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Abstract

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is projected to rise to the second leading cause of U.S. cancer-
related deaths by 2020. Novel therapeutic targets are desperately needed. MicroRNAs (miRs) are small noncoding RNAs that
function by suppressing gene expression and are dysregulated in cancer. miR-21 is overexpressed in PDAC tumor cells (TC)
and is associated with decreased survival, chemoresistance and invasion. Dysregulation of miR regulatory networks in PDAC
tumor-associated fibroblasts (TAFs) have not been previously described. In this study, we show that miR-21 expression in
TAFs promotes TC invasion.

Methods: In-situ hybridization for miR-21 was performed on the 153 PDAC patient UCLA tissue microarray and 23 patient-
matched lymph node metastases. Stromal and TC histoscores were correlated with clinicopathologic parameters by
univariate and multivariate Cox regression. miR-21 positive cells were further characterized by immunofluorescence for
mesenchymal/epithelial markers. For in vitro studies, TAFs were isolated from freshly resected human PDAC tumors by the
outgrowth method. miR-21 was overexpressed/inhibited in fibroblasts and then co-cultured with GFP-MiaPaCa TCs to
assess TC invasion in modified Boyden chambers.

Results: miR-21 was upregulated in TAFs of 78% of tumors, and high miR-21 significantly correlated with decreased overall
survival (P = 0.04). Stromal miR-21 expression was also significantly associated with lymph node invasion (P = 0.004),
suggesting that it is driving TC spread. Co-immunofluorescence revealed that miR-21 colocalized with peritumoral
fibroblasts expressing a-smooth muscle actin. Moreover, expression of miR-21 in primary TAFs correlated with miR-21 in
TAFs from patient-matched LN metastases; evidence that PDAC tumor cells induce TAFs to express miR-21. miR-21
expression in TAFs and TCs promotes invasion of TCs and is inhibited with anti-miR-21.

Conclusions: miR-21 expression in PDAC TAFs is associated with decreased overall survival and promotes TC invasion. Anti-
miR-21 may represent a novel therapeutic strategy for dual targeting of both tumor and stroma in PDAC.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is currently the

fourth leading cause of cancer-related deaths in the United States

[1]. If the current trends continue, it is predicted to rise to second

behind lung cancer by 2020 [2]. This rising mortality can be

prevented with earlier diagnosis or improved treatment strategies.

Rapid autopsy evaluation of patients who died of PDAC revealed

that over 70% had macrometastases, most commonly to the liver

and then lung [3]. The large tumor-associated stromal volume and

its components in PDAC are thought to be a major contributor of

the propensity of this tumor to spread to distant organs [4]. A

better understanding of how the stroma contributes to metastasis

development in PDAC may lead to new treatment strategies that

improve the prognosis of this fatal disease.

MicroRNAs (miRs) are small noncoding RNAs that are

approximately 20 nucleotides in length [5]. Through complemen-

tary base-pairing, they bind the 39UTR of their target mRNAs

and silence their translation via the RISC complex. miRs can

regulate the expression of many target genes and are associated
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with developmental processes and cancer [5]. Profiling of poorly

differentiated solid tumors from multiple organs revealed that

miRs are more cancer-specific than mRNAs [6]. Our previous

study revealed that miRs in PDAC tumor cells (TC) are

extensively involved in regulating expression of genes associated

with survival [7].

miR-21 is expressed in many solid tumors including hepatocel-

lular carcinoma [8], colon [9] and pancreatic cancers[10–14]. In

PDAC TCs miR-21 expression (i) increases early during tumor-

igenesis in low grade premalignant pancreatic intraepithelial

neoplasias (PanIN) [15]; (ii) mediates TC invasion, proliferation,

and chemoresistance in cell culture [12]; and (iii) is associated with

shorter overall survival in patients [11,13]. However, miR-219s

pro-tumorigenic impact is not limited to the TC compartment, as

expression of miR-21 in the stroma of colorectal cancers predicts

shorter disease-free survival [16,17].

