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ARTICLE

Molecular Diagnostics

MicroRNA-196a is regulated by ER and is a prognostic

biomarker in ER+ breast cancer
Michael J. G. Milevskiy1,6, Udai Gujral1, Carolina Del Lama Marques1, Andrew Stone2, Korinne Northwood1,3, Lez J. Burke1,

Julia M. W. Gee4, Kenneth Nephew5, Susan Clark2 and Melissa A. Brown1

BACKGROUND: MicroRNAs are potent post-transcriptional regulators involved in all hallmarks of cancer. Mir-196a is transcribed

from two loci and has been implicated in a wide range of developmental and pathogenic processes, with targets including Hox,

Fox, Cdk inhibitors and annexins. Genetic variants and altered expression of MIR196A are associated with risk and progression of

multiple cancers including breast cancer, however little is known about the regulation of the genes encoding this miRNA, nor the

impact of variants therein.

METHODS: Genomic data and chromatin interaction analysis were used to discover functional promoter and enhancer elements

for MIR196A. Expression data were used to associate MIR196A with mechanisms of resistance, breast cancer subtypes and prognosis.

RESULTS: Here we demonstrate that MIR196A displays complex and dynamic expression patterns, in part controlled by long-range

transcriptional regulation between promoter and enhancer elements bound by ERα. Expression of this miRNA is significantly

increased in drug-resistant models of hormone-receptor positive disease. The expression of MIR196A also proves to be a robust

prognostic factor for patients with advanced and post-menopausal ER+ disease.

CONCLUSION: This work sheds light on the normal and abnormal regulation of MIR196A and provides a novel stratification method

for therapeutically resistant breast cancer.

British Journal of Cancer (2019) 120:621–632; https://doi.org/10.1038/s41416-019-0395-8

BACKGROUND
MicroRNAs are short non-coding RNAs that post-transcriptionally
regulate gene expression.1 MicroRNAs have been implicated in
many diseases, including rare inherited syndromes, arising from
germline mutations in MiRNA genes, and several cancers types.2

Research into the biology and pathology of these molecules
has led to the identification of clinically useful genetic and
epigenetic biomarkers and more recently novel therapeutic
agents.3 These therapeutic agents are based on antagomiR
technology, synthetic RNA molecules that bind miRNA targets,
and have shown promise in the control of disease symptoms and
progression.
MicroRNA-196A (mature RNA MIR196A, non-human miR196a) is

transcribed from two genomic loci, HOXC (Chr12 in humans,
gene MIR196A2) and HOXB (Chr17 in humans, gene MIR196A1),
both situated upstream of HOX9, respectively.4 The precursor
transcript expressed from MIR196A2 (pre-MIR196A2) produces
two mature miRNA molecules, miR-196a-5p (herein referred to as
MIR196A, miR196a non-human) and miR-196a-3p, whilst the
HOXB precursor gene MIR196A1 (pre-MIR196A1) also encodes
miR-196a-5p but a different 3′ miRNA, miR-196a-1-3p. Early
studies into the function of miR196a in mice and chicken,
demonstrated a requirement for miR196a expression to suppress

Hoxb8 RNA, essentially controlling its spatiotemporal pattern
along the anterior-posterior axis.5–8

MIR196A been implicated in a range of cancers, primarily as an
oncogene. For example, MIR196A is overexpressed in breast
tumours relative to normal breast tissue,9 and additionally a single
nucleotide polymorphism (SNP, rs11614913, C>T) within the
MIR196A2 gene is associated with a decreased risk of breast
cancer.10 The decrease in risk from rs11614913 was found to be
associated with a decrease in processing of the precursor
transcript to mature miRNA, resulting in less MIR196A expression
and highly suggestive of an oncogenic role in breast cancer.
MIR196A has also been shown to target the 3′ UTR of Annexin-1
(ANXA1), an important mediator of apoptosis,11 in response to the
pro-angiogenic vascular endothelium growth factor (VEGF),
leading to alterations in angiogenesis, a hallmark of tumourigen-
esis.12 A separate study demonstrated that MIR196A could
increase growth, migration and invasion of a non-small-cell lung
cancer cell line through direct targeting of HOXA5.13 Two studies
have recently shown that MIR196A can directly influence the cell
cycle by targeting p27/Kip1, an inhibitor of cell cycle progression,
to dramatically increase growth and pro-oncogenic features of
cancer cell lines.14,15 Despite the clear importance on MIR196A in
cancer, its transcriptional regulation remains poorly understood.
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Transcriptional regulation is a complex multi-faceted biological
process that is significantly altered in cancer. MicroRNA genes are
regulated transcriptionally in a similar manner to protein coding
and long non-coding RNA genes. Promoters mostly lie upstream
(within 10 kb of the mature miRNA), contain a CpG island and in
an active state when the miRNAs are transcribed by RNA Pol II are
enriched for H3K4me3 and lack H3K27me3 similar to protein
coding genes.16,17 Taken together, these data indicate that
potential promoters for miRNAs can be identified in a similar
manner to methods for protein coding genes. Several instances of
miRNA regulation by enhancers have been described, but this
area is very much in its infancy.18,19

