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1. Introduction 

Many of the diverse material properties of soft materials (polymer solutions, gels, 
filamentous proteins in cells, etc.) stem from their complex structures and dynamics with 
multiple characteristic length and time scales. A wide variety of technologies, from paints to 
foods, from oil recovery to processing of plastics, all heavily rely on the understanding of 
how complex fluids flow (Larson, 1999). 
Rheological measurements on complex materials reveal viscoelastic responses which 
depend on the time scale at which the sample is probed. In order to characterize the 
rheological response one usually measures the shear or the Young modulus as a function of 

frequency by applying a small oscillatory strain of frequency ω. Typically, commercial 
rheometers probe frequencies up to tens of Hz, the upper range being limited by the onset of 
inertial effects, when the oscillatory strain wave decays appreciably before propagating 
throughout the entire sample. If the strain amplitude is small, the structure is not 
significantly deformed and the material remains in equilibrium; in this case the affine 
deformation of the material controls the measured stress, and the time-dependent stress is 
linearly proportional to the strain (Riande et al., 2000). 
Even though standard rheological measurements have been very useful in characterizing 
soft materials and complex fluids (e.g. colloidal suspensions, polymer solutions and gels, 
emulsions, and surfactant solutions), they are not always well suited for all systems because 
milliliter samples are needed thus precluding the study of rare or precious materials, 
including many biological samples that are difficult to obtain in large quantities. Moreover, 
conventional rheometers provide an average measurement of the bulk response, and do not 
allow for local measurements in inhomogeneous systems. To address these issues, a new 
methodology, microrheology, has emerged that allows to probe the material response on 
micrometer length scales with microliter sample volumes. Microrheology does not 
correspond to a specific experimental technique, but rather a number of approaches that 
attempt to overcome some limitations of traditional bulk rheology (Squires & Mason, 2010; 
Wilson & Poon, 2011). Advantages over macrorheology include a significantly higher range 
of frequencies available without time-temperature superposition (Riande et al., 2000), the 
capability of measuring material inhomogeneities that are inaccessible to macrorheological 
methods, and rapid thermal and chemical homogeneization that allow the transient 
rheology of evolving systems to be studied (Ou-Yang & Wei, 2010). Microrheology methods 
typically use embedded micron-sized probes to locally deform the sample, thus allowing 
one to use this type of rheology on very small volumes, of the order of a microliter. Macro- 
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and microrheology probe different aspects of the material: the former makes measurements 
over extremely long (macroscopic) length scales using a viscometric flow field, whereas the 
latter effectively measures material properties on the scale of the probe itself (Squires & 
Mason, 2010; Breedveld & Pine, 2003). As the probe increases in size, one might expect that 
micro- and macrorheology would converge, however, as it has been suggested, it is possible 
that macro- and microrheology techniques do not probe exactly the same physical 
properties because - even in the continuum (large probe) limit - one experiment uses a 
viscometric flow whereas the other does not (Kahir & Brady, 2005; Lee et al., 2010; Schmidt 
et al., 2000; Oppong & de Bruyn, 2010). 
One can distinguish two main families of microrheological experiments: One type of 
experiments focuses on the object itself; for example, the study of motor proteins aims at 
understanding the mechanical motions of the protein associated with enzymatic activities 
on the molecular level (Ou-Yang & Wei, 2010). The other type of experiment aims at 
understanding the local environment of the probe by observing changes in its random 
movements (Crocker & Grier, 1996; MacKintosh & Schmidt, 1999). Fundamentally different 
from relaxation kinetics, microrheology measures spontaneous thermal fluctuations without 
introducing major external perturbations into the systems being investigated. Other well-
established methods in this family are dynamic light scattering (Dasgupta et al., 2002; 
Alexander & Dalgleish, 2007; Tassieri et al. 2010), and fluorescence correlation spectroscopy 
(Borsali & Pecora, 2008; Wöll et al., 2009). With recent advancement in spatial and temporal 
resolution to subnanometer and submillisecond, particle tracking experiments are now 
applicable to study of macromolecules (Pan et al., 2009) and intracellular components such 
as cytoskeletal networks (Cicuta & Donald, 2007). Detailed descriptions of the methods and 
applications of microrheology to the study of bulk systems have been given in review 
articles published in recent years (Crocker & Grier 1996; MacKintosh & Schmidt, 1999; 
Mukhopadhyay & Granick, 2001; Waigh, 2005; Gardel et al., 2005; Cicuta & Donald, 2007). 
Interfaces play a dominant role in the behavior of many complex fluids. Interfacial rheology 
has been found to be a key factor in the stability of foams and emulsions, compatibilization of 
polymer blends, flotation technology, fusion of vesicles, etc. (Langevin, 2000). Also, proteins, 
lipids, phase-separated domains, and other membrane-bound objects diffuse in the plane of an 
interface (Cicuta et al., 2007). Particle-laden interfaces have attracted much attention in recent 
years because of the tendency of colloidal particles to become (almost irreversibly) trapped at 
interfaces and their behavior once there has lead to their use in a wide variety of systems 
including drug delivery, stabilization of foams and emulsions, froth, flotation, or ice cream 
production. There still is a need to understand the colloidal interactions to have control over 
the structure and therefore the properties of the particle assemblies formed, specially because 
it has been pointed out that the interactions of the particles at interfaces are far more complex 
than in the bulk (Binks & Horozov, 2006; Bonales et al., 2011). In recent years books and 
reviews of particles at liquid interfaces have been published (Kralchewski & Nagayama, 2001). 
The dynamic properties of particle-laden interfaces are strongly influenced by direct 
interparticle forces (capillary, steric, electrostatic, van der Waals, etc.) and complicated 
hydrodynamic interactions mediated by the surrounding fluid. At macroscopic scales, the 
rheological properties of particle-laden fluid interfaces can be viewed as those of a liquid-
liquid interface with some effective surface viscoelastic properties described by effective shear 
and compressional complex viscoelastic moduli. 
A significant fact is that for the simplest fluid-fluid interface, different dynamic modes have to 
be taken into account: the capillary (out of plane) mode, and the in-plane mode, which 
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contains dilational (or extensional) and shear contributions. For more complex interfaces, such 
as thicker ones, other dynamic modes (bending, splaying) have to be considered (Miller & 
Liggieri, 2009). Moreover, the coupling of the abovementioned modes with 
adsorption/desorption kinetics may be very relevant for interfaces that contain soluble or 
partially soluble surfactants, polymers or proteins (Miller & Liggieri, 2009; Muñoz et al., 2000; 
Díez-Pascual et al. 2007). In the case of surface shear rheology, most of the information 
available has been obtained using macroscopic interfacial rheometers which in many cases 
work at low Boussinesq numbers (Barentin et al., 2000; Gavranovic et. al., 2005; Miller & 
Liggieri, 2009; Maestro et al., 2011.a). Microrheology has been foreseen as a powerful method 
to study the dynamics of interfaces. In spite that the measurement of diffusion coefficients of 
particles attached to the interface is relatively straightforward with modern microrheological 
techniques, many authors have relied on hydrodynamic models of the viscoelastic 
surroundings traced by the particles in order to obtain variables such as interfacial elasticity or 
shear viscosity. The more complex the structure of the interface the stronger are the 
assumptions of the model, and therefore it is more difficult to check their validity. In the 
present work we will briefly review modern microrheology experimental techniques, and 
some of the recent results obtained for bulk and interfacial systems. Finally, we will 
summarize the theoretical models available for calculating the shear microviscosity of fluid 
monolayers from particle tracking experiments, and discuss the results for some systems. 