Therefore, based on (i) the association of decreased survival and

miR-21 expression in PDAC TCs and (ii) colon cancer stroma,

and (iii) the pro-tumorigenic function of miR-21 in PDAC TCs,

we hypothesized that miR-21 expression in the PDAC stroma

enhances TC invasion and metastasis. Using human tumor

samples and primary cell cultures, we find that PDAC TCs

induce peritumoral fibroblasts to express miR-21, which promotes

TC invasion. Inhibition of miR-21 in PDAC TCs and tumor-

associated fibroblasts (TAFs) is additive in reducing TC invasion.

These findings provide evidence that miR-21 may be a good dual

TC and stromal cell anti-metastatic target for therapy and a novel

strategy to improve the prognosis of this fatal disease.

Methods

Ethics Statement
This study was approved by the UCLA Institutional Review

Board and the UCLA Office of Animal Research Oversight.

Written consent was obtained from all patients.

In Situ Hybridization for microRNA-21 and TMA Scoring
The UCLA tissue microarray (TMA) includes tumor cores for

153-patients (Table S1), all with well-annotated clinical histories,

and has been previously described [18]. TMA slides or FFPE

samples of primary PDACs were incubated at 60uC for 1 hour,

deparaffinized in xylene, and rehydrated with graded alcohol

washes. Slides were then washed 3 times with diethyl pyrocarbo-

nate-treated PBS, digested with 5 mg/mL proteinase K at 37uC for

30 minutes, washed then dehydrated in graded alcohol. Slides

were hybridized at 55uC for 2 hours with 50 nmol/L locked-

nucleic acid (LNA)-modified DIG-labeled probes for miR-21

(Exiqon, Vedbæk, Denmark). After stringency washes (56, 16,

0.26SSC), slides were placed in blocking solution for 1 hour at RT

followed by overnight incubation at 4uC in alkaline phosphatase

conjugated anti-DIG Fab fragment solution. Antibody signal was

amplified with NBT and BCIP substrate (Roche, Mannheim,

Germany) and then tissue was counterstained with Nuclear Fast

Red (Vector Laboratories, Burlingame, CA). Each TMA core was

scored by two independent M.D. observers for intensity of staining

in TCs and stromal spindle shaped cells (likely fibroblasts) using

the scale: 0 negative, 1 weakly positive, 2 moderately positive, and

3 strongly positive. When there was a discrepancy, a consensus

score was determined by the 2 observers. The median score from

the 3 separate cores for each tumor was used for categorization of

high versus low miR-21 expression. Patients with greater than the

median value (n = 73 of 145) were categorized as high miR-21.

Eight cores were omitted due to poor tissue preservation.

Immunofluorescence Staining
Upon rehydration as above, FFPE tumor samples were boiled in

0.01 M sodium citrate buffer for 15 minutes. After blocking for 1

hour with 5% donkey serum in PBS at RT, primary antibody was

added to serial sections, a-SMA 1:2500 (Sigma-Aldrich, St. Louis,

MO), nestin 1:100 (Abcam, Cambridge, UK) or vimentin 1:100

(Cell Signaling Technology, Inc., Danvers, MA) and incubated at

4uC overnight. After washing, secondary antibody Alexa FluorH

594 anti-mouse or Alexa FluorH 488 anti-rabbit (Molecular

Probes, Inc., Life Technologies Corp., Carlsbad, CA) 1:1000

was incubated for 1 hour at RT. The slides were then mounted,

counterstained with DAPI and visualized. For in situ immunoflu-

orescence staining, cells were first grown to 80% confluency on

coverslips, fixed and permeabilized with 4% paraformaldehyde

and 0.5% Triton X-100 in PBS. Blocking and antibody incubation

were then carried out as above with the inclusion of additional

primary antibodies, GFAP 1:1000 (DAKO, Glostrup, Denmark)

and PanCK 1:250 (Sigma). To create an overlay of immunoflu-

orescence staining with miR-21 in situ hybridization (ISH), the ISH

image was converted to a digital negative and then serial sections

were combined using PhotoshopH CS6 (Adobe Systems Inc., San

Jose, CA).