In this study, we aimed to characterise the expression landscape
of MIR196A including factors regulating its expression and explore
potential roles of regulatory elements and factors in breast cancer
prognostication.

MATERIAL AND METHODS
Cell culture
MCF7 cells, for the development of endocrine resistance sub-lines
were obtained from AstraZeneca. MCF7, Tamoxifen-resistant
(TAMR), Fulvestrant-resistant (FASR), and oestrogen-deprived
(MCF7x) cells were cultured as described.20–22 All cell lines were
cultured for less than 6 months after authentication by short-
tandem repeat (STR) profiling (Cell Bank, Australia). MCF7 cells
were cultured in RPMI (ThermoFisher, 11875-093) supplemented
with 5% foetal calf serum (FCS, ThermoFisher, 1600–044). TAMR,
FASR and MCF7x lines were cultured in phenol-red free RPMI
(ThermoFisher, 11835–030) supplemented with 5% charcoal
stripped FCS (Sigma-Aldrich, F6765), additionally TAMR cells were
maintained in 4-Hydroxytamoxifen (Sigma H7904, 10−7M) and
FASR cells in Fulvestrant (Herceptin®, Genentech, 10−7M).

Cloning and reporter assays
All PCR products for luciferase reporter assays were ligated into
Invitrogen’s pCR-Blunt (K270020) plasmid using T4 DNA Ligase
(New England BioLabs, M0202S), at 40C overnight. MIR196A
enhancers and promoters were digested from pCR-Blunt and
cloned into the luciferase reporter plasmid pGL3-Basic (Promega,
E1751). Enhancers were cloned into the BamHI/SalI site whilst
promoters were cloned into the multiple cloning site immediately
upstream of the luciferase gene. See Supplementary Table 1 for
primers.
MCF7 cells were transfected in antibiotic free media with 500 ng

of modified pGL3 reporter constructs, 20 ng of pRL-TK (Renilla
transfection control) and with 0.5 μL of Lipofectamine 3000 (Life
Technologies, L3000-008). 48 h post transfection luciferase read-
ings were measured using a DTX-880 luminometer and Dual-Glo
Stop and Glo luciferase reporter kit (Promega, E2920), following
the manufacturer’s recommended protocol.

RNA extraction and gene expression
Cell lysates were prepared using Life Technologies TRIzol®
reagent and RNA was chloroform extracted and isopropanol
precipitated. RNA was DNaseI treated with the DNA free kit from
Ambion (Life Technologies, AM1906). RNA for miRNA analysis
was reverse transcribed using the miScript RT II kit from Qiagen
(218161), following instructions as per the manufacturer. Assays
for all miRNAs were performed with Qiagen’s miScript SYBR
Green PCR Kit (218073). Primers specific to each mature or
precursor miRNA were assayed coupled with a universal primer,
see Supplementary Table 2 for assay IDs. Expression data for
miRNAs was normalised to the snoRNA RNU6b. All qRT-PCRs
were performed using the protocols advised by the manufac-
turers on a Corbet Rotorgene-6000.
Processed read counts for RNA-Seq on MCF7 cells following

oestradiol treatment was sourced from K. Nephew (see author

list).23 RNA-Seq from Adriamycin (ADM) and paclitaxel (PTX)
resistant MCF7 derived cells was sourced from GSE68815,24 as
processed and normalised read counts. Expression of HOX genes
in human breast cells was sourced from Gascard et al.25 as
normalised read counts.

