;
Madikizela and Chimuka 2017; Petrie et al. 2017; Wang
et al. 2018).

Potential risks of adverse effects caused by effluents
from WWTPs to aquatic environments are influenced by
volume of effluent, concentration of compounds in
wastewater, the water flow rate of the receiving river,
weather conditions, and probably other factors that affect
dissipation through dilution and/or degradation. The com-
pounds detected in effluents from sewage-treatment plants
at concentrations above 1 pg/L and published in the period
of 2015-2019 are listed in Table 1. For our list, we
established a limit of concentration recognized as envi-
ronmentally relevant in prioritization of contaminants in
wastewaters (Blum et al. 2017; Gros et al. 2017).

The compounds of the highest concentrations in treated
effluents are antidepressant citalopram, antiepileptic gaba-
pentin, anti-inflammatory tramadol and diclofenac, and
antiretroviral drugs such as lamivudine, zidovudine, efa-
virenz, and darunavir. It is worth mentioning that one
metabolite, N-acetyl-4-aminoantipyrine, a metabolite of
dipyrone was found in effluent at concentration as high as
25.03 pg/L. Among other compounds with high concen-
trations also artificial sweeteners acesulfame and sucralose

are detected at concentrations of 22.50 ng/L and 18.80 ng/
L, respectively (Das et al. 2017; Tolouei et al. 2019). More
than 95% of ingested sucralose is excreted in urine, < 2%
is degraded at wastewater treatment plants, and the rest is
exported unaltered with effluent (Amy-Sagers et al. 2017).
Also X-ray contrast media such as iopamidol, iopromide,
iomeprol are not effectively eliminated from the wastew-
ater (Santos et al. 2010).

Other micropollutants, which are detected in wastewater
effluents, are nanoparticles (NP). Trace amounts of
nanoparticles exist naturally in environment; however,
recently, their incorporation in technology, medicine, and
in many domestic consumer products, contribute to their
presence in wastewaters and their inevitable release to
aquatic ecosystems. The definition of NP stating that it is
any material with at least one dimension in the range of
1-100 nm is very broad. Therefore, many substances such
as metals (Ag, Zn, Ni, Fe, Cu); metal oxides (TiO,, Fe30,
Si0,, Ce0,, and Al,03); non-metals (silica and quantum
dots); forms of carbon (nanotubes, fullerene, graphene)
exist in nanoscale (Madeta et al. 2016). Therefore, even
though concentration of nanoscale fragments noted in
effluent was significantly high (550 + 130 pg/L), the
effluent content of specific nanoparticles is lower: 5.5 pg/L
for Ag-NP, 19.1 ug/L for fullerene Cgp, 1.65 pg/L for
fullerene C;y, and 31.9021 pg/L for N-methylfulleropy-
rrolidine Cgq (Farré et al. 2010; Yang et al. 2012).

Industrial chemicals, such as 1H-benzotriazole and
4-methyl-1H-benzotriazole, used in a wide range of com-
mercial and industrial applications such as corrosion inhi-
bitors, dishwasher detergents, and antifreezes are also
among high-concentration micropollutants of 22.1 pug/L
and 24.3 pg/L content, respectively (Deeb et al. 2017).

Out of all the groups of compounds identified and
determined in treated effluents, much attention is being
paid to the presence of most commonly prescribed antibi-
otics (ciprofloxacin, doxycycline, norfloxacin, trimetho-
prim, and sulfamethoxazole) and analgesics/anti-
inflammatory  pharmaceuticals such as ibuprofen,
naproxen, or diclofenac (Deblonde et al. 2011). In addition,
in treated wastewater, often triclosan, an ingredient in
personal hygiene and household products such as soaps,
toothpaste, mouthwash, deodorants, detergents, and disin-
fecting lotions is detected (Kotowska et al. 2014).