Cell Culture
The outgrowth method for isolation of primary cultured cells

from resected PDACs has been previously described [19]. In brief,

small tissue blocks (2-mm3) from freshly resected human PDAC

tumors were minced and cultured on a 10 cm2 uncoated tissue

culture plate in DMEM/F12+Glutamax (Gibco, Life Technolo-

gies), supplemented with 20% fetal bovine serum (FBS) (Gemini

Bio-Products, West Sacramento, CA)+1x Penicillin-Streptomycin

(Gibco). Primary cell lines are indicated as TAFs for tumor-

associated fibroblasts isolated from a PDAC tumor sample or HPF

for non-cancer-associated human pancreatic fibroblasts isolated

from the pancreatic parenchyma remote from the tumor. Normal

primary lung fibroblasts (LF) as a non-tumor/non-pancreas-

associated fibroblast control have been previously characterized

[20] and were maintained in DMEM (Gibco)+10% FBS+1x Pen-

Strep. All primary cells characterized for miR-21 expression and

used in co-culture experiments were maintained at low passage

(p2–3).

Immortalized, non-transformed human pancreatic ductal epi-

thelial cells (HPDE) were grown in keratinocyte serum-free media

supplemented with epidermal growth factor and bovine pituitary

extract (Gibco) [21]. Human pancreatic cancer cell lines BxPC-3

and MiaPaCa were obtained from the American Type Culture

Collection (Rockville, MD) and maintained in DMEM+10%

FBS+1x Pen-Strep.

KRAS Sequencing
DNA was first extracted from FFPE samples with the QIAampH

DNA FFPE tissue kit (QIAGEN, Düsseldorf, Germany) or

primary TAF cell lines via 0.2% SDS lysis buffer containing

proteinase K, followed by 4uC isopropanol precipitation. PCR

reactions were then performed (forward primer sequence –59-

GGCCTGCTGAAAATGACTGA-39, reverse primer sequence

59-GTCCTGCACCAGTAATATGC-39) to amplify the KRAS

exon 1 locus (as codon 12 is mutated in .80% of PDACs [22])

and then submitted to Laragen, Inc. Culver City, CA for

sequencing on an ABI 3730XL Sequencer (Applied Biosystems,

Life Technologies).

MicroRNA-21 in Fibroblasts Promotes Metastasis
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qRT-PCR for microRNA-21
Utilizing the QIAGENH system, microRNA was extracted from

cells (miRNeasy Mini Kit), reverse transcribed (miScriptH II

Reverse Transcription Kit) and then qRT-PCR was performed

(miScriptH SYBR Green PCR Kit) with miScriptH Primers for

miR-21 and RNU6B as a housekeeping control.

Overexpression/knockdown of Microrna-21
miScriptH miR mimics and inhibitors were utilized for

overexpression and knockdown experiments (QIAGEN). Cells

were transfected with HiPerfectH Transfection reagent in the

presence of miR-21 mimic or inhibitor. AllStars Negative Control

siRNA or miScriptH Inhibitor Negative Control were used as

appropriate. The efficiency of miR-21 overexpression/knockdown

experiments versus negative controls 48 hours after transfection is

displayed in Figure S5.

Co-culture Assays
HPFs were seeded at a density of 16105 in 6-well plates, and

HPDE or MiaPaCa TCs were seeded at the same density in 6-well

inserts with a 0.4 mM porous PET membrane (BD Biosciences,

San Jose, CA). After 24 hours media was switched to serum-free

DMEM/F12 and the inserts were placed in the wells. After 72

hours of co-culture, HPFs were collected for miR-21 qRT-PCR.

Invasion Chamber Assays
Cells were first transfected with miR-21 mimic or inhibitor in

serum-containing medium. After 24 hours, cells were washed with

PBS and media was replaced. At 48 hours after transfection, cells

were trypsinized, counted, and seeded with GFP-labeled MiaPaCa

TC, which we have previously characterized [23], at a 1:1 ratio

and a density of 46104 cells per well in DMEM/F12+Gluta-

max+4% FBS. 24-well MatrigelTM-coated invasion chambers with

8.0 mM pores (BD Biosciences) were first rehydrated then cells

were added to the insert while media supplemented with 20% FBS

was added to the bottom of the well to establish a serum gradient.