Genomic data analysis
Accession codes for publicly available data were as follows,
MCF7 ChIP-Seq (GSE14664,26), GRO-Seq (GSE27463,27), ChIA-PET
(GSE39495,28,29), Breast tumour ERα ChIP-Seq (GSE32222,30). MCF7
histone ChIP-Seq and breast cell 450 K array data was sourced
from ENCODE31 via http://genome.ucsc.edu/ENCODE/downloads.
html. ChIP-Seq reads were adapter trimmed and data was mapped
to the human genome (hg19) using Bowtie32 and peaks called by
MACS33 and viewed in the Interactive Genome Viewer (IGV)34

available through the Broad Institute servers. DNA methylation
450 K array data for MCF7 and endocrine resistant sublines was
previously published, see Stone et al.35 Normalised DNA methyla-
tion of breast tumours was sourced from The Cancer Genome
Atlas (TCGA).36 Methylation β-values were correlated to the gene
expression of MIR196A from the TCGA cohort,36 Pearson correla-
tion coefficients are reported. For transcription factor (TF) binding
to the MIR196A2 promoters, the genomic regions upstream of the
MIR196A2 gene were visualised through the UCSC genome
browser.37 ENCODE38 TF ChIP-Seq and JASPAR39 TF motifs were
mapped across the putative promoter elements and snapshots
from the browser were taken.

Breast tumour expression analysis
METABRIC expression and clinical information were sourced from
EGAS00000083 through a Material Transfer Agreement with the
consortium.40,41 Expression values were pre-processed by METAB-
RIC and available as log2 array intensities. Clustering of Illumina
Array and miR-Seq data was performed using the Multiple
Experiment Viewer (MeV,42). Data was mean-centred and hier-
archically clustered via Manhattan average-linkage based cluster-
ing of both rows and columns. Genes were correlated within
clusters using the CORREL function of Microsoft Excel. The protein
network was generated through the cBioPortal link (www.
cbioportal.org,43) using the TCGA data.36 cBioPortal utilises protein
data and visualisation tools through Cytoscape.44

Survival analysis
Tumour cohorts were based on immunohistochemistry of
METBARIC40 patients as either ER+ or ER− PGR− HER2− as triple
negative breast cancer (TNBC). Univariate and multivariate Cox
proportional hazard regression analyses were performed using
MedCalc for Windows, version 12.7 (MedCalc Software, Ostend,
Belgium). Kaplan-Meier survival analysis and generation of survival
curves was done in GraphPad Prism. Optimal cutoffs for low and
high expression groups were determined using receiver operator
characteristic (ROC) curves based on the expression of genes
(MIR196A, HER2 and PGR) versus patient overall survival. The gene
expression value that represents the maximum deviation from the
‘random guess’ line was used as a cut-off to discriminate low
versus high expression. Lymph node status was designated as
positive (+, ≥1 node presenting with disease at time of surgery) or
negative (−). Tumour grade and stage clinical information were
sourced from METABRIC.40 Tumour size was categorised as T1= ≤

20mm, T2= > 20mm, and <50mm and T3= ≥ 50mm.

3C and ChIA-PET
Chromosome conformation capture (3C) was adapted from
Vakoc 2005,45 Hagege 200746 and Tan-Wong 2008.47 Briefly,
cells were grown to 60–80% confluencey and fixed with 1%
paraformaldehyde. Libraries were generated for each cell line
using HindIII with control libraries undigested and unligated,
representing native gDNA without chromosome conformation.
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GAPDH primers (amplified fragment contains no cut sites for
these enzymes) were used to determine the digestion and
ligation efficiency of each library by comparing 3C-qPCR values
to primers that amplify a fragment containing a HindIII cut site.
For each 3C-qPCR, primers were designed between 100–250 bp
up or downstream of each HindIII cut site with the primer across
the putative enhancer used as bait in each 3C-qPCR. The bait
primer was combined with each of the primers across the
enhancer region for the 3C-qPCR and Ct levels from each 3C-
qPCR were normalised to the lowest Ct value (most abundant
interaction) so that this interaction= 1 relative interaction.
Enhancer-promoter interactions are demonstrated as a peak
across a region of multiple primers.