Non-target analysis

Target analysis is focused on identification and quantifi-
cation of certain compounds. However, quantification of
target chemicals in the treated wastewater is insufficient for
risk assessment, due to introduction of wastewater into the
environment. The wastewater may contain many unknown
substances. Screening of unknown organic compounds
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Table 1 The maximum concentrations of most often determined compounds in effluents from WWTPs, arranged in order of decreasing

concentration

Group of compounds

Identified compounds

Highest
concentration
determined (pg/L)

References

Antidepressant agents

Nanoparticles

Antiepileptics
Analgesics/anti-inflammatories
Antiretroviral agents
Antiretroviral agents
Antiretroviral agents
H2-receptor antagonists
Metabolites

Industrial chemicals

Analgesics/anti-inflammatories

Artificial sweetener

Industrial chemical

Artificial sweetener
Angiotensin receptor antagonist
Contrast media

Antiretroviral agents

Contrast media

Anti-anxiety agents

Analgesics/anti-inflammatories

Analgesics/anti-inflammatories
Contrast media

Stimulants

Metabolites

Contrast media

Antidiabetic drugs

Diuretics
Analgesics/anti-inflammatories
Metabolites

Metabolites
Analgesics/anti-inflammatories
Metabolites

Anti-anxiety agents

Contrast media

Metabolites

Beta-blockers

Metabolites

Metabolites

Antidepressant agents
Analgesics/anti-inflammatories
Analgesics/anti-inflammatories
Antibiotics

Flame retardants

Citalopram

Nanoscale fragments containing

70-85% of carbon, low amounts

of oxygen and heavy metals
Gabapentin
Tramadol
Lamivudine
Zidovudine
Efavirenz
Valsartan
N-acetyl-4-aminoantipyrine
4-Methyl-1H-benzotriazole
Diclofenac

Acesulfame
1H-benzotriazole
Sucralose
Irbesartan
Iopromide
Darunavir
Topamidol
Bromazepam

Naproxen

Acetaminophen
Diatrizoate

Caffeine
Metronidazole-OH
Tomeprol

Metformin

Furosemide

Nimesulide
4-Aminoantipyrine
4-Methylaminoantipyrine
Ibuprofen
Erythromycin-H,O
Oxazepam

Diatrizoic acid
4'-Hydroxy diclofenac
Metoprolol
Erythro/threo-hydrobupropion
o-desmethylvenlafaxine
Venlafaxine

Codeine

Ketoprofen

Cephalexin
Tri-(2-chloroisopropyl)phosphate

840
550 £ 130

79.86

59.05

55.76 £ 5.48
37.14 £ 2.56
34 +£2.8
28.22

25.03

24.30

23.50

22.50
22.10
18.80
17.90
17.90
17 £ 0.55
16.29
15.54
14.40

11.73
11.73
11.45
11.34
11.25
10.35
9.96
9.73
9.29
9.25
9.20
7.84
7.43
7.03
7.02
5.76
5.70
5.50
5.50
5.27
5.25
5.07
4.90

Cunha et al. (2019)
Hu et al. (2018)

Oliveira et al. (2015)
Petrie et al. (2015)
Ngumba (2018)
Ngumba (2018)

Abafe et al. (2018)
Gurke et al. (2015)
Evgenidou et al. (2015)
Deeb et al. (2017)

Madikizela and Chimuka.
(2017)

Das et al. (2017)
Deeb et al. (2017)
Tolouei et al. (2019)
Karelid et al. (2017)
Qi et al. (2015)
Abafe et al. (2018)
Volker et al. (2017)
Cunha et al. (2019)

Madikizela and Chimuka.
(2017)

Petrie et al. (2015)
Volker et al. (2017)

Gros et al. (2017)
Evgenidou et al. (2015)
Volker et al. (2017)

Das et al. (2017)
Papageorgiou et al. (2016)
Papageorgiou et al. (2016)
Evgenidou et al. (2015)
Evgenidou et al. (2015)
Gros et al. (2017)
Evgenidou et al. (2015)
Cunha et al. (2019)
Ribbers et al. (2019)
Garcia-Galan et al. (2016)
Gurke et al. (2015)
Evgenidou et al. (2015)
Evgenidou et al. (2015)
Roberts et al. (2016)
Petrie et al. (2015)
Oliveira et al. (2015)
Deeb et al. (2017)