2. Experimental techniques 

For studying the viscoelasticity of the probe environment there are two broad types of 
experimental methods: active methods, which involve probe manipulation, and passive 
methods, that relay on thermal fluctuations to induce motion of the probes. Because thermal 
driving force is small, no sample deformation occurs that exceeds equilibrium thermal 
fluctuations. This virtually guarantees that only the linear viscoelastic response of the 
embedding medium is probed (Waigh, 2005). On the contrary, active methods allow the 
nonlinear response to be inferred from the relationship between driving force and probe 
velocity, in such cases the microstructure itself can be deformed significantly so that the 
material response differs from the linear case (Squires, 2008). As a consequence, passive 
techniques are typically more useful for measuring low values of predominantly viscous 
moduli, whereas active techniques can extend the measurable range to samples with 
significant elasticity modulus. Figure 1 shows the typical ranges of frequencies and shear 
moduli that can be studied with the different microrheological techniques. 

2.1 Active techniques 
2.1.1 Magnetic tweezers 
This is the oldest implementation of an active microrheology technique, and it has been 
recently reviewed by Conroy (Conroy, 2008). A modern design has been described by Keller 
et al. (2001). The method combines the use of strong magnets to manipulate embedded 
super-paramagnetic or ferromagnetic particles, with video microscopy to measure the 
displacement of the particles upon application of constant or time-dependent forces. Strong 
magnetic fields are required to induce a magnetic dipole in the beads and magnetic field 
gradients are applied to produce a force. The force exerted is typically in the range of 10 pN 
to 10 nN depending on the experimental details (Keller et al. 2001). The spatial resolution is 
typically in the range of 10-20 nm, and the frequency range is 0.01 – 1000 Hz. Three modes 
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of operation are possible: a viscosimetry measurement after applying a constant force, a 
creep response experiment after applying a pulse excitation, and the measurement of the 
frequency dependent viscoelastic moduli in response to an oscillatory stress (Riande et al., 
2000). This technique has been extensively applied to characterize the bulk viscoelasticity of 
systems of biological relevance (Wilson & Poon, 2011; Gardel et al., 2005). Moreover, real-
time measurements of the local dynamics have also been reported for systems which change 
in response to external stimuli (Bausch et al., 2001), and rotational diffusion of the beads has 
also been used to characterize the viscosity of the surrounding fluid and to apply 
mechanical stresses directly to the cell surfaces receptors using ligand coated magnetic 
colloidal particles deposited onto the cell membrane (Fabry et al., 2001). Finally, this 
technique is well suited for the study of anisotropic systems by mapping the strain-field, 
and for studying interfaces (Lee et al., 2009). In recent years (Reynaert et al., 2008) have 
described a magnetically driven macrorheometer for studying interfacial shear viscosities in 

which one of the dimensions of the probe (a magnetic needle) is in the µm range. This has 
allowed the authors to work at rather high values of the Boussinesq number, which is one of 
the typical characteristics of the microrheology techniques. 
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Fig. 1. Frequency and elasticity modulus range available to the different microrheological 
techniques. Continuous vertical represent the frequency range, and dashed arrows the range 
of shear moduli (G´, G´´) that are accessible to each technique. a)Video particle tracking. b) 
Optical Tweezers. c) Diffusing wave spectroscopy: upper line for transmission geometry, 
lower line for back geometry. d) Magnetic microrheology. e) Atomic Force Microscopy 
(AFM). Adapted from Waigh (2005). 