After 24 hours of co-culture, GFP-positive TCs that had invaded

through the membrane were counted in 5 evenly spaced non-

overlapping visual fields at 106magnification for each well. Each

condition was performed in triplicate, and the entire experimental

protocol was repeated62. Data shown is from one representative

experiment.

In Vivo Tumorigenesis Assays
Primary TAFs (3.56105) and BxPC-3 cells (3.56105) were

injected orthotopically into NOD/SCID IL2Rc null mice alone or

in combination (n = 12, 4 mice in each group) as a 1:1

MatrigelTM:media suspension. 6 weeks following implantation,

mice were sacrificed to assess for the presence of tumor, tumor size

and weight.

Statistical Analysis
Statistical analysis was performed with SPSS 20.0.0.1 (IBM,

New York, NY). Patient survival was R-censored at 100 months

and Kaplan-Meier analysis was informed by the log-rank test.

Student t-test was used for comparison of means. X-square

identified significant associations between miR-21 histoscores and

clinicopathologic factors. Univariate Cox proportional hazard

models were used to calculate hazard ratios for clinicopathologic

factors with 95% CIs. A multivariate Cox regression analysis

(MVA) was performed in a stepwise fashion with backward

selection of statistically significant univariate parameters using

P,0.10 as the initial entry criterion. Statistical significance was

defined as P,0.05. Error bars 6 SD.

Results

MicroRNA-21 Expression in the PDAC Stroma is
Associated with Metastasis and Poor Prognosis
PDAC is associated with a dense stroma that contributes to

tumorigenesis [24]. We hypothesized that miR-21 expression in

the PDAC stroma correlated with clinical progression of disease.

The UCLA PDAC TMA contains samples from 153 resected

early-stage PDACs and was stained for miR-21 utilizing ISH.

Representative images for histoscoring of TC and stroma is shown

in Figure 1A. 78.4% of patients had a median histoscore for

peritumoral stroma of $1 (Figure S1). Patients were dichotomized

into miR-21 high (n= 73) or low (n= 72) based on the median

histoscore = 1.5. On Kaplan-Meier survival analysis, high miR-21

stromal expression correlated with shorter overall survival

(P = 0.04, Figure 1B), while miR-21 TC expression did not (Figure

S1). As a means to explain the underlying mechanism of worse

survival, miR-21 stromal expression was correlated with various

histopathologic factors previously shown to be associated with

prognosis – on both this TMA and an independent PDAC patient

cohort [25] (Table 1). Interestingly, miR-21 in PDAC stroma did

not correlate with tumor grade. It was strongly correlated with

lymph node (LN) positivity (P = 0.004); 67% of miR-21 high

patients had positive LNs while only 42% with low miR-21 had

LN involvement. On Cox proportional hazards multivariate

analysis, even after controlling for clinicopathologic variables

associated with survival, stromal miR-21 expression on the TMA

remained significant (HR=1.56, P= 0.023) (Table 2). Taken

together, these results reveal that miR-21 expression in the PDAC

stroma is prognostically significant because it is correlated with TC

invasion and metastasis.

MicroRNA-21 in the PDAC Stroma is Expressed in
Activated Myofibroblasts
The PDAC stroma is comprised of a diverse cell population

[24], including fibroblasts, activated myofibroblasts, stellate cells

[26], inflammatory cells, and endothelial cells. Activated myofi-

broblasts and stellate cells are associated with PDAC TC invasion

and chemotherapy resistance [4,27]. Based on our previous results

that stromal miR-21 expression is associated with prognosis, we

next sought to determine the specific cell type expressing miR-21.

An ISH-immunofluorescence digital overlay for miR-21 (white),

the activated myofibroblast marker a-smooth muscle actin (red, a-

SMA), and the stellate cell marker nestin (green) (Figure 2A)

reveals that miR-21 is expressed in a subset of a-SMA and nestin

positive cells. A larger magnification view (Figure 2B) of miR-21

(white), a-SMA (red), and the fibroblast marker vimentin (green)

confirms these findings. These results reveal that miR-21 is

expressed in a subpopulation of activated myofibroblasts and

stellate cells, as opposed to simply representing a surrogate marker

of these cell types.

