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MicroRNA-132 promotes estradiol synthesis
in ovarian granulosa cells via translational
repression of Nurr1
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Abstract

Background: Estrogen synthesis is an important function of the mammalian ovary. Estrogen plays important roles

in many biological processes, including follicular development, oocyte maturation and endometrial proliferation,

and dysfunctions in estrogen synthesis contribute to the development of polycystic ovary syndrome and premature

ovarian failure. Classical signaling cascades triggered by follicle-stimulating hormone induce estrogen synthesis via

the upregulation of Cyp19a1 in granulosa cells (GCs). This study aimed to determine the effect of microRNA-132

(miR-132) on estradiol synthesis in GCs.

Methods: Primary mouse GCs were collected from ovaries of 21-day-old immature ICR mice through follicle puncture.

GCs were cultured and treated with the stable cyclic adenosine monophosphate analog 8-Br-cAMP or transfected with

miR-132 mimics, Nurr1-specific small interfering RNA oligonucleotides and Flag-Nurr1 plasmids. Concentrations of

estradiol and progesterone in culture medium were determined by an automated chemiluminescence-based

assay. Quantitative real time PCR and western blot were performed to identify the effect of miR-132 on Cyp19a1,

Cyp11a1 and an orphan nuclear receptor-Nurr1 expression in GCs. Direct suppression of Nurr1 via its 3'-untranslated

region by miR-132 were further verified using luciferase reporter assays.

Results: The expression level of miR-132 in cultured mouse GCs was significantly elevated during 48 h of treatment

with 8-Br-cAMP. The synthesis of estradiol increased after the overexpression of miR-132 in mouse GCs. The real-time

PCR results demonstrated that miR-132 induced the expression of Cyp19a1 significantly. Nurr1, an orphan nuclear

receptor that suppresses Cyp19a1 expression, was found to be a direct target of miR-132. Nurr1 was suppressed by

miR-132, as indicated by a luciferase assay and Western blotting. The knockdown of Nurr1 primarily elevated the

synthesis of estradiol and partially attenuated the miR-132-induced estradiol elevation, and the ectopic expression of

Flag-Nurr1 abrogated the stimulatory effect of miR-132 on estradiol synthesis in mouse GCs.

Conclusions: Our findings suggest that miR-132 is involved in the cAMP signaling pathway and promotes estradiol

synthesis via the translational repression of Nurr1 in ovarian GCs.
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Background

Ovarian steroid hormones such as estradiol (E2) play im-

portant roles in many biological processes, including

ovarian follicular development, oocyte maturation, endo-

metrial proliferation and mammary gland development

[1, 2]. In addition, dysfunctions in estrogen synthesis are

associated with the development of polycystic ovary syn-

drome and premature ovarian failure [3, 4]. According

to the traditional two-step theory of E2 biosynthesis, an-

drogen is produced from cholesterol in theca cells and

converted into E2 via cytochrome P450 aromatase, a

rate-limiting enzyme for estrogen synthesis, in granulosa

cells (GCs) [5]. Follicle-stimulating hormone (FSH) is a

glycoprotein hormone that is produced by the anterior

pituitary gland. This gonadotropin plays an essential role

in steroidogenesis of ovarian GCs. The binding of FSH

to its receptor (FSHR) on the surface of GCs in imma-

ture preantral follicles activates the effector adenylyl cy-

clase, which leads to the synthesis and upregulation of the

intracellular second messenger cyclic adenosine mono-

phosphate (cAMP) [6]. By activating multiple signaling

cascades, FSH triggers the specific, time-related expres-

sion of genes, such as Cyp19a1, and promotes the prolifer-

ation and differentiation of GCs [7]. FSH induces the

phosphorylation of the cAMP response element binding

protein (CREB), which transactivates Cyp19a1 by binding

to a cAMP-responsive element-like sequence (CLS) in its

proximal promoter (PII promoter) [8–10]. Besides clas-

sical regulations in the FSH pathway, epigenetic mecha-

nisms remain to be elucidated, which will increase our

understanding of ovarian physiology.

MicroRNAs (miRNAs) are small noncoding RNAs that

are 20-24 nucleotides in length and are endogenously

expressed in most eukaryotes. Previous studies demon-

strated that miRNAs play important roles in diverse bio-

logical processes, such as development, inflammation

and tumorigenesis [11]. The primary mechanism by

which miRNAs regulate gene expression is via posttran-

scriptional binding to the 3'-untranslated region (3'-

UTR) of mRNAs, which leads to either degradation or

translational repression of the mRNA. In the ovary,

many miRNAs are involved in the proliferation, apop-

tosis, and differentiation of GCs [12, 13]. Some miRNAs

have recently been reported to influence steroid hor-

mone release from human ovarian GCs based on a

genome-scale miRNA screen [14]. Studies examining

miRNA-regulated E2 biosynthesis determined that miR-

224 [15] and miR-383 [16] play important roles in the

TGF-β/Smads pathway by targeting Smad4 and RBMS1,

respectively. The Cyp19a1 gene has also been confirmed

to be a direct target of miR-378 [17] and miR-98 [18].