2.1.2 Optical tweezers 
This technique uses a highly focused laser beam to trap a colloidal particle, as a consequence 
of the momentum transfer associated with bending light. The most basic design of an optical 
tweezer is shown in Figure 2.a: A laser beam (usually in the IR range) is focused by a high-
quality microscope (high numerical aperture objective) to a spot in a plane in the fluid. 
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Figure 2.b shows a detailed scheme of how an optical trap is created. Light carries a 
momentum, in the direction of propagation, that is proportional to its energy. Any change in 
the direction of light, by reflection or refraction, will result in a change of the momentum of 
the light. If an object bends the light, conservation momentum requires that the object must 
undergo an equal and opposite momentum change, which gives rise to a force acting on the 
subject. In a typical instrument the laser has a Gaussian intensity profile, thus the intensity 
at the center is higher than at the edges. When the light interacts with a bead, the sum of the 
forces acting on the particle can be split into two components: Fsc, the scattering force, 
pointing in the direction of the incident beam, and Fg, the gradient force, arising from the 
gradient of the Gaussian intensity profile and pointing in the plane perpendicular to the 
incident beam towards the center of the beam. Fg is a restoring force that pulls the bead into 
the center of the beam. If the contribution to Fsc of the refracted rays is larger than that of the 
reflected rays then a restoring force is also created along the beam direction and a stable trap 
exists. A detailed description of the theoretical basis and of modern experimental setups has 
been given in Refs. (Ou-Yang & Wei, 2010; Borsali & Pecora, 2008; Resnick, 2003) that also 
include a review of applications of optical and magnetic tweezers to problems of biophysical 
interest: ligand-receptor interactions, mechanical response of single chains of biopolymers, 
force spectroscopy of enzymes and membranes, molecular motors, and cell manipulation. A 
recent application of optical tweezers to study the non-linear mechanical response of red-
blood cells is given by Yoon et al. (2008). Finally, optical tweezers are also suitable for the 
study of interfacial rheology (Steffen et al., 2001). 
 

 

Fig. 2. a) Basic design of an optical tweezers instrument. b) Details of the physical principles 
leading to the optical trap. 

2.2 Passive techniques 
These techniques use the Brownian dynamics of embedded colloids to measure the rheology 
of the materials. Since passive methods use only the thermal energy of the beads, materials 
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must be sufficiently soft for the motion of the particles to be measure precisely. The 
resolution typically ranges from 0.1 to 10 nm and elastic modulus from 10 to 500 Pa can be 
measured with micron sized particles. Thermal fluctuations of particles in transparent bulk 
systems have traditionally been studied using light scattering techniques that allow one to 
measure the intensity correlation function from which the field correlation function g1(t) can 
be calculated, t being the time. For monodisperse particles g1(t) is directly related to the 
mean squared displacement of the particles, MSD, through 

 g1(t) = exp [-q2 <Δr2(t)>/6] (1) 

q being the scattering wave vector (Borsali & Pecora, 2008). Once <Δr2(t)> is obtained, it is 
possible to calculate the real and imaginary components of the shear moduli, G’ and G” 
(Oppong & de Bruyn, 2010). 

2.2.1 Diffusion wave spectroscopy 
Diffusion wave spectroscopy, DWS, allows measurements of multiple scattering media, and 

therefore non-transparent samples can be studied. The output of the technique allows to 

calculate <Δr2(t)>, and because of the multiple scattering all q-dependent information is lost 

as photons average over all possible angles, thus resulting only in two possible scattering 

geometries: transmission and backscattering. The frequency range of both geometries is 

complementary (see Figure 1) spanning from 0.1 Hz to 1MHz. For bulk polymer solutions 

and gels excellent agreement of the G’ and G” values obtained by DWS and those obtained 

with conventional rheology has been found (Dasgupta et al., 2002; Dasgupta & Weitz, 2005). 

Even though these light scattering techniques are quite powerful tools for bulk 
microrheology, they have been scarcely used to probe the rheology of interfaces; in fact, as 
far as we know, only in old papers of Rice’s group a set-up was described to measure 
dynamic light scattering of polymer monolayers using evanescent waves (Lin et al., 1993; 
Marcus et al., 1996). 

2.2.2 Fluorescence correlation spectroscopy (FCS) 
It is usually combined with optical microscopy, in particular confocal or two-photon 
microscopy. In these techniques light is focused on a sample and the fluorescence intensity 
fluctuations (due to diffusion, physical or chemical reactions, aggregations, etc.) can be 
measured in the form of a temporal correlation function. Similarly to what has been 
discussed in the light scattering technique, it is possible to obtain the MSD from the 
correlation function. In most experiments, Brownian motion drives the fluctuation of 
fluorescent-labeled molecules (or particles) within a well-defined element of the 
measurement cell. The samples have to be quite dilute, so that only few probes are within 
the focal spot (usually 1 – 100 molecules in one fL). Because of the tiny size of the confocal 
volume (approx. 0.2 fL), the measurements can be carried out in living cells or on cell 
membranes. In case that the interactions between two molecules wish to be studied, two 
options are available depending on their relative size. If their size is quite different, only one 
of them has to be labeled with a fluorescent dye (autocorrelation). If the diffusion 
coefficients of both molecules are similar, both have to be labeled with different dies (cross-
correlation). A detailed description of FCS techniques and of the data analysis has been 
recently given by Riegler & Elson (2001). Recent problems to which FCS has been applied 
include: dynamics of rafts in membranes and vesicles, dynamics of supramolecular 

www.intechopen.com



 
Microrheology of Complex Fluids 

 