PDAC Tumor Cells Induce Tumor-associated Fibroblasts
to Express MicroRNA-21
PDAC TCs recruit supportive cells to their environment during

tumor initiation and progression [27]. While the source of TAFs is

unclear, it has been previously shown that TAFs do not possess

genomic mutations but are activated through interactions with

TCs [28]. We next sought to determine how miR-21 is expressed

in TAFs and hypothesized that TCs induce them to upregulate the

MicroRNA-21 in Fibroblasts Promotes Metastasis
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oncomir. To begin to answer this question, we identified and

assembled 23 patient-matched cores of LN metastasis from TMA

primary tumors. Figure 3A reveals that miR-21 expression in

primary and LN TAFs is strongest in the region immediately

surrounding the malignant ducts. The expression decreases along

a radial gradient away from TCs. Strikingly, miR-21 expression in

primary tumor TAFs showed a near significant correlation with

miR-21 expression in TAFs from patient-matched LN metastases

(P = 0.06, Figure 3B). Moreover, primary human PDAC TAFs

isolated via the outgrowth method [19] express .8 fold higher

miR-21 than noncancerous human fibroblasts isolated from a

region of the pancreas remote from the cancer (Figure 3C). As

more direct mechanistic evidence, miR-21 expression in normal

HPFs was .5 fold higher when co-cultured with MiaPaCa TCs

than when co-cultured with normal HPDE cells (Figure 3D).

Validation that the primary TAFs are not derived from TCs

included sequencing of KRAS and in situ immunofluorescence

staining for specific epithelial and mesenchymal markers. These

primary cell types are indeed KRAS wild-type, pan-cytokeratin

negative, and express a-SMA, Vimentin, and GFAP (Figure S2–

S3). To ensure that this primary culture did not include a

contaminating population of tumor cells that had undergone

epithelial-to-mesenchymal transition (EMT), we performed a

tumorigenesis assay in an immunocompromised xenograft. At a

count of 3.56105 cells, primary TAFs did not form tumors when

injected in NOD/SCID IL2Rc null mice (Figure S4). These

results suggest that TCs could induce TAFs in both the primary

tumor and LNs to express miR-21.

Figure 1. microRNA-21 expression in the PDAC stroma is associated with poor prognosis. (A) Representative images of histoscores for
miR-21 in situ hybridization in PDAC tumor cells and stroma. These two cellular compartments were scored as 0 negative (not depicted), 1 weakly
positive, 2 moderately positive, 3 strongly positive. (B) Kaplan-Meier analysis reveals that high miR-21 stromal expression is associated with decreased
overall survival (P = 0.04). miR-21 expression intensity was dichotomized into high (n = 73) vs. low (n = 72) based on the median score of all tumors.
doi:10.1371/journal.pone.0071978.g001

Table 1. Correlation of miR-21 stromal expression level with
clinicopathologic covariates.

Low miR-21 High miR-21 P value

Age ,65 35 (45.5%) 29 (41.4%) 0.63

$65 42 (54.5%) 41 (58.6%)

Sex Male 40 (51.9%) 36 (51.4%) 0.95

Female 37 (48.1%) 34 (48.6%)

AJCC Stagea I 27 (37.0%) 11 (15.7%)

II 45 (61.6%) 59 (84.3%) 0.008

IV 1 (1.4%) 0 (0%)

Lymph Node Negative 42 (57.5%) 23 (33.3%) 0.004

Positive 31 (42.5%) 46 (66.7%)

pTumor sizeb T1 13 (17.8%) 9 (12.9%)

T2 34 (46.6%) 26 (37.1%) 0.09

T3 26 (35.6%) 35 (50.0%)

Grade Low-mod 44 (60.3%) 39 (55.7%) 0.58

High 29 (39.7%) 31 (44.3%)

aPearson x-square of miR-21 expression for stage I vs. II and b. T1+T2 vs. T3.
doi:10.1371/journal.pone.0071978.t001

Table 2. Cox proportional hazard models for prognostic
factors.