Among the miRNAs that are involved in the cAMP

signaling pathway, miR-132 has been demonstrated to

be upregulated in rat GCs by either cAMP [19] or FSH

treatment [20] and in periovulatory mouse granulosa

cells (mGCs) after LH/hCG induction [21]. A recent

study in polycystic ovary syndrome patients showed that

the expression levels of miR-132 in follicular fluid were

significantly lower in patients than in controls [22]. They

also found that overexpression of miR-132 increased E2
secretion from KGN, a steroidogenic human granulosa-

like tumor cell line. These findings suggest that miR-132

may play diverse roles such as steroidogenesis in differ-

ent developmental stage of granulose cells. The func-

tions of miR-132 may be related to the fact that cAMP

mediates divergent pathways depending on the differen-

tial status of GCs [23]. Our aims of this study are to de-

termine if miR-132 is involved in the cAMP pathway in

primary cultured mGCs isolated from immature mice

and to investigate the role of miR-132 in E2 synthesis

using a relatively low plating density to retain the estro-

genic phenotype of mGCs [24]. Our study also identified

Nurr1 as a direct target of miR-132, which mediates the

regulation of E2 synthesis by miR-132 in mGCs.

Methods

Animals

Three-week-old ICR mice were purchased from the Lab

Animal Center of Yangzhou University (Yangzhou, China).

All animals were maintained in the Animal Laboratory

Center of Drum Tower Hospital (Nanjing, China) on a

12-h/12-h light/dark cycle (lights off at 19:00), with food

and water available ad libitum. All animal experiments

were approved by the Institutional Animal Care and Use

Committee at Nanjing Drum Tower Hospital (SYXK

20014-0052).

Isolation and culture of primary mGCs

A previously described in-house method [25] was per-

formed to isolate mGCs from the ovaries of 21-day-old

immature mice. Briefly, the ovaries were harvested and

separated from the surrounding fat. After the ovaries

had been punctured repeatedly with 25 gauge needles,

the mGCs were collected and plated in DMEM/F12

(Gibco, Life Technologies, Carlsbad, CA, USA) contain-

ing 10 % FBS (Gibco), 1 mM sodium pyruvate (HyClone,

Thermo Scientific, South Logan, UT, USA), 2 mM L-glu-

tamine (Gibco), and 1 % antibiotics (100 U/ml penicillin

and 100 μg/ml streptomycin; Gibco). The medium was re-

placed 24 h after plating to remove any unattached cells.

The mGCs were cultured in medium at 37 °C in a

humidified environment with 5 % CO2 and were used

after the first passage. At 24 h after plating, the cells

were placed in phenol red-free DMEM/F12 (HyClone)

supplemented with 2 % charcoal/dextran-treated fetal

bovine serum (C-FBS; HyClone) for 48 h. The cells

were subsequently treated with medium alone or with

1 mM 8-bromoadenosine 3',5'-cyclic monophosphate
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(8-Br-cAMP) (Sigma, St. Louis, MO, USA) for 0, 3, 6,

12, 24 or 48 h. Total RNA was isolated, and the ex-

pression of miR-132 was analyzed using quantitative

polymerase chain reaction (PCR).

Immunofluorescence staining

mGCs were plated on 18 mm microcover glasses

(Matsunami, Osaka, Japan) for 24 h and subsequently

fixed with 4 % paraformaldehyde in PBS for 30 min

at room temperature. The cells were then washed

with PBS and permeabilized with 0.2 % Triton X-100

in PBS for 15 min at room temperature. After being

blocked with 1 % BSA in PBS, cells were stained for FSHR

by incubation with a 1:100 dilution of an anti-FSHR poly-

clonal antibody (Bioworld Technology, St. Louis Park,

MN, USA), followed by incubation with a 1:200 dilution

of an Alexa Fluor 488-conjugated goat anti-rabbit IgG

(Molecular Probes, Life Technologies, Carlsbad, CA,

USA) for 1 h. PBS was used as negative controls for pri-

mary and secondary antibodies to exclude nonspecific

staining. Nuclei were stained with a 1:5000 dilution of

DAPI (Vector Laboratories, Burlingame, CA, USA). Im-

ages were visualized using a FLUOVIEW FV10i confocal

microscope system (Olympus, Tokyo, Japan).

Immunohistochemistry

Formalin-fixed paraffin-embedded 21-day-old immature

mice ovaries were serially sectioned, dewaxed with xy-

lene and rehydrated through a graded alcohol series.

Sections were then treated with 3 % hydrogen peroxide

to quench endogenous peroxidase activity, microwaved

sequentially to retrieve antigen, and incubated in block-

ing solution for 1 h. Sections were then incubated with a

1:100 dilution of an anti-FSHR polyclonal antibody (Bio-

world Technology) overnight at 4 °C. The next day, the

sections were incubated with goat anti-rabbit secondary

antibody ABC detect kit (ZSBio, Beijing, China) at 37 °C

for 30 min, and then stained with 3,30-diaminobenzidine

(DAB) and counterstained with hematoxylin. Negative

control sections were processed concurrently using PBS

and similarly pre-treated.