151 

complexes, proteins, polymers, blends and micelles, electrically induced microflows, 
diffusion of polyelectrolytes onto polymer surfaces, normal and confined diffusion of 
molecules and polymers, quantum dots blinking, dynamics of polymer networks, enzyme 
kinetics and structural heterogeneities in ionic liquids (Winkler, 2007; Heuf et al., 2007; Ries 
& Schwille, 2008; Cherdhirankorn et al., 2009; Wöll et al., 2009; Guo et al., 2011). The use of 
microscopes makes FCS suitable for the study of the dynamics of particles at interfaces. 
Moreover, contrary to particle tracking techniques, it is not necessary to “see” the particles, 
thus interfaces with nanometer sized particles can be studied (Riegler & Elson, 2001). 

2.2.3 Particle tracking techniques 
The main idea in particle tracking is to introduce onto the interface a few spherical particles 

of micrometer size and follow their trajectories (Brownian motion) using videomicroscopy. 

The trajectories of the particles, either in bulk or on surfaces, allow one to calculate the mean 

square displacement, which is related to the diffusion coefficient, D, and the dimensions, d, 

in which the translational motion takes place by 

 ( ) ( )
22

0 0r t r t t r(t ) 2dDtα Δ = − − =  
 (2) 

where the brackets indicate the average over all the particles tracked, and t0 the initial time. 
In case of diffusion in a purely viscous material or interface, α is equal to 1, and the usual 

linear relation is obtained between MSD and t. When the material or interface is viscoelastic, 

α becomes lower than 1 and this behavior is called sub-diffusive. It is worth noticing that 

sub-diffusivity can be found not only as a consequence of the elasticity of the material, but 

also due to particle interactions as concentration increases, an effect that is particularly 

important at interfaces. Anomalous diffusion is also found in many systems of biological 

interest where the Brownian motion of the particles is hindered by obstacles (Feder et al., 

1996), or even constrained to defined regions (corralled motion) (Saxton & Jacobson, 1997). 

The diffusion coefficient is related to the friction coefficient, f, by the Einstein relation 

 Bk T
D

f
=  (3) 

In 3D Stokes law, f=6πηa, applies and for pure viscous fluids the shear viscosity, η, can be 

directly obtained from the diffusion coefficient of the probe particle of radius a at infinite 

dilution. The situation is much more complex in the case of fluid interfaces, and it will be 

discussed in more detail in the next section. 

Figure 3 shows a sketch of a typical setup for particle tracking experiments. A CCD 

camera (typically 30 fps) is connected to a microscope that permits to image either the 

interface prepared onto a Langmuir trough, or a plane into a bulk fluid. The series of 

images are transferred to a computer to be analyzed to extract the trajectories of a set of 

particles. Figure 4.a shows typical results of MSD obtained for a 3D gel, combining DWS 

and particle tracking techniques which shows a very good agreement between both 

techniques, and illustrates the broad frequency range that can be explored. Figure 4.b 

shows a typical set of results for the MSD of a system of latex particles (1 µm of diameter) 

spread at the water/n-octane interface. The analysis of MSD within the linear range in 

terms of Eq. (2) allows to obtain D. 
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One of the experimental problems frequently found in particle tracking experiments is that 
the linear behavior of the MSD vs. t is relatively short. This may be due to poor statistics in 
calculating the average in Eq.(2), or to the existence of interactions between particles. As it 
will be discussed below, this may be a problem in calculating the shear modulus from the 
MSD. An additional experimental problem may be found when the interaction of the 
particles with the fluid surrounding them is very strong, which may lead to changes in its 
viscoelastic modulus, or when the samples are heterogeneous at the scale of particle size, a 
situation rather frequent in biological systems, e.g. cells (Konopka & Weisshaar, 2004), or 
gels (Alexander & Dalgleish, 2007), or solutions of rod-like polymers (Hasnain & Donald, 
2006). In this case the so-called “two-point” correlation method is recommended (Chen et 
al., 2003). In this method the fluctuations of pairs of particles at a distance Rij are measured 
for all the possible values of Rij within the system. Vector displacements of individual 
particles are calculated as a function of lag time, t, and initial time, t0. 
 

 

Fig. 3. Typical particle tracking setup for 2D microrheology experiments: 1: Langmuir 
trough; 2: illumination; 3: microscope objective; 4: CCD camera; 5: computer; 6: thermostat; 
7: electronics for measuring the temperature and the surface pressure. 