Gros et al. (2017)
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Table 1 continued

Group of compounds

Identified compounds

Highest
concentration
determined (pg/L)

References

Analgesics/anticonvulsant
Flame retardants
Sunscreen Agent

Preservative and anti-infective
agent

Industrial chemicals
Antiepileptics
Diuretics
Antiretroviral agents
Metabolites

Metabolites
Antiretroviral agents

Diuretics

Transformation product (oxidation)

Beta-blockers
Antibiotics
Bronchodilator

Lipid regulator
Metabolites
Beta-blockers
Angiotensin receptor antagonist
H2-receptor antagonists
Metabolites

Antibiotics

Flame retardant
Antibiotics

Industrial chemicals
Antibiotics

Analgesics

Angiotensin receptor antagonist
Antiretroviral agents
Metabolites
Psychoanaleptics
Metabolites

Antibiotics
Lipid-regulators
Analgesics/anti-inflammatories
Anti-allergic agents
Metabolites
Metabolites

Flame retardant
Antiretroviral agents
Antibiotics
Phytosterols
Metabolites

Industrial chemicals

Carbamazepine
Tris-(2-butoxyethyl)phosphate
4-Benzophenone

Triclosan

2,4,7,9-Tetramethyl-5-decyne-4,7-diol

Lamotrigine

Theobromine

Lopinavir

10,11-Dihydro-trans-10,11-dihydroxy-
carbamazepine

Carbamazepine-10,11-epoxide

Raltegravir

Hydrochlorothiazide

Carboxy-Acyclovir

Sotalol

Sulfamethoxazole

Theophylline

Bezafibrate

Cotinine

Atenolol

Telmisartan

Cimetidine

Metoprolol acid

Trimethoprim

Tris(2-butoxyethyl)phosphate

Penicillin G

Tolyltriazole

Levofloxacin

Salicylic acid

Candesartan

Nevirapine

10-Hydroxy-10,11-dihydrocarbamazepine

Desmethylvenlafaxine
Guanylurea
Clarithromycin
Simvastatin
Aminopyrine
Fexofenadine
Benzoylecgonine
4'-Hydroxy aceclofenac
Tris(1-chloro-2-propyl)phosphate
Ritonavir

Norfloxacin
Beta-sitosterol
O-Desmethyltramadol
Methylindole

4.61
4.60
4.31
4.26

4.20
4.12
4.01
3.8 £0.35
3.60

3.58
35+ 13
3.42
3.40
3.33
3.25
3.17
3.12
3.10
2.87
2.75
2.61
2.51
2.40
2.40
222
2.20
2.19
2.18
1.99
1.9 £ 0.68
1.90
1.87
1.86
1.79
1.74
1.68
1.61
1.60
1.60
1.60
1.50 £ 0.053
1.50
1.50
1.47
1.42

Deeb et al. (2017)
Gros et al. (2017)
Petrie et al. (2015)
Deeb et al. (2017)

Blum et al. (2017)
Oliveira et al. (2015)
Oliveira et al. (2015)
Abafe et al. (2018)
Evgenidou et al. (2015)

Evgenidou et al. (2015)
Abafe et al. (2018)
Oliveira et al. (2015)
Knopp et al. (2016)
Roberts et al. (2016)
Oliveira et al. (2015)
Petrie et al. (2015)
Gros et al. (2017)
Evgenidou et al.,2015)
Deeb et al. (2017)
Gurke et al. (2015)
Petrie et al. (2015)
Evgenidou et al. (2015)
Deeb et al. (2017)
Blum et al. (2017)
Deeb et al. (2017)
Knopp et al. (2016)
Deeb et al. (2017)
Evgenidou et al. (2015)
Gurke et al. (2015)
Abafe et al. (2018)
Evgenidou et al. (2015)
Oliveira et al. (2015)
Evgenidou et al. (2015)
Deeb et al. (2017)
Papageorgiou et al. (2016)
Deeb et al. (2017)
Archer et al. (2017)
Petrie et al. (2015)
Evgenidou et al. (2015)
Blum et al. (2017)
Abafe et al. (2018)
Deeb et al. (2017)
Wang et al. (2018)
Archer et al. (2017)
Deeb et al. (2017)
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Table 1 continued
Group of compounds Identified compounds Highest References