Plasmid construction

NURR1 cDNA [GeneBank: NM_006186.3] was synthe-

sized and amplified from the total RNA of human endo-

metrial stromal cells using the SuperScript III One-Step

RT-PCR System with the Platinum Taq High Fidelity Kit

(Invitrogen, Life Technologies, Carlsbad, CA, USA) and

the following primers: 5'-CGACACTGTCCACCTTTA

ATTTC-3' and 3'-TTTAGGGATCAAGGGGGCTA-5'. A

second PCR step was performed using the Platinum Pfx

DNA Polymerase (Invitrogen) and the following primers:

5'-TATAAGATCTGATGCCTTGTGTTCAGGCGCAG-3'

and 5'-TAGCGGTACCTTAGAAAGGTAAAGTGTCC

AG-3'. To create a Flag-Nurr1 protein expression vector,

fragments harboring full-length NURR1 were cloned into

pFLAG-CMV-2 (Sigma) using the BglII and KpnI restric-

tion sites (Promega, Madison, WI, USA). The wild-type

sequence of the Nurr1 3'-UTR [GeneBank: NM_013613.2]

that contains the miR-132 binding site was amplified using

mGC cDNA as a template and the following primers: 5'-

TATCTCGAGGAATTGAAGGCAGAGGCTTG-3' and

5'-TCGTCTAGATGACTCATCTCATGTGCCGTA-3'.

To create the pmirGLO-Luc-Nurr1 3'-UTR WT vec-

tor, the resulting PCR fragment was cloned into the

pmirGLO dual-luciferase miRNA target expression

vector (Promega) using the XhoI and XbaI restriction

sites (Promega). The mutant sequence contained two

mutations in the ‘seed sequence’ of the miR-132 bind-

ing site, which is indicated in Fig. 5a. We designed

primers (5'-CAGCTTTTGGATGTTTCCAGAG-3' and

5'-CACTCTGGAAACATCCAAAAGC-3') to create a

pmirGLO-Luc-Nurr1 3'-UTR MU vector via overlap

extension PCR. A luciferase reporter gene plasmid

containing NGFI-B response elements upstream of

the reporter (NBRE-Luc) was constructed according to

previously described methods [26] using the pGL3-Basic

vector (Promega), which was a generous gift from Sun

Jianxin at Thomas Jefferson University, Philadelphia, USA.

The sequences of all recombinant plasmids were con-

firmed by DNA sequencing.

Transient transfection

Chemically synthesized single-stranded RNAs that mimic

mature endogenous miR-132 [GeneBank: NR_029546.1]

after transfection into cells were used as miR-132 mimics,

and mimics NC were used as negative controls. Chem-

ically modified antisense RNA oligonucleotides optimized

to specifically target miRNA molecules in cells were used

as miRNA inhibitors, and inhibitors NC were used as

negative controls. Nurr1-specific siRNA oligonucleotides

(sense: 5'-CCACCUUGCUUGUACCAAAdTdT-3'; anti-

sense: 3'-dTdT GGUGGAACGAACAUGGUUU-5') were

used to knock down endogenous Nurr1, and siNC ol-

igonucleotides were used as negative controls. These oli-

gonucleotides were purchased from Ribobio (Guangzhou,

China). Primary mGCs were transfected with either oligo-

nucleotides or plasmids using Lipofectamine 2000 (Invi-

trogen) according to the manufacturer’s protocol. For

each transfection, a final oligonucleotide concentration of

100 nM was used.

Western blot analysis

Total protein was isolated from mGCs that were har-

vested 48 h after treatment. The cells were rinsed twice

with ice-cold PBS (pH 7.4) and lysed with whole lysis

buffer (50 mM Tris-HCl, pH 7.6; 150 mM NaCl; and

1.0 % NP-40) containing protease inhibitor cocktail
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(Sigma). The protein concentrations were measured

using the Pierce BCA protein assay (Thermo). Equal

amounts of total protein (40 μg) were separated on a

10 % SDS-polyacrylamide gel and transferred to a

polyvinylidene fluoride membrane (Millipore, Billerica,

MA, USA). Immunoblotting was performed using pri-

mary antibodies against Nurr1 (1:1000; R&D Systems,

Minneapolis MN, USA) and Nur77 (1:500; Santa Cruz,

CA, USA). Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) was selected as an internal control and was vi-

sualized using rabbit anti-GAPDH IgG (1:10000; Bio-

world). Immunodetection was accomplished using a goat

anti-rabbit IgG (1:5000; GenScript, Piscataway, NJ, USA)

or a donkey anti-goat IgG (1:5000; Santa Cruz) secondary

antibody and an enhanced chemiluminescence detection

kit (Millipore) with the Clinx Chemiscope 3400 Mini

Western Blot Imaging System (Clinx Science Instruments,

Shanghai, China). Signals from the Western blot images

were quantified by measuring the optical density of each

band. The blot density of the control was set as 100 %.

After normalization to the corresponding GAPDH band,

the relative density values of other bands were calculated

by dividing the optical density values by the control value.

All experiments were repeated three times.

RNA extraction and quantitative real-time PCR

Total RNA was extracted from cultured cells using the

TRIzol reagent (Invitrogen). cDNA was synthesized from

1 μg of purified total RNA using the PrimeScript RT Re-

agent Kit with gDNA Eraser (Takara, Dalian, China) ac-

cording to the manufacturer’s instructions with either

the random primers provided in the kit or specific re-

verse primers (miR-132: 5'-CTCAACTGGTGTCGTGG

AGTCGGCAATTCAGTTGAGCGACCATG-3', U6: 5'-

AACGCTTCACGAATTTGCGT-3'). The specific primers

used for real-time PCR analysis are listed in Table 1. Each

20 μL real-time PCR reaction had the following compo-

nents: 2 μL of RT product (equivalent to 20 ng of total

RNA), 10 μL of iQ SYBR Green Supermix (Bio-Rad

Laboratories, Hercules, CA, USA), and 250 nM forward

and reverse primers. Real-time PCR for gene transcription

was performed on a MyiQ Single Color Real-time PCR

Detection System (Bio-Rad Laboratories). The cycle pa-

rameters for miRNAs were as follows: an initial 15 min

incubation at 95 °C, followed by 40 cycles of 95 °C for 15 s

and 60 °C for 1 min. The cycle parameters for genes were

as follows: an initial 3 min incubation at 95 °C, followed

by 40 cycles of 95 °C for 10 s, 60 °C for 30 s, and 72 °C for

30 s. The data were analyzed using the 2-ΔΔCt method

[27], and the obtained fold changes in miRNA or gene ex-

pression were normalized to U6 snRNA or 18S rRNA as

endogenous controls, respectively. Each sample was ana-

lyzed in triplicate, and the experiments were repeated

three times.