Then the ensemble averaged tensor product of the vector displacements is calculated (Chen 
et al., 2003):  

 ( )ji
ij 0

i j,t
D (r, ) r (r, t) r (r, t) r R tαβ α βτ δ

≠
 = Δ Δ −   (4) 

where a and b are coordinate axes. The average corresponding to i = j represents the one-

particle mean-squared displacement. 
Two-point microrheology probes dynamics at different length scales larger than the particle 
radius, although it can be extrapolated to the particle’s size thus giving the MSD (Liu et al., 
2006). In fact it has been found that for Rij close to the particle radius, the two-point MSD 
matches the tendency of the MSD obtained by tracking single particles. However, both sets 
of results are different for Rij’s much larger than the particle diameter. This is a consequence 
of the fact that single particle tracking reflects both bulk and local rheologies, and therefore 
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the heterogeneities of the sample. Figure 5 shows a comparison of the MSD obtained by 
single particle and two-point tracking for a solution of entangled F-actin solutions at 

different length scales from 1 to 100 µm (Liu et al., 2006). Both methods agree when the 
particle size is of the same order than the scale of the inhomogeneities of the system when 
the particle probes the average structure. Otherwise, the two methods lead to different 
results. In general, quite good agreement is found between two-point tracking experiments 
and macroscopic rheology experiments. 
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Fig. 4. a) Typical results of mean square displacement for a 3D gel made out of a 
polysaccharide in water [44]. Filled points are from DWS experiments, and open symbols 
are from particle tracking. The continuous line is an eye guide. b) Mean square displacement 
(MSDabs), circles, and relative square displacement (MSDrel), triangles, for latex particles at 
the water/n-octane interface. Experimental details: set of 300 latex particles of 1 µm of 

diameter, surface charge density: -5.8 mC·cm-2, and reduced surface density, ρ*=1.2·10-3 
(ρ*=ρa2), 25 ºC. Figure 4.a is reproduced from Vincent et al. (2007). Inset corresponds to a 
smaller time interval. 
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Fig. 5. Comparison of one-particle (open symbols) and two-particle (closed symbols) MSD 

for a solution of F-actin using particles of radius 0.42 µm. Different average actin filaments 

are used: a) 0.5 µm, b) 2 µm, c) 5 µm, d) 17 µm. Notice that when the scale of the 

inhomogeneities of the solution is similar to the particle size both methods lead to the same 

results. The figure is reproduced from Liu et al. (2006).  

For the case in which the particles are embedded in a viscoelastic fluid, particle tracking 

experiments allow one to obtain the viscoelastic moduli of the fluids. Manson & Weitz 

(1995) first in an ad-hoc way, and later Levine & Lubensky (2000) in a more rigorous way, 

proposed a generalization of the Stokes-Einstein (GSE) equation: 

 ( )
( )

2 B2k T
r s

3 asG sπ
Δ =   (5) 

where G(s) is the Laplace transform of the stress relaxation modulus, s is the Laplace 

frequency, and a is the radius of the particles. An alternative expression for the GSE 
equation can be written in the Fourier domain as: 

 ( )
( )

B
2

k T
G *

ai r t
ω

π ω
=

ℑ Δ
 (6) 

where ℑ represents a unilateral Fourier transform, which is effectively a Laplace transform 

generalized for a complex frequency iω. Different methods have been devised to obtain 

G(s) from the experimental MSD including direct Laplace or Fourier transformations 

(Dasgupta et al., 2002; Evans et al., 2009), or analytical approximations (Mason, 2000; Wu & 

Dai, 2006). It must be stressed that the GSE equation is valid under the following 

approximations: (a) the medium around the sphere may be treated as a continuum material, 

which requires that the size of the particle be larger than any structural length scale of the 
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material, (b) no slip boundary conditions, (c) the fluid surrounding the sphere is 

incompressible, and (d) no inertial effects. 

The application of the GSE is limited to a frequency range limited in the high frequency 

range by the appearance of inertial effects. The high frequency limit is imposed by the fact 

that the viscous penetration depth of the shear waves propagated by the particle motion 

must be larger than the particle size. The penetration depth is proportional to 2 1/2(G * / )ρω , 

where ρ is the density of the fluid surrounding the particles, and for micron-sized particles 

in water is of the order of 1 MHz. On the other hand, the lower limit is set by the time at 

which compressional modes become significant compared to the shear modes excited by the 

particle motion. An approximate value for the low frequency limit is given by 

 
2

L

G'

a

ξ
ω

η
≥  (7) 

ξ being the characteristic length scale of the elastic network in which the particles move. 
Again, for the same conditions mentioned above, the low-frequency limit is in the range of 
0.1 to 10 Hz. Figure 6.a shows the frequency dependence of the shear modulus for a 3D gel 
using two passive techniques: DWS and particle tracking. As it can be observed the 
agreement is very good. It must be stressed that, in order to obtain reliable Laplace or 
Fourier transforms of the MSD, it is necessary to measure the particle trajectories over long t 
periods (minutes), which makes absolutely necessary to eliminate any collective drift in the 
system. Very recently Felderhof (2009) has presented an alternative method for calculating 
the shear complex modulus from the velocity autocorrelation function, VAF, that can be 
calculated from the particle trajectories. An experimental difficulty associated to this method 
is that the VAF decays very rapidly, and therefore it is difficult to obtain many experimental 
data in the decay region.  
Under the same conditions assumed for the GSE equation, the creep compliance is directly 

related to the MSD by 

 ( ) ( )2

B

a
J t r t

k T

π
= Δ  (8) 

Even though the GSE method has been applied to different bulk systems, few applications 
have been done for studying the complex shear modulus of interfaces and thin films (Wu & 
Dai, 2006; Prasad & Weeks, 2009; Maestro et al., 2011). 
The two-point correlation method also provides information about the viscoelastic moduli 
of the fluid in which the particles are embedded. In effect, the ensemble averaged tensor 
product, Eq.(4), leads to (Chen et al., 2003) 