RESULTS
MIR196A expression correlates with HOXC genes in breast cancer
Several HOXC protein coding and non-coding genes have known
associations with breast cancer progression. We assessed expres-
sion patterns of HOXC genes and MIR196A (mature miRNA) in the
METABRIC cohort of breast tumours (Supp Fig. 1). These data
indicate that MIR196A expression highly correlates to HOXC genes,
particularly HOXC10, which lies directly upstream of this miRNA.
Next, we investigated whether these associations are also

observed in normal cells of the human breast. Here associations
between mature MIR196A expression and HOXC genes are more
limited, with correlations most strongly with HOXC11 and HOXC10,
the genes upstream of the HOXC MIR196A2 gene (Supp Fig. 2A).
Consistent with its role in degrading HOX transcripts, HOXC8,
HOXB8 and HOXA7 (all validated targets) negatively correlate with
MIR196A expression. MIR196A appears to be most highly
expressed within the basal stem-cell (BSC) derived cells, whilst
expression is lower in the more differentiated cell types (Supp
Fig. 2B).

MIR196A expression is regulated by oestrogen
We and others have previously demonstrated regulation of HOXC
genes by oestrogen in breast cancer.48–52 Given that MIR196A
expression strongly correlates with expression of HOXC protein
coding genes in breast tumours (Supp Fig. 1), we sought to
determine if oestrogen also regulates the HOXC embedded
MIR196A2 precursor gene. Chromatin immunoprecipitation
(ChIP-Seq) for RNA polymerase II demonstrates that polymerase
binding in the region surrounding the HOXC10 gene and MIR196A
gene is dependent on oestrogen in MCF7 cells (Fig. 1a). Global-
run-on sequencing (GRO-Seq) is able to measure nascent RNA,
assessing changes in transcription with high sensitivity. Analysis of
MCF7 GRO-Seq data clearly indicates a dramatic increase in RNA
production in the genomic region surrounding MIR196A2, peaking
at 40mins following addition of oestradiol (E2) (Fig. 1b). This
increase in RNA production from the HOXC locus was validated
with qRT-PCR from MCF7 cells following addition of E2 (Fig. 1c).
The regulation of HOXC10 by oestrogen has been previously
established,51 we find similar results which indicate an increase in
expression by E2 (Supp Fig. 3). We next analysed data from MCF7
cells where low levels of E2 (1 nM) were used and find a similar
pattern of a rapid increase in pre-MIR196A2 expression (Fig. 1d).
Additionally, there was no change in the expression of the HOXB
precursor, pre-MIR196A1. Taken together this suggests that
MIR196A is transcriptionally regulated by oestrogen through its
HOXC precursor, MIR196A2.

Transcriptional regulation of the MIR196A2 precursor gene
To identify the structural elements associated with the transcrip-
tional regulation of MIR196A2, histone methylation patterns in the
MCF7 breast cancer cell line were assessed. This analysis
uncovered putative promoter elements upstream of MIR196A2
including a shared promoter with HOXC10 (Fig. 1a). Given the

strong association of MIR196A and HOXC10 expression in breast
and their co-regulation by oestrogen, it seems likely they may
share a common promoter element which we have cloned
in three separate elements labelled putative promoter 1 (PP1),
Overlap (between PP1 and PP2) and PP2.
Given that MIR196A2 expression is regulated by oestrogen we

hypothesised that its transcription may be controlled by the
oestrogen receptor (ER). Using publicly available datasets we
established that oestrogen mediated upregulation of MIR196A2
expression is accompanied by binding of ERα and its pioneer
factor FOXA1 to two putative promoter regions, PP1 and PP3,
upstream of the MIR196A2 transcription start site (Fig. 1b).
The putative promoter elements were subsequently cloned into

luciferase reporter vectors to assess transcriptional activity. PP1
and PP2 (modestly) increased luciferase gene transcription
(Fig. 1e), with the most active promoter in MCF7 cells being PP1
(HOXC10 promoter).
Given that ERα often binds to distal enhancer elements to exert

its function, we examined the hypothesis that MIR196A2 is
controlled by long-range transcriptional regulation, mediated by
ERα tethered gene looping. Using ChIA-PET (Chromatin Interact
Analysis by Paired End Tags) genome-wide chromatin interactions
that immunoprecipitate with either ERα or RNA Polymerase II
(correlative with active promoters and enhancers), we identified
two major sites of interaction with the MIR196A2/HOXC10
promoters (Fig. 2a). One of these is a previously identified HOTAIR
enhancer (HOTAIR distal enhancer, HDE49) and the other a novel
interacting partner (MIR196A2-Enhancer, mE). Chromosome con-
formation capture (3C) enzymatic digestion of the HOXC genomic
locus results in two fragments covering the MIR196A2 region.
3C-qPCR analysis demonstrates that both enhancer elements
physically interact with each of the MIR196A2/HOXC10 promoter
regions (Fig. 2b). Cloning of these fragments downstream of the
putative-promoter luciferase reporters clearly demonstrates sig-
nificant augmentation of transcription for both the PP1 and PP2,
with HDE appearing to be the most active in MCF7 cells (Fig. 2c).
Interestingly, a previous study10 identified a SNP (rs11614913)