Luciferase reporter assay

mGCs with a confluency of ~60 % were transfected with

luciferase reporter plasmids and miR-132 mimics/inhibi-

tors or the corresponding negative controls. All cells

were co-transfected with the Renilla luciferase reporter

plasmid (pRL-RSV; Promega) as a control for transfec-

tion efficiency. Luciferase activity was assayed 48 h after

transfection using the Dual-Luciferase Reporter Assay

System (Promega), and the ratio of firefly luciferase to

Renilla luciferase was measured using a Centro XS3 LB

960 Microplate Luminometer (Berthold Technologies,

Bad Wildbad, Germany). At least three transfection assays

were performed to obtain statistically significant data.

Hormone assays

For hormone assays, mGCs were cultured in 12-well

plates in phenol red-free DMEM/F12 (Hyclone) supple-

mented with 2 % C-FBS (HyClone) and 2 μM 4-

androstene-3, 17-dione (Sigma). To determine the effects

of 8-Br-cAMP on mGC function, mGCs were treated with

medium alone or with 1 mM 8-Br-cAMP (Sigma) for 24 h

or 48 h. To determine the effects of miR-132 on mGCs,

the medium was changed 6 h after transfection with miR-

132 mimics/inhibitors or the corresponding negative con-

trols, and the cells were cultured for an additional 48 h.

To determine the effect of Nurr1 on mGCs, siNurr1 was

transfected into cells 24 h prior to the transfection of

miR-132 mimics, and the cells were cultured for an add-

itional 24 h or 48 h. Culture medium was collected

at the indicated time points, and the concentrations

of E2 and progesterone in the culture medium were

determined using the Access Immunoassay System 2

(Beckman Coulter, Brea, CA, Germany), an automated

Table 1 Sequences of primers used for real-time PCR analysis

Gene Forward primer (5'→ 3') Reverse primer (5'→ 3')

miR-132 ACACTCCAGCTGGGTAACAGTCTACAGCCA GGTGTCGTGGAGTCGGCAATTCAGTTGAG

U6 snRNA CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

Cyp19a1 TGTGTTGACCCTCATGAGACA CTTGACGGATCGTTCATACTTTC

Cyp11a1 TCCCTGTAAATGGGGCCATAC AGGTCCTTCAATGAGATCCCTT

Nurr1 GATCGAGCAGAGGAAGAC AAGCGCATCTGGCAGCTA

18S rRNA ATGGCCGTTCTTAGTTGGTG CGGACATCTAAGGGCATCAC
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random-access chemiluminescence-based assay. The

intra- and interassay coefficients of variation were less

than 10 % and 15 %, respectively. Each assay was per-

formed in triplicate, and the experiments were re-

peated at least three times.

Statistical analysis

Data were expressed as the mean +/- SEM of at least

three independent experiments. Student’s t-test was per-

formed for comparisons of the mean values of two

groups; one-way ANOVA was used to determine differ-

ences among the mean values of more than two groups

because the quantitative data followed a normal distribu-

tion. P values less than 0.05 were considered statistically

significant.

Results

miR-132 expression is responsive to 8-Br-cAMP stimulation

As shown in Fig. 1a, we successfully established mono-

layers of mGCs from the ovaries of 21-day-old immature

mice. Most of the cells in the cultures were mGCs, which

were characterized by positive FSHR staining. FSHR ex-

pression also showed that our in vitro cultured primary

mGCs can maintain an estrogenic stage and can be used

for further study of E2 synthesis. To test the specificity of

anti-FSHR antibody, we did immunohistochemistry to

show that our primary anti-FSHR antibody exclusively de-

tected FSHR (stained brown) mainly in the mGCs at vari-

ous stages of follicular development. Non-specific staining

was not detected with PBS (Fig. 1b). The secretion of pro-

gesterone and E2 by cultured mGCs was significantly in-

creased (4.6- and 1.3-fold, respectively) after exposure to

8-Br-cAMP, a stable cell-permeable analog of cAMP, for

24 h (Fig. 1c, d). The stimulatory effect of 8-Br-cAMP on

E2 reached a greater extent (1.5-fold) after continuous

treatment with 8-Br-cAMP for 48 h (Fig. 1d). cAMP is the

crucial second messenger that is downstream of FSH in

the FSH-mediated ovarian GC differentiation pathway. At

least four cAMP-response element (CRE) sites are in-

volved in miR-132 transcription in mice [28]. Previous

studies have demonstrated that miR-132 levels are ele-

vated in periovulatory mGCs and upregulated by hCG/

LH, cAMP and FSH [19–21]. To determine whether miR-

132 is induced by the cAMP signal transduction pathway,

primary mGCs were exposed to 8-Br-cAMP for 0 to 48 h.