 B
rr rr

k T 1
D (r,s) ;   D D D

22 rsG(s)
θθ φφ

π
= = =

  (9) 

where ( )rrD r,s is the Laplace transform of Drr(r,t) and the off-diagonal terms vanish. Figure 

6.b compares the G’ and G” results calculated for a solution of F-actin (MSD data shown in 

Figure 4) using one- and two-particle tracking methods. The results agree with those 

obtained by single-particle methods as far as the scale of the inhomogeneities is similar to 

the particle size, otherwise the single particle method is affected both by local and global 
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rheology. Notice that the results of the two-point technique agree with those obtained with 

conventional macroscopic rheometers. 
 

 

Fig. 6. Real and imaginary components calculated from the MSD shown in: a) the Figure 
4.a, and b) Figure 5. Notice the good agreement between the results calculated from DWS 
(closed symbols) and single particle tracking (open symbols) in Figure 5.a. The solid and 
dotted lines are guides for G’and G” results, respectively. In Figure 6.b the open symbols 
refer to G”, and the full ones to G’. Triangles correspond to single particle tracking and 
squares to two-particle tracking. Circles correspond to conventional macro-rheology. 
Figure 6.a was taken from Vincent et al. (2007) and Figure 6.b from Cherdhirankorn et al. 
(2009). 

(a)

(b) 
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3. Dynamics of particles at interfaces 

For using particle tracking techniques to get insight of the interfacial microrheology it is first 
necessary to study the diffusion of particles in the bare interface. For an inviscid interface 
the drag comes entirely from the upper and lower fluid phases (in the usual air-water 
interface only from the water subphase). The MSD of particles trapped at fluid interfaces 
depends on the surface concentration, and for very low surface concentration it is linear 
with time, thus the diffusion coefficients, D0, can be easily obtained. However, for high 
surface concentrations, even below the threshold of aggregation or fluid-solid phase 
transitions (Bonales et al., 2011), the MSD is no longer linear with time, but shows a sub-

diffusive behavior, MSD(t) ~ tα with α<1, hence D0 must be obtained from the time 
dependence of the MSD in the limit of short times.  

3.1 Shear micro-rheology of monolayers at fluid interfaces  
In the case of particles trapped at interfaces Einstein’s equation, Eq.(3), is still valid. 
However, one cannot calculate the friction coefficient using Stokes equation and directly 
substituting the interfacial shear viscosity. Instead, f is a function of the viscosities of the 
phases (η’s), the geometry of the particle (the radius “a” for spheres), the contact angle 

between the probe particle and the interface (θ), etc. For a pure 2D system there is no 
solution for the slow viscous flow equations for steady translational motion of a sphere in a 
2D fluid (Stokes paradox).  

3.1.1 Motion of a disk in and incompressible membrane of arbitrary viscosity 
Saffman & Delbrück (1975) and Hughes et al. (1981) have solved the problem of the motion 

of a thin disk immersed in a membrane of arbitrary viscosity, ηL separating two phases of 

viscosities η1 and η2. The height of the disk is assumed to be equal to the membrane 
thickness, h. They obtained the following expression for the translational mobility, 

 
( )T

1 2

1 1
b

f 4 R ( )π η η ε
= =

+ Λ
  (10) 

Where Λ(ε) is non-linear function of ε, 1 2

L

R

h

η η
ε

η

  +
=      . Λ(ε) cannot be expressed 

analytically except for two limit cases, 

1

2 22 4 1 2
( ) ln ln O( )

2
ε ε γ ε ε ε

ε π ε

−      
Λ = − + − +             (Highly viscous membranes, e<1) 

2
( )ε

π
Λ =   (Low viscous membranes, ε>1) 

These works have been generalized by Stone & Adjari (1998) and by Barentin et al. (2000). 

3.1.2 Danov’s model for a sphere in a compressible surfactant layer 
The above theories are limited to non protruding particles (or high membrane viscosities). In 
particle tracking experiments spherical particles are used that are partially immersed in both 
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fluid phases separating the interface. Danov et al. (1995) and Fischer et al. (2006) have made 
numerical calculations of the drag coefficient of spherical microparticles trapped at fluid-
fluid interfaces. While Danov considered the interface as compressible, Fischer assumed that 
the interface is incompressible, both authors predicted the dynamics of the particles 
adsorbed on bare fluid interfaces, i.e. with no surfactant monolayers (the so-called the limit 
of cero surface viscosity). The predictions of their theories are different, and will be 
discussed in detail below. More recently, Reynaert et al. (2007) and Madivala et al. (2009) 
have studied the dynamics of spherical, weakly aggregated, and of non-spherical particles at 
interfaces, though using macroscopic rheometers. 
Danov et al. (1995) have calculated the hydrodynamic drag force and the torque acting on a 
micro spherical particle trapped at the air-liquid interface (they consider the viscosity of air 
to be zero) interface, and moving parallel to it. This model was later extended by Dimova et 
al. (2000) and by Danov et al. (2000) to particles adsorbed to flat or curved (spherical) 
interfaces separating two fluids of non vanishing viscosity. The interface was modeled as a 
compressible, 2D fluid characterized by two dimensionless parameters K and E defined as 

( )shE aη η=  and ( )dK aη η= , being ηsh and ηd the surface shear and dilational viscosity 

respectively (Note that E is the inverse of ε used by Hughes). Danov et al. made the 
following assumptions: 1) The movement implies a low Reynolds number, thus they 
ignored any inertial term; 2) the moving particle is not affected by capillarity or electro-
dipping; 3) the contact line does not move to respect to the particle surface, and 4) they 
considered E=K, i.e. the interface is compressible. With these assumptions they solved 
numerically the Navier-Stokes equation to obtain the values of the drag coefficient f as a 
function the contact angle and of E (or K). They presented their results in graphical form, 
and their results are reproduced in Figure 7. 
 