and an upstream CpG island that are both associated with a
decrease in breast cancer risk. This SNP lies within the MIR196A2
gene and the CpG island (CpG_Hoffman) is immediately upstream,
falling into the 3’ end of the PP3. Analysis of DNA methylation
reveals that this CpG island is mostly methylated in non-malignant
MCF10A and cancerous MCF7 cells, whilst unmethylated in human
mammary epithelial cells (HMEC) (Fig. 1a).

MIR196A is differentially expressed in breast cancer
Since MIR196A is regulated by ERα, we investigated its expression
patterns in relation to commonly utilised molecular markers of
breast tumours (Fig. 3a). This analysis identified four distinct
clusters of MIR196A expression (Clusters 1–4). Interestingly clusters
1 and 3 show a strong correlation to expression of hormone
receptors (HR) (AR, ERα, PGR, HER2) and HR cofactors (Fig. 3b). In
contrast, clusters 2 and 4 have significant negative correlation to
expression of ERα, PGR, FOXA1 and GATA3, whilst associating with
EGFR and HER2. This expression is further defined by the PAM50
intrinsic subtypes where MIR196A is strongly expressed in the
HER2 subtype, whist in the luminal A and B subtypes expression is
very dynamic (Fig. 3c).
DNA methylation accumulates within promoters at CpG islands

to suppress gene expression through inhibition of transcription
factor binding.53 To predict further regulators of MIR196A
expression in clusters 2 and 4 where negative correlation to
ESR1 is seen, we investigated the DNA methylation of our putative
promoter elements. The majority of upstream CpGs show a
negative correlation to MIR196A expression, which the strongest
correlation seen to sites within PP2 and A2-Gene (Fig. 3d). Utilising
ENCODE TF ChIP-Seq data and motif sites from JASPAR, we
identified 49 TFs binding within 100 bp of these methylation sites
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(Supp Figs. 4 and 5, Supp Table 3). Of the 49 TFs, 18 factors exhibit
significant positive correlation in clusters 2 and 4, while 9 are
significantly negatively corelated to MIR196 A expression (Supp
Fig. 6A, Supp Table 3). Interestingly, a cluster of factors (CEBPA,
CEBPB, EBF1, EGR1, EGR2, EZH2, JUN, KLF4, KLF5, PPARG, RXRA)
presents as highly interconnected through protein-protein
interactions and transcriptional regulation and appears largely

independent of ERα (Supp Fig. 6B, blue oval). These data suggest
that in breast cancer, an interconnected group of transcription
factors may influence expression of MIR196A independent of ERα.

MIR196A is a biomarker of breast cancer progression
To further explore the expression of MIR196A in breast cancer, we
utilised expression data from the METABRIC cohort of breast
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tumours.40,41 Expression analysis of this miRNA indicate that it is
significantly over-expressed in breast tumours compared to
normal adjacent tissue and over-expression is associated with an

increase in tumour stage (Fig. 4a, b). Interestingly, high expression
ofMIR196A is associated with a poor survival in oestrogen receptor
positive (ER+) breast cancer, whilst high expression associates
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with a better outcome in triple-negative breast cancer (TNBC) over
the first 5 to 10 years following initial diagnosis (Fig. 4c, d).
Using MIR196A expression, overall survival of ER+ tumours

responding to both hormone therapy (HT) and chemotherapy (CT)
was stratified (Fig. 4e). Women with low MIR196A expression had
exhibited a high rate of survival (>95% at 10 years, HR= 8.003, P-
value= 0.0125), whilst most women within the high expression
group died within 17 years (61% at 10 years).
Given that MIR196A is regulated in part by oestrogen, and