During this period, miR-132 expression was continu-

ously elevated, peaking at 12 h (~5-fold increased)

and dropped to basal level after 24 h (Fig. 1e). The

observed pattern of miR-132 upregulation is consist-

ent with reported increases in steroid hormone re-

lease from mGCs, suggesting that miR-132 is involved

in cAMP-mediated pathways, such as those that are

important for the differentiation of GCs.

miR-132 enhances the synthesis of E2 in mGCs

Next, we assessed whether miR-132 has an effect on ste-

roidogenesis in mGCs. To elevate miR-132 levels in

mGCs, we transiently transfected mGCs with miR-132

mimics (i.e., chemically modified oligonucleotides) and

confirmed the increased miR-132 levels using qRT-PCR

(Fig. 2a). The progesterone levels changed only slightly

(Fig. 2b). However, the E2 levels significantly increased

after miR-132 overexpression. This increase was dose

dependent; 35 % and 72 % increases in the E2 levels were

observed when cells were transfected with 50 nM and

100 nM miR-132 mimics, respectively (Fig. 2c). In

addition, we studied miR-132-related loss-of-function by

knocking down endogenous miR-132 via the transient

transfection of miR-132 inhibitors into mGCs (Fig. 3a).

The results demonstrated that the synthesis of E2 was sup-

pressed by miR-132 knockdown and downregulation of

miR-132 prevented a cAMP-mediated increase of E2 in

mGCs (Fig. 3b). The above findings suggest that miR-132

can serve as a stimulator for E2 synthesis in GCs. The de-

tection of estrogen synthesis-related genes using real-time

PCR revealed that a 1.6-fold increase in the expression of

Cyp19a1 (P < 0.01), the P450 aromatase gene required for

E2 synthesis, was induced by miR-132 mimics (Fig. 4a).

However, the expression of Cyp11a1, a key gene for pro-

gesterone synthesis, was not influenced by the overexpres-

sion of miR-132 (Fig. 4a). Significant effects on Cyp11a1

expression were not observed after the knockdown of

miR-132 in the presence or absence of 8-Br-cAMP treat-

ment (Fig. 4b). In contrast, the observed effect of miR-132

inhibitors on Cyp19a1 levels was similar to the suppres-

sion in E2 levels (Fig. 3b), and this effect became notable

after 8-Br-cAMP treatment in mGCs (Fig. 4c). These find-

ings suggest that miR-132 promotes E2 synthesis via the

transcriptional regulation of aromatase but has little effect

on progesterone synthesis due to its failure to regulate the

transcription of Cyp11a1.

miR-132 promotes Cyp19a1 expression by downregulating

Nurr1

miRNAs suppress translation by targeting the 3'-UTRs

of mRNAs. We hypothesized that miR-132 promotes

Cyp19a1 expression by suppressing a Cyp19a1 inhibi-

tor. A bioinformatics screen using TargetScan (http://

www.targetscan.org/vert_61/) revealed that the orphan

nuclear receptor Nurr1, which suppresses aromatase

expression via its PII promoter in KGN cells [29], is a pu-

tative target gene of miR-132. We constructed the lucifer-

ase reporter plasmid pmirGLO-Luc-Nurr1 3'-UTR WT,

which contained the 3'-UTR of mouse Nurr1 and the pu-

tative binding site for the ‘seed sequence’ of miR-132

(Fig. 5a), and co-transfected it into mGCs with either

miR-132 mimics/inhibitors or the corresponding negative

controls. Compared to controls, the overexpression of
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miR-132 significantly decreased luciferase activity, and the

knockdown of miR-132 significantly increased luciferase

activity in transfected mGCs (Fig. 5b), indicating that

Nurr1 is a direct target of miR-132. In addition, we con-

structed the pmirGLO-Luc-Nurr1 3'-UTR MU plasmid,

which had two mutations in the ‘seed sequence’ of the

miR-132 binding site, as indicated in Fig. 5a. miR-132

failed to affect the luciferase activity of the mutagenized

Nurr1 3'-UTR plasmid (Fig. 5c). These results indicated

that Nurr1 is a direct target gene of miR-132. The NR4A

orphan nuclear factors bind as monomers to the NBRE

motif (5'-AAAAGGTCA-3') and function in ligand-

independent transcription activation. We utilized the

NBRE-Luc luciferase plasmid, which contains tandem

copies of the response elements for NR4A and drives a lu-

ciferase reporter gene, as a response reporter to reflect

Fig. 1 8-Br-cAMP treatment increases miR-132 expression and steroidogenesis in mGCs. a Primary mGCs were isolated from 21-day-old mouse

ovaries. FSHR protein of mGC was detected by immunofluorescence staining (FSHR: green, DAPI: blue). Nonspecific staining was visualized using

PBS to replace either the primary or secondary antibodies. b Immunohistochemical detection of mGCs (indicated by asterisks) in 21-day-old

mouse ovaries. Immunostaining of FSHR is shown in brown, and nonspecific staining was visualized using PBS. Hematoxylin nuclear staining is

shown in blue. The concentrations of progesterone (c) and E2 (d) per 10
5 cells in culture medium were determined after 8-Br-cAMP treatment for

24 h and 48 h. e At the indicated time points after treatment with 8-Br-cAMP, the miR-132 levels in mGCs were determined using qRT-PCR. The

results were normalized to U6 as an internal control. The results represent the mean +/- SEM of three independent experiments. Values with different

superscripts (a, b) are significantly different (p < 0.05). **p < 0.01; ***p < 0.001, compared with the control (CTL). Scale bar: 100 μm
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transcriptional activity of the NR4A family. The luciferase

assay demonstrated that miR-132 suppressed the lucifer-

ase activity of the NBRE-Luc reporter gene. Our findings

were further supported by the observation that the induc-

tion of the NR4A family was observed after the inhibition

of endogenous miR-132 via miR-132 inhibitors (Fig. 5d).