concentration

determined (pg/L)
Beta-blockers Labetalol 1.40 Oliveira et al. (2015)
Solvents 2-Butoxyethanol 1.40 Wang et al. (2018)
Antibiotics Erythromycin 1.39 Petrie et al. (2015)
H2-receptor antagonists Ranitidine 1.38 Dasenaki and Thomaidis (2015)
Hormones Progesterone 1.34 Deeb et al. (2017)
Metabolites Carboxy-ibuprofen 1.27 Evgenidou et al. (2015)
Antihistamines Cetirizine 1.24 Papageorgiou et al. (2016)
Antiepileptics Pregabalin 1.24 Gurke et al. (2015)
Flame retardant/plasticizer Tris(2-chloroethyl)phosphate 1.16 Wang et al. (2018)
Antibiotics Ciprofloxacin 1.08 Deeb et al. (2017)
Angiotensin receptor antagonist Eprosartan 1.04 Gurke et al. (2015)
Analgesics/anti-inflammatories Lidocaine 1.00 Oliveira et al. (2015)

present in the treated wastewater allows for the identifi-
cation of particularly hazardous compounds and can be
useful for maintaining the suitable purity of surface water
(Kotowska et al. 2012). Most scientific research focuses on
the determination of specific compounds. There are only
few reports in literature on the identification of non-target
contaminants in the treated sewage (Gomez et al. 2009;
Kotowska et al. 2012; Hug et al. 2014; Dsikowitzky et al.
2015; Hrubik et al. 2016; Blum et al. 2017; Gros et al.
2017). This is due to the fact that the analysis of these kinds
of contaminants is complicated, time consuming, and rep-
resents a real challenge for environmental analysts. Non-
target analysis allows for identification of both known and
unknown chemicals. The analytical methods for the
detection and quantification of non-target contaminants (in
group of organic compounds) are generally based on sep-
aration methods, particularly gas chromatography (GC) or/
and liquid chromatography (LC) coupled with a potential
instrument for identification such as mass spectrometry
(MS) (G6émez et al. 2009). The choice of the applied
method is associated with physicochemical properties of
the target analytes. Liquid chromatography—high-resolu-
tion mass spectrometry (LC-HRMS) offers the possibility
to detect hundreds of polar and non-polar compounds
without pre-selection of analytes (Hug et al. 2014).

In general for the analysis of pharmaceuticals in
wastewater, it is appropriate to use GC; however, degra-
dation products of some of those compounds may be
thermolabile and decompose during GC analysis as it is in
the case of carbamazepine and its degradation product
iminostilbene (G6émez et al. 2009). The compound’s
spectrum that is detectable with the use of GC-MS method

© The Author(s) 2019
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is restricted to volatile, low-molecular weight non-polar to
semi-polar organic substances (Dsikowitzky et al. 2015).
Additionally, the use of GC x GC allowed better separa-
tion of the analytes from interferences in complex samples
without extensive sample preparation (Blum et al. 2017).
The disadvantage of GC-MS application is that it requires
a time-consuming derivatization step, during which there
are risks of analyte losses (Nikolaou 2013). For identifi-
cation of non-target compounds present in the treated
wastewater a mass spectrometry scanning mode full-scan
mode can be applied. Another method used, often for
quantitative determination, is selected ion monitoring
(SIM). The main advantage of the full-scan mode over the
SIM mode is the possibility of simultaneous identification
of various eluted compounds that could be of interest
(Goémez et al. 2009). A major disadvantage is that, gener-
ally, the full-scan method is less sensitive than SIM mode,
although new generation equipment yields sufficient sen-
sitivity (Gomez et al. 2009). Considerable problems are
also attributed to the analysis of the obtained chro-
matograms, as in non-target screening, in which often no
initial information on the analytes is available, automated
peak detection and spectra deconvolution algorithms are
applied, which typically reveal several thousands of peaks
in an individual wastewater sample (Hug et al. 2014).