the disparity in prognostication of ER+ and TNBC, we
investigated the effects of menopause on the stratification of
survival for ER+ women. The effects of menopause on the
human breast are largely unknown, however serum levels of
oestrogen and progesterone dramatically reduce post meno-
pause. In pre-menopausal women, high expression of MIR196A is
associated with improved overall survival in ER+ disease (HR=
0.463, P-value= 0.0288) (Table 1, Supp Fig. 7A). Multivariate
analysis demonstrates that MIR196A is one of the few significant
biomarkers for ER+ tumours arising before menopause. In post-
menopausal women, all tested biomarkers were significant in
ER+ disease, including MIR196A, however high expression is
now associated with decreased overall survival (HR= 1.847,
P-value= 0.0005) (Table 1, Supp Fig. 7B). A similar trend was also
observed in TNBC, where in pre-menopausal women, MIR196A
high expression correlates with a better outcome (Supp Fig. 7C),
stratification in post-menopausal women however, found no
significant trend (Supp Fig. 7D).

Therapeutic resistance leads to increases in MIR196A expression
TNBC is resistant to hormone-based therapies and HR+ disease
often becomes resistant to anti-oestrogen treatment. Using
established models of HR+ disease resistance we found that
MIR196A expression is significantly increased in tamoxifen
resistant MCF7 cells (TAMR) whilst it is almost depleted in
acquired fulvestrant resistance (FASR) (Fig. 5a). These expression
patterns match changes in DNA methylation to the HOXC10/
MIR196A2 promoters in these same cells (Fig. 5b). For HR+
resistant tumours the only remaining therapeutic options are
radiotherapy and chemotherapy. Using RNA-Seq data for cell line
models of resistance to adromycin (ADM) and paclitaxel (PTX), two
commonly used chemotherapeutics, MIR196A expression again
increases in resistant cell lines compared to the treatment
sensitive cell line (Fig. 5c). These data suggest an intrinsic
requirement for elevated MIR196A expression in HR+ tumour
resistance.
Several HOX genes are validated targets of MIR196A (HOXA7,

HOXB8, HOXC8 and HOXCD8) HOXA7 shows the greatest negative
correlation to MIR196A in human breast cells (Supp Fig. 2A).
Expression of HOXA7 strongly mirrors that of MIR196A in the panel
of endocrine resistant MCF7 sublines (Fig. 5d). Additionally,
expression of HOXA7 decreases in the ADM and PTX resistant
lines (Fig. 5e), in contrast to the increase in MIR196A expression. In
these models of therapeutic resistance, MIR196A may be reducing
expression of HOXA7.
Utilising ERα ChIP-Seq performed in human patients with HR+

disease,30 binding sites for ERα were identified in the genomic
region of MIR196A. This tumour cohort contains three groups of

tumours, (1) tumours from women who respond to HR therapy, (2)
those who do not and (3) metastases from resistant tumours. An
increase in ERα occupancy is seen at both enhancer and promoter
regions of MIR196A in non-responders and metastases (Fig. 5f).
The increased genome-wide ERα binding in the more resistant
tumours was shown by the authors to associate with changes to
expression patterns crucial for the resistant tumour to survive
therapy and become resistant.

DISCUSSION
The expression of MIR196A in breast cancer is both dynamic and
complex. In this paper, we have elucidated important elements,
factors and mechanisms controlling the transcriptional regulation
of MIR196A and shown that changes in regulation are associated
with breast cancer progression and therapeutic resistance.
Several studies have demonstrated regulation of HOXC genes

by oestrogen.49,51,54 The majority of HOXC genes are lowly
expressed in breast luminal epithelial cells (BLEC), where ERα is
most highly expressed and cells are responsive to oestrogen.
The regulation of HOXC genes by ERα may be specific to cancer
cells through an acquired mechanism of regulation. Several
studies have shown that enhancers that are normally repressed
can become activated in cancer55,56 and given the extensive
chromatin looping between the HOXC locus and its adjacent
gene desert, this seems the likely mechanism for cancer
expression.
We have previously demonstrated that long-range regulation of