Analysis of Nurr1 levels via Western blot analysis demon-

strated that Nurr1 protein expression was significantly

lower in mGCs that were transfected with miR-132

mimics than in mGCs that were transfected with mimics

NC. In contrast, compared to treatment with inhibitors

NC, knockdown of miR-132 using miR-132 inhibitors led

Fig. 3 Downregulation of endogenous miR-132 inhibits E2 synthesis

in mGCs. a mGCs were transfected with 100 nM miR-132 inhibitors or

negative controls. Six hours after transfection, mGCs were cultured in

the absence or presence of 8-Br-cAMP for another 48 h. The inhibition

of endogenous miR-132 by specific inhibitors was validated by

qRT-PCR. b The culture medium was collected for the measurement of

E2 levels after endogenous miR-132 had been knocked down. The

results represent the mean +/- SEM of three independent experiments

performed in triplicate. *, # p < 0.05; **p < 0.01; ## p < 0.005, compared

with the negative control (NC)

Fig. 2 Overexpression of miR-132 enhances E2 synthesis in mGCs.

a mGCs were transfected with miR-132 mimics or negative controls

at the indicated concentration. The miR-132 levels were detected by

qRT-PCR 48 h after transient transfection. The culture medium was

collected for the measurement of progesterone (b) and E2 (c) per

105 mGCs. The results represent the mean +/-SEM of three independent

experiments performed in triplicate. *p < 0.05; **p < 0.01, compared

with the negative control (NC)
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to increased Nurr1 protein expression in mGCs (Fig. 5e).

These results were consistent with the findings of a

previous study of the differentiation of dopamine neu-

rons [30]. Significant changes in Nurr1 mRNA levels

were not observed after either the overexpression or

knockdown of miR-132 (Fig. 5f). In the 3'-UTR of Nur77,

which has also been identified as a repressor of aromatase

in NR4A family members, no putative binding site for

miR-132 was found via bioinformatics screening. The ex-

pression level of the Nur77 protein was not influenced by

miR-132 (Fig. 5e) in our study. In summary, miR-132

post-transcriptionally inhibits the translation of Nurr1 and

weakens its repressive effect on Cyp19a1 transcription.

This miR-132-mediated reduction of Nurr1 repression

leads to Cyp19a1 upregulation and increased E2 synthesis.

Knockdown of Nurr1 partially attenuates the effects of

miR-132 and re-expression of Nurr1 abrogates the

stimulatory effect of miR-132 on E2 synthesis

The knockdown of Nurr1 via RNA interference was vali-

dated using both Western blot analysis and real-time

PCR (Fig. 6a, b). The E2 synthesis was primarily elevated

after Nurr1 knockdown via siNurr1 transfection com-

pared to siNC (Fig. 6c, the left panels), which was similar

to the previously observed effect of the downregulation

of Nurr1 by miR-132. Followed by transfection of miR-

132 mimics for 48 h, miR-132 significantly promoted E2
synthesis as expected in siNC group, while miR-132

failed to further contribute to the elevation of the E2
synthesis in siNurr1 group (Fig. 6c, the right panels). In

addition, the Cyp19a1 mRNA levels showed similar

changes (Fig. 6d). After transfecting mGCs with Flag-

Nurr1, which upregulated Nurr1 protein levels inde-

pendent of miR-132 repression due to the absence of the

3'-UTR binding sequence for miR-132 in the pFLAG-

CMV-2 expression plasmid, the stimulatory effect of

miR-132 on E2 synthesis was largely abrogated (Fig. 6e).

The E2 levels dropped to basal levels. These results sug-

gest that Nurr1 plays an important role in miR-132-

induced E2 synthesis.

Discussion

Both FSH and LH promote intracellular cAMP in GCs via

binding to their receptors [23]. We isolated naïve GCs

Fig. 4 Effects of miR-132 on Cyp11a1 and Cyp19a1 in mGCs. To

examine the effect of miR-132 on Cyp11a1 and Cyp191a1 transcription,

mGCs were transfected with 100 nM of miR-132 mimics (a) or 100 nM of

miR-132 inhibitors in the absence (b) or presence of 8-Br-cAMP (c) for

48 h as indicated, or the corresponding negative controls. Total

RNA was extracted from mGCs 48 h after transfection, and the

mRNA expression levels of Cyp11a1 and Cyp19a1 were measured

by real-time PCR. The results represent the mean +/-SEM of three

independent experiments. # p< 0.05; **p < 0.01; ## p < 0.005, compared

with the negative control (NC)
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from immature mice and used 8-Br-cAMP to mimic the

secondary messenger downstream of the FSH pathway.