Environmental effects
Environmental risks posed by substances depend on their
physical and chemical speciation and affinity for solid

matter and water, which can have a significant impact on
their bioavailability. Furthermore, the risk for living
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organisms is also dependent on the mobility of substances
and their ability to be transferred up in the food chain. In
the tissues of marine organisms contaminants can be
accumulated or ingested from water or suspended matter.
The result is that the pollutants concentration in the tissues
of living organisms may be present at levels comparable to
the concentrations in the environment or even higher
(bioaccumulation). The wide variation in environmental
conditions in different water areas can also affect
bioavailability. Among these conditions: salinity, temper-
ature, pH changes, or turbidity can be distinguished. In
addition to the physicochemical properties, also the sensi-
tivity of the species can affect the ability to bioaccumulate
pollutants. Different species have different potential to
bioaccumulate compounds, even when they are exposed to
the same levels of specific pollutants. Even individuals of
one species exposed to the same concentration of con-
taminants in for similar period of time may not accumulate
the substance at the same rate. It is associated with other
factors such as age, sex, size, and physiological state of the
organism (Garnaga 2012).

Information on the concentration levels of chemicals in
treated effluents is insufficient to assess the risk to aquatic
ecosystems. The results of chemical analysis of target and
non-target compounds provide only some information
about the potential hazard to humans and the environment.
In addition, analysis of non-target compounds presents
many difficulties for the analyst. Due to the fact that in
treated sewage a complex mixture of compounds is present
and also degradation and transformation products of these
compounds are occurring, it is difficult to predict the
effects of this type of bottom-up approach, based on cri-
teria for individual chemicals (Fang et al. 2017). Many
compounds present in treated effluents exhibit toxic prop-
erties. Therefore, the main detrimental effects of organic
micropollutants are attributed to their potential acute tox-
icity or sub-lethal effects on the biota. Ecotoxicological
studies seem to be an excellent tool for assessing the
hazards arising from the presence of harmful compounds in
the treated wastewater. The ecotest results reflect the actual
threat to organisms occurring in certain ecosystems. What
is more, they are less time consuming and do not require
highly specialized analytical equipment and staff.

Ecotoxicity tests are performed on a biological sample,
i.e., a representative population of a given species of
organism, which is (or is not) a subject to some
change/modification after exposure to the particular pol-
lutant for a certain time. In ecotoxicological studies various
bioassays, based on aquatic organisms, are used such as
bacteria, algae, macrophytes, molluscs, crustacean, and
fish. It is recommended to perform several tests incorpo-
rating various species that represent different trophic
levels. The test result is based on the determination of the

dose or concentration of the chemical substance inducing
the specific effect on the indicator organism (e.g., LC5p—
lethal concentration which causes death in 50% individuals
in the population, ECsp—effect concentration which causes
a measurable effect in 50% of individuals in population,
ICsp—inhibition concentration that causes growth sup-
pression of 50% of individuals in population). In Table 2,
toxicity of the compounds, which were identified at the
highest concentration levels in the treated wastewater (see
Table 1), towards the selected indicator organisms is given.
This group of compounds is mainly dominated by
pharmaceuticals.

The highest toxicity to Pseudokirchneriella subcapitata
microalgae was noted for citalopram and naproxen, while
for gabapentin, valsartan, irbesartan, and acetaminophen it
was the lowest. High sensitivity to naproxen and its com-
pounds also show Vibrio fischeri bacteria, Hydra attenuate,
and Lemna minor. A source of high toxicity to Lemna
minor was also diclofenac and benzotriazole. However,
acesulfame is not toxic to Lemna minor.

Acetaminophen exhibits high toxicity to Daphnia
magna, whereas its toxicity to the bacteria Vibrio fischeri is
low. In turn, gabapentin manifests low toxicity with respect
to all the examined indicator organisms. Vibrio fischeri
bacteria are also sensitive for diclofenac but responsive to
metronidazole (see Table 2). Studies reported that X-ray
contrast media (i.e., iopromide, iopamidol) did not pose
risk to aquatic organisms at environmentally relevant
concentrations; however, data on combined toxic effects
between X-ray contrast media and other substances present
in environment are still scarce (Hais and Kiimmerer 2006;
Tran et al. 2018).