HOXC genes occurs in breast cancer and is influenced by ERα and
its associated cofactors.49 HOX gene expression is tightly
controlled in a spatiotemporal manner to ensure proper axial
formation along the anterior-posterior axis during embryonic
development.57 Within the cell types of the human breast, HOX
gene expression appears dynamic and the association between
MIR196A and HOXC genes is not significant. The strong correlation
in expression of all HOXC genes in breast tumours with MIR196A is
in stark contrast to expression in normal tissues. Several instances
have been described regarding the influence of multiple distal
enhancers on gene expression, such as the well characterised
locus-control-region (LCR) of the Beta-globin genes or the c-Myc
enhancers active across multiple cancer types.45,58–60 Given the
extensive interactions between this locus and its adjacent gene
desert, we hypothesise that a consorted effort of multiple
enhancers is responsible for the overexpression of these genes
in cancer possibly driven by extensive binding and activity of ERα.
To explore this hypothesis a high resolution chromatin interaction
analysis of this region in breast cancer cells would be required,
such as 5C61 or NG Capture-C,62 coupled with ERα ChIP-Seq and
ChIA-PET.29 In addition, we see an increase in MIR196A2 expression
in response to low-dose E2, suggesting a direct influence by ERα
that is further increased at higher dosages of 10 nM in our qRT-
PCR assays. It would be interesting to explore how low dosages of
E2 influence distal enhaner elements and if more oestrogen is
required for enhancer-promoter activity.
Whilst this manuscript was in preparation new data has come to

light which corroborates our conclusions. Jiang et al.63 demon-
strate that the mature MIR196A transcript positively responds to

Fig. 3 MIR196A is differentially expressed in breast cancer. a Mean-centred log2-expression of MIR196A and commonly utilised breast cancer
molecular markers. Expression values were hierarchically clustered and the PAM50 tumour subtypes are indicated above the plot. Expression
values are indicated by colour scale bar. b Pearson correlation coefficients, and corresponding P-values, for each gene against the expression
of MIR196A either in the orange or purple clusters. c Intensity values for the expression of MIR196A across the five molecular subtypes, PAM50.
d Correlation of HOXCmethylation to expression of MIR196A for CpG dinucleotides upstream of its gene. Data was sourced from the METABRIC
cohort40,41 for a, b and c. Methylation and expression data for d was sourced from the TCGA cohort of breast tumours.36 Basal (n= 179), HER2
(HER2-enriched, n= 112), LumA (Luminal A, n= 568), LumB (Luminal B, n= 354), N-Adj (Normal-adjacent, n= 116), N-Like (Normal-like, n= 82)
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oestrogen stimulation in MCF7 cells, and this is mediated by
upstream ERα binding. This binding peak falls within PP3. Whilst
we show that PP3 is not able to increase luciferase expression in a
luciferase reporter assay, the binding of ERα may be important for
the activity of the HOXC10 and MIR196A2 promoters. In our data
we see a time delay in the processing of the precursor MIR196A2
gene into mature MIR196A, suggesting a second mechanism of
regulation post-transcriptionally. Evidence suggests that the levels
of mature miRNAs are more reliant the microprocessor complex
and that individual miRNAs vary significantly in there maturation
and stability.64

Previous genetic association studies have demonstrated that
the SNP (rs116149130) within the precursor gene, MIR196A2,
confers a reduced risk of breast cancer incidence.10,65,66 This SNP is

found within the MIR196A-3p sequence of the MIR196A2 precursor
gene. Hoffman and colleagues10 demonstrated that rs116149130
reduces microRNA maturation thereby reducing expression of the
mature miRNA. They also identified that an upstream CpG island is
associated with reduced risk when hypermethylated. Here we
show that this upstream CpG island lies within the transcription-
ally active region of HOXC10 and MIR196A2 as observed through
GRO-Seq. Interestingly, this CpG island is completely methylated
in models of oestrogen deprivation and fulvestrant treatment,
but not in tamoxifen resistant cells. DNA methylation is most
commonly associated with repressed transcription,67 hypermethy-
lation of this region in a transcriptional high region may severely
impair expression. Given that various transcription factors strongly
influence transcription in endocrine resistant breast cancer, these
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data suggest that binding of ERα accompanied by cofactors may
be needed to maintain low methylation levels and active
transcription in breast cancer.68–72

Using hierarchical clustering of breast tumour RNA-Seq
data, we observed two distinct expression patterns associated
with MIR196A expression. Interestingly, DNA methylation at
several sites within the HOXC locus negatively correlates
with the expression of this miRNA, supporting the notion of
DNA methylation as a repressive epigenetic modification in
this context.67 We demonstrated that several transcription
factors that bind to these differentially methylated regions
strongly associate with MIR196A expression in breast cancer,
even in those tumours with show a negative correlation to ERα
expression. These transcription factors appear to influence the
expression of one another and in some cases form protein-
protein complexes. Further investigations should aim to fully
elucidate the role of this network and its influence on MIR196A
expression.
High expression of MIR196A is a biomarker of poor prognosis in