 

Fig. 7. Left: Effect of contact angle on the diffusion coefficient of a particle trapped at a fluid 
interface according to Danov’s theory. Ds0 is the diffusion coefficient for the bare interface. 
The different lines correspond to the following values of E (=K): 1) 0; 2) 1; 3) 5. Right: Effect 
of the surface to bulk shear viscosity on the diffusion coefficient. The different lines 
correspond to the following values of E (=K): 1) 0; 2) 1; 3) 5; 4) 10. Figures reproduced from 
Dimova et al. (2000). 

These curves can be used to obtain the shear viscosity of compressible surfactant layer once 

one has obtained the diffusion coefficient from particle tracking experiments, D0, for a free 

interface and in the presence of a surfactant layer. It must be stressed that, from a strict 
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theoretical point of view, the results presented by Danov are valid only in the limit E >>1, 

and for arbitrary values of the contact angle. Sickert & Rondelez (2003) were the first to 

applied Danov’s ideas to obtain the surface shear viscosity by particle tracking using 

spherical microparticles trapped at the air-water interface, which was covered with 

Langmuir films. They have measured the surface viscosity of three monolayers formed by 

pentadecanoic acid (PDA), L-a-dipalmitoylphosphatidylcholine (DPPC) and N-palmitoyl-6-

n-penicillanic acid (PPA) respectively. The values of the shear viscosities for PDA, DPPC 

and PPA reported were in the range of 1 to 11.10-10 N· s· m-1 in the liquid expanded region 

of the monolayer. These values are beyond the range that can be reached by macroscopic 

mechanical methods, that usually have a lower limit in the range of 10-7 N· s· m-1. 

Fischer considered that a monolayer cannot be considered as compressible. Due to the 
presence of a surfactant, Marangoni forces (forces due to surface tension gradients) strongly 
suppress any motion at the surface that compress or expands the interface. Any gradient in 
the surface pressure is almost instantly compensated by the fast movement of the surfactant 
at the interface given a constant surface pressure, behaving thus as a incompressible 
monolayer (Fischer assumed that the velocity of the 2D surfactant diffusion is faster than the 
movement of the beads). The fact that the drag on a disk in a monolayer is that of an 
incompressible surface has been verified experimentally by Fischer (2004). In the case of 
Langmuir films of polymers, the monolayer could be considered as compressible or 
incompressible depending on the rate of the polymer dynamics at the interface compared to 
the velocity of the beads probes. Bonales et al. (2007) have calculated the shear viscosity of 
two polymer Langmuir films using Danov’s theory, and compared these values with those 
obtained by canal viscosimetry. Video Particle tracking and Danov’s theory were used by 
Maestro et al. (2011.a) to show the glass transition in Langmuir films. Figure 8 shows the 
results obtained for a monolayer of poly(4-hydroxystyrene) onto water. For all the 
monolayers reported by Bonales et al. (2007) and Maestro et al. (2011.b) the surface shear 
viscosity calculated from Danov’s theory was lower than that measured with the 
macroscopic canal surface viscometer. Similar qualitative conclusions were reached at by 
Sickert et al. (2007) for monolayers of fatty acids and phospholipids in the liquid expanded 
region.  

3.1.3 Fischer’s theory for a sphere in a incompressible surfactant layer 

Fischer et al. (2006) have numerically solved the problem of a sphere trapped at an interface 
with a contact angle θ moving in an incompressible surface. They showed that contributions 
due to Marangoni forces account for a significant part of the total drag. This effect becomes 
most pronounced in the limit of vanishing surface compressibility. In this limit the 
Marangoni effects are simply incorporated to the model by approximating the surface as 
incompressible. They solved the fluid dynamics equations for a 3D object moving in a 
monolayer of surface shear viscosity, ηs between two infinite viscous phases. The monolayer 
surface is assumed to be flat (no electrocapillary effects). Then the translational drag 
coefficient, kT,, was expressed as a series expansion of the Boussinesq number, 

( )( )s 1 2B ·aη η η= + , a being the radius of the spherical particle:  

 0 1 2
T T Tk k Bk O(B )= + +   (11) 

For B=0, and for an air-water interface (η1, η2=0), the numerical results for kT are fitted with 
an accuracy of 3% by the formula, 
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Fig. 8. Temperature dependence of the surface shear viscosity of a monolayer of poly(4-
hydroxystyrene) at the air-water interface obtained by particle tracking (the insets show the 
corresponding values measured with a macroscopic canal viscometer. Left: experiments 
done at Π=8 mN·m-1. Right: triangles correspond to Π=3 mN·m-1 and circles to Π=2 mN·m-1. 
Notice that the results obtained by particle tracking are much smaller than those obtained 
with the canal viscometer. Data taken from Hilles et al. (2009). 