Many of the compounds identified in wastewater have
the potential to disrupt endocrine processes. Endocrine-
disrupting chemicals (EDCs) are substances naturally or
anthropogenically occurring in the environment. According
to the definition, adopted by World Health Organization
(WHO), they are exogenous compounds or mixtures with
properties to change the function of the endocrine system,
which will result in negative consequences on the organ-
ism, its progeny, or subpopulations. These compounds
belong to different chemical families, and are able to
interfere with the hormonal system of exposed organisms
by mimicking or counteracting natural hormones (Huerta
et al. 2016). It has been estimated that from hundreds of
thousands of presently produced compounds around 1000
of them may have endocrine-disrupting properties (Gore
et al. 2014). Those compounds include mainly polychlo-
rinated biphenyls (PCBs), bisphenol A, phthalates, pesti-
cides, some pharmaceuticals, brominated flame retardants,
and organic tin compounds (Kima et al. 2015). The stan-
dard method for biological treatment of wastewater used in
a typical wastewater treatment results in only partial

© The Author(s) 2019
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removal of the compounds from the group of EDCs, mainly
of polar nature (Vilitalo et al. 2016). EDCs are detected
both in surface and ground waters. This phenomenon is
alarming due to the fact that those compounds, when
released into the water, may adversely affect living
organisms, even if they occur at low levels (Kima et al.
2015). There are many literature reports which indicate that
EDCs can cause adverse effects on the aquatic environment
even at low concentrations. For example, studies have
shown that Zebrafish were sensitive to estradiol at a very
low concentration of 0.2 ng/L. (Westerlund et al. 2000).
The EDCs compounds identified in treated effluents
include phthalate compounds such as bis (2-ethylhexyl)
benzene-1,2-dicarboxylate (DEHP) and benzyl butyl ben-
zene-1,2-dicarboxylate (BBP) and phenols such as 4-tert-
octylphenol and bisphenol A (BPA). These compounds are
included at the European Commission priority lists of 66
endocrine active substances for which clear evidence of
endocrine-disrupting activity is confirmed (Category I) (EC
2016).

An alternative for classical analytical methods for the
determination of endocrine active substances are endocrine
tests. These bioassays can thus be used to determine total
estrogenic activities in (extracts of) environmental samples,
without the necessity of knowing all compounds present
that contribute to the activity (Houtman et al. 2007). The
most commonly used tests include reporter gene assays
such as the yeast estrogen/androgen screen (YES/YAS),
which allows identification of both, the activation (agonist)
or inhibiting (antagonist) properties in samples of
wastewater or estrogen receptor-mediated chemical-acti-
vated luciferase gene expression (ER-CALUX®) assay
(Houtman et al. 2007).

Exposure to chemical substances may cause damage of
the genetic material of the organisms. Genotoxic com-
pounds acting directly or indirectly on the body have the
potential for altering the organism’s genetic code. In
addition, such compounds can induce changes not only
within one generation. Effects of their action can be
observed over an extended period of time, across the whole
population. Therefore, it is important to carry out geno-
toxicity studies, especially in the case if a particular
ecosystem is exposed to the constant supply of pollutants.

EDCs in wastewater effluents may be leached from
microplastics (Anderson et al. 2016). Microplastics pollu-
tion is a high and increasing concern in European Union
(SAM 2018). The term microplastics refers to the group of
organic polymers derived from various petroleum com-
pounds with the upper size limit of 5 mm. Studies indicated
that wastewater treatment plants (WWTPs) play an
important role in releasing microplastics to the environ-
ment. The growing concerns about microplastics presence
in wastewater effluents and subsequently in marine

© The Author(s) 2019
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environment have been attributed to their ubiquity, long
residence times accompanied by difficult removing, pos-
sibility of being assimilated by living organisms, and thus
entering trophic levels as well as easiness to undergo
numerous transformations during wastewater treatment
process (Anderson et al. 2016; Sun et al. 2019). WWTP are
not designed to fully remove microplastics, and its removal
depends on the treatment process applied; however, in most
cases it exceeds 80-90%. An average microplastics con-
centrations reviewed in literature is in the range of 0-447
particles/L (Sun et al. 2019).