Our in vitro analysis of miR-132 expression in cultured

mGCs treated with 8-Br-cAMP demonstrated that miR-

132 levels were significantly upregulated and peaked at

12 h (Fig. 1e). The induction of miR-132 was also ob-

served in FSH or cAMP -treated rat GCs [19, 20]. The

treatment of mouse ovaries with an ovulatory dose of LH/

hCG revealed that miR-132 was highly upregulated in

periovulatory mGCs [21]. The results of previous studies

are consistent with our findings, which demonstrated that

miR-132 was induced by hormonal stimulation and activa-

tion of the cAMP pathway in GCs. A previous study dem-

onstrated that miR-132 is regulated by CREB via CRE

motifs upstream of miR-132 [31]; this finding explains the

observed upregulation of miR-132 by cAMP activation in

Fig. 5 miR-132 suppresses Nurr1 expression post-transcriptionally. a The putative site in the Nurr1 3′-UTR that contains the ‘seed sequence’ for miR-132

binding. The g and a shown in red indicate the miR-132 binding site in the mutant form of Nurr1. mGCs were transfected with 100 nM miR-132

mimics, miR-132 inhibitors or the corresponding negative controls. Cells were co-transfected with the wild-type (WT) Nurr1 3′-UTR luciferase reporter

plasmid (b), the mutant (MU) Nurr1 3′-UTR luciferase reporter plasmid (c) or the NBRE-luciferase reporter plasmid (d). After 48 h,

luciferase assays were performed, and the results were normalized using constitutive Renilla luciferase. e Western blot analysis of Nurr1

and Nur77 protein expression in mGCs 48 h after transfection with 100 nM of miR-132 mimics, miR-132 inhibitors or the corresponding

negative controls. The upper panels depict representative Western blots, and the lower panels present the statistical summary of the densitometric

analysis from three independent experiments, indicating expression levels relative to negative controls after normalization to GAPDH. f Real-time

PCR analysis of Nurr1 mRNA levels in mGCs 48 h after transfection. The results represent the mean +/-SEM of three independent experiments

performed in triplicate. **p< 0.01; # p< 0.05, compared with the negative control (NC)
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GCs. These findings also suggest that miR-132 mediates

functions of the cAMP pathway during the differentiation

process of GCs.

There is increasing interest in identifying the functions

of miRNAs in GCs. miR-21, which in addition to miR-

132 and miR-212, is an LH-induced miRNA, blocks

apoptosis in mGCs [32]. The TGF-β/Smads signaling

pathway plays critical roles in early follicle development,

GC proliferation and differentiation. Our previous study

demonstrated that miR-145 and miR-181a suppress the

proliferation of mGCs by targeting Acvr1b and Acvr2a,

respectively [25, 33]. This pathway also regulates the

expression of many miRNAs, including miR-224 and

miR-383 [15, 16]. Elevated miR-224 can enhance TGF-

Fig. 6 Knockdown of Nurr1 partially attenuates the effects of miR-132, and re-expression of Nurr1 abrogates the stimulatory effect of miR-132 on E2

synthesis. a mGCs were transfected with 100 nM siRNA targeting Nurr1 or negative control siRNA. Real-time PCR detection of Nurr1 mRNA levels was

performed 48 h after transfection of mGCs. b After knockdown, Nurr1 protein levels were analyzed by Western blot. c siRNA was transfected 24 h

before transfection of miR-132 mimics or negative controls, followed by continuous culture for an additional 48 h. The culture medium was collected

for the measurement of E2 levels 24 h and 48 h after transfection. d Total RNA was extracted from mGCs and Cyp19a1 mRNA levels were measured using

real-time PCR. e Culture medium was collected for the measurement of E2 levels 48 h after transfecting mGCs with the Flag-Nurr1 or the Flag-empty

vector (EV) plasmids and miRNA mimics, as indicated. The results represent the mean +/-SEM of three independent experiments performed in triplicate.

Values with different superscripts (a, b, c) are significantly different (p < 0.05). *p < 0.05; **p < 0.01; N.S. no significant difference, compared with the

negative control (NC)
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β1-induced mGC proliferation by targeting Smad4 and

ovarian E2 release [15], while the downregulation of

miR-383 promotes steroidogenesis by targeting RBMS1

and can be transactivated by SF-1 through direct binding

to the promoter of the miR-383 host gene SGCZ [16].

In porcine GCs, miR-378 is spatiotemporally expressed

and shows an inverse expression pattern to that of

aromatase. Aromatase expression and subsequent E2
production by GCs are directly post-transcriptionally

downregulated by miR-378 [19]. In KGN cells, overex-

pression of miR-132 increased E2 levels [22], which is con-

sistent with our findings in mGCs. However, a study in

equine follicle development found that miR-132 was in-

creased in granulose cells from luteinizing follicles with

higher progesterone and lower estradiol concentration in

the follicular fluid [34]. In preovulatory mGCs, knock-

down of miR-132 failed to affect estradiol or progesterone

after cAMP treatment [21]. In a genome-scale screen of

steroid hormone release influenced by miRNAs in human

primary ovarian GCs, 51 miRNAs were found to suppress

E2 release, whereas none of the miRNAs (including miR-

132) studied were found to have a stimulatory effect on

the E2 level [14]. This discrepancy could be attributed to

differences between species and cell models. miR-132 may

exhibit diverse functions at specific stages of GCs develop-

ment. Therefore, we utilized a lower plating density to re-

tain an estrogenic phenotype of GCs. Our data suggest

that E2 production and the Cyp19a1 mRNA levels in

mGCs are elevated by miR-132 directly. Our loss-of-

function study also demonstrated that the knockdown of

miR-132 could downregulate the expression of Cyp19a1.