 ( )0 2
T

d
k 6 tanh 32 2 9

R
π π

  
≈ +       (12) 

where d is the distance from the apex of the bead to the plane of the interface (which defines 

the contact angle). Note that if d goes to infinity, 0
Tk 6π= , which is the correct theoretical 

value for a sphere in bulk (Stokes law). The translational drag in a half immersed sphere in a 

non viscous monolayer is 0
Tk 11≈ which is about 25% higher than the drag on a sphere 

trapped at a free surface, Tk 3π= . This means that even in the absence of any appreciable 

surface viscosity the drag coefficient of an incompressible monolayer is higher than that of a 

free interface, and the data cannot be used to extract the surface shear viscosity using 

Danov’s theory especially in the limit of low surface viscosities. 
The numerical results for kT(1) are fitted within an accuracy of 3% to, 
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Sickert & Rondelez (2003) have introduced in an ad-hoc way the incompressibility effect in 
Danov’s theory by renormalizing his master curve (Figure 7 above) by the empirical value of 
1.2, and they have later reanalyzed their data by combining the Danov’s  and Fischer’s 
theories (Sickert et al., 2007). First they used the value determined by Danov et al. (2000) for 
the resistance coefficient of a sphere at a clean, compressible surface and at the contact angle 
of their experiments (50º). Afterwards, they used the predictions of Fischer et al. (2006) for a 
sphere in a surfactant monolayer (incompressible) with the contact angle corrected by the 
change in the surface tension, and in the case of E <<<1 (notice that this is the opposite E-
limit than for the original Danov’s theory),  
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= =
+

  (14) 

D0 being the diffusion coefficient of the beads at a free surface (compressible), and D→0 is the 
value of an incompressible monolayer which surface concentration is tending to zero. They 
found that this relation is not equal to 1 but to 0.84 for their systems and experimental 
conditions which confirms the observation of Barentin et al. (2000).  
Figure 9 shows the friction coefficient for latex particles at the water-air interface obtained 
from particle tracking for polystyrene latex particles. It also shows the values calculated 
from Danov’s and from Fischer’s theories (notice that for the bare interface E = B =0). The 
figure clearly shows that both theories underestimate the experimental values over the 

whole θ range. An empirical factor of η(θ)exp/η(θ)Fisher = 1.8±0.2 brings the calculated values 
in good agreement with the experiments at all the contact angle values. A similar situation 
was found for the water-n-octane interface. 
The values of the shear viscosities calculated by Sickert & Rondelez (2003) by using the 
modified-Fisher theory are 2 or 3 times higher than the previous values. Sickert et al. (2007) 
also refers to a model developed by Stone which would be valid over the whole range of E, 
although only for a contact angle of 90º. Figure 10 shows clearly the large difference found 
between micro- and macrorheology for monolayers of poly(t-butyl acrylate) at the so-called 

Γ** surface concentration (Muñoz et al., 2000). The macrorheology results have been 
obtained using two different oscillatory rheometers. The huge difference cannot be 
attributed to specific interactions between the particles and the monolayer. 
In effect, Figure 11 shows that the values obtained are the same for particles of rather 
different surface characteristics. Moreover, the values calculated from the modified-Fisher’s 
theory or by direct application of the GSE equation lead to almost indistinguishable surface 
shear viscosities. It must be stressed that in all the cases the contact angle used is the 
experimentally measured using the gel-trapping technique described by Paunov et al.  
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Fig. 9. Friction coefficients calculated from the experimental diffusion coefficients measured 
by particle tracking experiments (symbols), by Danov’s theory (dotted line), by Fischer’s 
theory (dashed line), and by the corrected Fischer’s theory (continuous line). 
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data obtained from particle tracking. The upper curve was obtained from conventional 
oscillatory rheometers. 
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Fig. 11. Surface shear viscosity of a monolayer of poly(t-butyl acrylate) (molecular weight 4.6 
kDa) measured by particle tracking. Different microparticles where used: poly(styrene) of 
1.6 and 5.7 µm (stabilized by sulfonate groups); poly(methylmethacrylate) stabilized by 
Coulombic repulsions (PMMA1), or by steric repulsions (PMMA2); Silica particles stabilized 
by Coulombic repulsions. Empty symbols: the viscosities were calculated using Fischer 
theory. Full symbols: calculated by the GSE equation. 

(2003). This discrepancy between micro- and macrorheology in the study of monolayers 
seems to be a rather general situation (Schmidt et al., 2000; Khair & Brady, 2005; Oppong & 
de Bruyn, 2010; Lee et al., 2010) and no clear theoretical answer has been found so far. 
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4. Conclusions 

The set of microrheological techniques offer the possibility of studying the rheology of very 
small samples, of systems which are heterogeneous, and facilitate to measure the shear 
modulus over a broad frequency range. Particle tracking techniques are especially well 
suited for the study of the diffusion of microparticles either in the bulk or at fluid interfaces. 
Different types of mean squared displacements, MSD, (one-particle, two-particle) allow one 
to detect spatial heterogeneities in the samples. Even though good agreement has been 
found between micro- and macrorheology (at least when two-particle MSD is used) in bulk 
systems, the situation is still not clear for the case of fluid interfaces, where the shear surface 
microviscosity is much smaller than the one measured with conventional surface 
rheometers. 
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