ER+ tumours, especially in those patients resistant to therapy.
Expression of MIR196A increases in response to tamoxifen and
chemotherapeutic agents in oestrogen responsive MCF7 cells. This
increase in expression is associated with loss of DNA methylation
within the promoter regions of the miRNA. In poor responders
with ER+ tumours, HOXC enhancer elements appear to more
readily bind the ER. These data raise the possibility that the
pathway to resistance to therapy in ER+ tumours involves the de-
repression and over-activation of promoter and enhancer

elements. This is commonly seen throughout cancer,56,73,74 with
suggestions that enhancer disruption can revert cells to a non-
terminally-differentiated state a common hallmark of tumourigen-
esis. HOX genes are essential in embryonic development, these
genes would be a valuable asset for any tumour cell to use to
sustain a stem-cell like state.75,76

Breast cancer incidence and relative subtype changes after
menopause.77,78 In women younger than 45, luminal breast
tumours account for 33–44%.79,80 This increases to 70–72% in
women older than 65. In contrast, basal-like tumours are more
common in younger women, suggesting a switch or evolution in
the factors driving cancer following menopause, most likely
related to the decline in oestrogen production. It is then
interesting to note that higher expression of MIR196A associates
with good outcome in pre-menopausal women with ER+
tumours, and a poor outcome of ER+ tumours following
menopause. Given the strong involvement of HOX genes in
development, we hypothesise that there is a change in the
regulation and expression of these genes through and following
menopause, which in turn impacts their contribution to the
development of certain breast cancer subtypes.
MIR196A is a dynamically expressed miRNA in both normal

mammary cells and breast tumours. This miRNA is a possible
biomarker for the progression of breast tumour to becoming
resistant to therapy. Future studies should aim to uncover the
purpose of increase MIR196A expression and if it is required for
development of resistance alone or in combination with other
HOXC genes.

Table 1. Menopause effects the stratification of patient survival by MIR196A expression in ER+ disease

ER+ pre-menopausal

Condition Univariate Cox-proportional hazard ratio Multivariate Cox-proportional hazard ratio
(stepwise)

HR (95% CI) P-value HR (95% CI) P-Value

HER2 (high vs. low) 2.695 1.2479–5.8213 0.0120 3.352 1.3483–8.3325 0.0096

MIR196A (high vs. low) 0.463 0.2325–0.9202 0.0288 0.342 0.1534–0.7623 0.0091

Tumour grade (1,2,3) 1.638 0.9988–2.6844 0.0517

Tumour stage (0–4) 1.652 0.9937–2.7472 0.0541

Lymph node (+, −) 1.857 0.9836–3.5069 0.0575

Size (T1, T2, T3) 1.470 0.9518–2.2688 0.0840 1.798 1.0893–2.9693 0.0225

PGR (high vs. low) 0.552 0.2770–1.0978 0.0919

Age at diagnosis 0.985 0.9261–1.0469 0.6221

ER+ post-menopausal

Lymph node (+, −) 2.739 2.0075–3.7358 <0.0001 1.720 1.1510–2.5711 0.0085

Tumour stage (0–4) 2.363 1.8658–2.9926 <0.0001 1.519 1.0557–2.1868 0.0251

Size (T1, T2, T3) 1.866 1.4837–2.3461 <0.0001 1.560 1.1146–2.1832 0.0099

Tumour grade (1,2,3) 1.822 1.4057–2.3622 <0.0001 1.455 1.0926–1.9385 0.0107

MIR196A (high vs. low) 1.847 1.3065–2.6110 0.0005 1.599 1.0806–2.3652 0.0195

HER2 (high vs. low) 2.165 1.3982–3.3521 0.0006 2.210 1.3624–3.5847 0.0014

PGR (high vs. low) 0.636 0.4708–0.8594 0.0034

Age at diagnosis 1.023 1.0059–1.0403 0.0086

The overall survival of patients with ER+ disease was stratified by MIR196A, HER2, or PGR expression or commonly utilised clinical markers. On the left is the

univariatie cox-proportional hazard ratios for each condition, and the right the multivariate cox-proportional hazard model and the conditions which

contribute to the most significant model. Expression and survival data sourced from METABRIC40,41

CI confidence interval, HR hazard ratio
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