Consequently, the increased levels of miR-132 after 8-Br-

cAMP treatment could contribute to the extended sup-

pressive effect of miR-132 inhibitors on Cyp19a1. Taken

together, miR-132 was induced by cAMP and likely medi-

ated the FSH pathway in the primary cultured mGCs that

we studied because of its stimulatory effect on E2 synthe-

sis. To better understand the functions of miR-132 in GCs

of terminal differentiation (e.g. apoptosis), further studies

are needed.

In addition, our research elucidated some of the

molecular mechanisms that underlie the stimulatory

effect of miR-132 on E2 synthesis. We hypothesized

that miR-132 stimulates E2 synthesis via translational

regulation of an orphan nuclear receptor-Nurr1. Or-

phan nuclear receptors in the ovary, such as SF-1,

which is also known as NR5A1 [6, 35], are emerging

as important ovarian factors that regulate female

reproduction. The orphan nuclear receptor Nurr1 be-

longs to the nuclear receptor subfamily 4A (NR4A)

subgroup along with Nur77 and Nor1 [29]. The genes

encoding these transcription factors are classified as

immediate early response genes because their expres-

sion is rapidly induced by a variety of physiological

stimuli, including fatty acids, prostaglandins, growth

factors, calcium, cytokines and peptide hormones

(e.g., FSH) [36]. NUR77 is a novel transcription factor

that contributes to the regulation of prolactin gene

expression in human endometrial stromal cells and

regulates androgen receptor gene expression in ovar-

ian GCs [37, 38]. Both NUR77 and NURR1 suppress

the transcription of aromatase and modulate its ex-

pression in the KGN human granulosa-like tumor cell

line [29]. In a recent study of embryonic stem cell

differentiation, miR-132 was demonstrated to directly

regulate the expression of Nurr1, which is an import-

ant transcription factor in dopamine neuron develop-

ment and differentiation [29]. Our study demonstrates

that miR-132 suppressed Nurr1 expression by target-

ing its 3'-UTR (Fig. 5b). Interestingly, the Nurr1 pro-

tein levels in mGCs were dramatically decreased by the

overexpression of miR-132 (Fig. 5e), whereas the Nurr1

mRNA levels were only slightly changed (Fig. 5f). This

finding indicates that in mGCs, miR-132 induces Nurr1

translation inhibition but not mRNA degradation by bind-

ing to the 3'-UTR of Nurr1. It has been suggested that the

promoter-proximal region of the aromatase PII promoter,

which contains the binding sites for SF-1 and a CLS, also

mediates the transcriptional repression of NURR1 and

NUR77 [29]. However, this protein-DNA interaction

might be too transient or too weak to be detected by the

gel shift assay used in the previous study. The underlying

mechanism by which NR4A mediates the transcriptional

repression of Cyp19a1 remains to be elucidated. In con-

trast to the previously reported transient peaks in NR4A

expression, the cAMP-mediated induction of miR-132 re-

sulted in a delayed elevation pattern [29]. Conceivably,

miR-132 expression could contribute to the decline of

Nurr1 and the subsequent upregulation of Cyp19a1.

A previous study demonstrated that in neurons, miR-

132 is regulated by multiple factors, such as BDNF [39],

and is required for both neuronal morphogenesis and

long-term synapse activation [28]. Some targets of miR-

132, including p250GAP [40] and MeCP2 [41], have

been identified. Interest in the involvement of miR-132

in endocrine biology has emerged recently. miRNA pro-

filing in LβT2 cells exposed to gonadotropin-releasing

hormone revealed the significant induction of miR-132,

which subsequently regulated cellular motility [42]. Our

study suggests that miR-132 may exert differential ef-

fects on reproductive endocrine regulation (e.g., the pro-

motion of estrogen synthesis). In light of the important

roles of both miR-132 and estrogen in brain function, it

would be of interest to determine whether miR-132 in-

fluences local estrogen synthesis in the nervous system.

In addition, the induction of miR-132 during Kaposi’s

sarcoma-associated herpes virus infection represses the

expression of p300, a co-activator of CREB, which acts
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as part of a negative feedback loop that leads to the in-

hibition of miR-132 expression and the restoration of

p300 expression [43]. This regulatory network may con-

tribute to the observed decline in miR-132 levels after

peak expression is reached during cAMP treatment. The

precise regulatory role of miR-132 and its functions in

GCs remain to be elucidated. In addition, further in vivo

studies, such as a study using floxed miR-212/132 mice

[44] to specifically ablate miR-132 in GCs, could im-

prove our understanding of the effect of miR-132 on E2
synthesis. A recent study in polycystic ovary syndrome pa-

tients found that the expression levels of miRNA-132 in

follicular fluid were significantly lower in patients than in

controls [22]. The dysfunctions of miR-132 in the develop-

ment of polycystic ovary syndrome and premature ovarian

failure are to be elucidated in future studies.

Conclusions

In summary, our study demonstrated that cAMP in-

duces the expression of miR-132 in mGCs; E2 synthesis

is subsequently induced by miR-132 via the upregulation

of Cyp19a1. miR-132 induces Cyp19a1 by directly sup-

pressing the expression of Nurr1. The observed effects

of miR-132 on physiological processes in GCs may be

useful for regulating reproduction and treating steroid-

related disorders.
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