CONCLUSION

Over the last years, the issue of water quality has gained
strategic importance, both in the European Union and
internationally. The challenge of the present day is to
protect effectively aquatic ecosystems, to preserve their
good condition and to reduce negative impacts on human
health. The purpose of wastewater treatment plant is to
remove compounds that may have adverse effects on the
environment and on human health, but as the research
shows the processes used in wastewater treatment are
insufficient. As a result, compounds potentially hazardous
may enter the surface waters. Legislation aimed at elimi-
nating/reducing emissions to the environment are restricted
to a narrow spectrum of chemicals. Most of the compounds
remain beyond the legal norms.

As we have shown in our paper, the interest in the
presence of micropollutants in wastewater has been
reflected in the research carried out. Studies on the quality
evaluation of treated effluents are carried out in a number
of research centers around the world. They mainly focus on
the determination of the target compounds and relate to
pharmaceuticals such as analgesic/anti-inflammatories or
antibiotics. Carried out literature review on the highest
concentrations of contaminants in treated effluents indi-
cates that they are observed for analgesic/anti-inflamma-
tory drugs, i.e., diclofenac, tramadol naproxen,
antiretroviral agents, industrial chemicals, or contrast
media. These compounds occur at levels of several tens of
pg/L. Although the number of studies on the determination
of target pollutants in the treated wastewater is constantly
increasing, there are few reports in literature on the iden-
tification of non-target compounds present in the treated
wastewater. This is primarily due to the fact that such
research is time consuming, requires a variety of analytical
techniques, often complex or costly and sophisticated
equipment. The classical methodology for assessing the
environmental impact of xenobiotics, which is required by
legislation, is based on the use of chemical analysis tech-
niques, which allow to determine the concentrations of
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pollutants in environmental samples. However, the thus
obtained results do not adequately reflect the risks to
ecosystems and subsequently humans. On the basis of
chemical analysis, the possible interactions between toxic
substances and their mixture effects on living organisms
cannot be determined. Therefore, the methodology for
assessing the quality of treated wastewater should include,
in addition to chemical analyses, ecotoxicological, geno-
toxic/mutagenic, or endocrine activity studies. In this way,
comprehensive information on the hazard arising from the
presence of all known and unknown hazardous substances
in the treated wastewater is needed. Moreover, it should be
noted that during wastewater treatment various by-prod-
ucts, of unknown properties and toxicity may be formed.
Therefore, when developing new, more effective methods
of wastewater treatment, it is necessary to evaluate the
toxicity of the resulting products. What is more, the indi-
cator organisms selected for ecotoxicity evaluation should
be from different trophic levels as various organisms may
exhibit a diverse sensitivity to the compounds, e.g.,
naproxen is highly toxic to Hydra attenuata and its toxicity
to Daphnia magna is low. Researchers from the Institute
for Inland Water Management and Water Treatment
(RIZA) have already mentioned the need for a compre-
hensive assessment of waste water quality in the 1990s. A
method for whole-effluent assessment contained a series of
tests to make (potential) effects visible, focusing on the
following five parameters: acute and chronic toxicity,
bioaccumulation, mutagenicity, and persistence.

The problem of occurrence of potentially hazardous
compounds in wastewater and surface waters to which
wastewater is being discharged has been observed in many
countries. The first country in which legal regulations were
issued, mandating the implementation of the subsequent
stage of sewage treatment intended to remove the
micropollutants is Switzerland. Similar actions have been
taken in Germany. Therefore, it seems that the introduction
of wastewater treatment technology of micropollutants
removal in other European countries is only a matter of
time.

Open Access This article is distributed under the terms of the
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creativecommons.org/licenses/by/4.0/), which permits unrestricted
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