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age ($65/,65) 1.2 (0.8–1.7) 0.30

Sex (female/male) 1.5 (1.0–2.1) 0.04 1.5 (1.1–2.2) 0.03

AJCC Stage (II–IV/I) 1.6 (1.0–2.4) 0.04 –

Lymph node (pos/neg) 1.8 (1.2–2.5) 0.003 1.6 (1.1–2.4) 0.01

LVI (pos/neg) 1.8 (1.0–3.3) 0.07

pT (pT3/pT1+pT2) 1.0 (0.7–1.4) 0.93

Tumor size (.3 cm/

#3 cm)

1.3 (0.9–1.9) 0.15

Grade (high/low) 1.7 (1.2–2.4) 0.007 1.5 (1.0–2.2) 0.04

Margin (R1/R0)a 1.5 (0.9–2.5) 0.15

miR-21 stroma (high/

low)

1.5 (1.0–2.1) 0.04 1.6 (1.1–2.3) 0.02

miR-21 tumor (high/

low)

1.1 (0.7–1.6) 0.70

aMargins are classified as R1, macroscopically negative or R0, microscopically
negative.
doi:10.1371/journal.pone.0071978.t002
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microRNA-21 Expression in TAFs and Tumor Cells Drives
Tumor Cell Invasion
Based on the correlative data between miR-21 expression in

TAFs and LN involvement on the UCLA TMA, we hypothesized

that miR-21 expression in PDAC TAFs increases invasiveness of

PDAC TCs. MiaPaCa TCs were selected for the modified Boyden

chamber experiments as they have been previously shown to

express high miR-21 levels [12]. Overexpression experiments were

carried out utilizing miR-21 mimics in early-passage normal LFs

with low baseline miR-21 expression (Figure 3C). When TCs were

co-cultured with miR-21 overexpressing LFs, TC invasion was

significantly increased compared to TCs+negative control-treated

LFs (P= 0.05, Figure 4A). In fact, co-culture of TCs+low miR-21

LFs did not increase invasion as compared to TCs alone

(Figure 4A). To determine the effect of miR-21 inhibition on

TC invasion, we then tested TCs co-cultured with primary human

early-passage PDAC TAFs that express high levels of miR-21

(Figure 3C). Co-culture of TAFs with TCs significantly increased

the number of cells invaded as compared to TCs alone (P= 0.01,

Figure 4B). This increase was significantly abrogated by inhibition

of miR-21 in TAFs or TCs (P= 0.04 and P,0.001 respectively).

Strikingly, inhibition of miR-21 in both TCs and TAFs was

additive and resulted in the greatest inhibition of TC invasion.

These results suggest that miR-21 may be a promising dual TC

and TAF target in human PDAC to decrease invasion and

metastasis of TCs.

Discussion

Pancreatic cancer has the highest stromal volume of all solid

tumors [24], and strategies to reduce the pro-tumorigenic stroma

may improve delivery of chemotherapy drugs to TCs and increase

treatment efficacy in this fatal disease [29,30]. We investigated the

hypothesis that miR-21 expression in the PDAC stroma increases

invasion and metastasis of TCs. We found that miR-21 in

activated peritumoral myofibroblasts is associated with LN

metastasis and shorter survival. Our results also suggest that the

TCs induce the fibroblasts to express miR-21. Importantly,

inhibition of miR-21 in PDAC TAFs decreases TC invasion.

In multiple independent studies, high miR-21 expression in

human PDAC TCs is correlated with shorter survival [11,13,14].

As an explanation of this prognostic significance, in vitro modula-

tion of miR-21 in PDAC TCs increases proliferation, invasion,

and gemcitabine chemoresistance [12,13]. However, miR-21

expression in the non-TC compartment plays a role in the

histopathologic progression of cancer and non-cancerous condi-

tions. In situ hybridization of 130 colon and 67 rectal cancer

specimens revealed that miR-21 expression in the stroma predicts

shorter disease-free survival of stage II patients [16,31]. In the

lung, miR-21 expression is increased in myofibroblasts of patients

with pulmonary fibrosis as compared to healthy lung tissue [32].

Its increase is driven by TGF-b released from the epithelial cells,

and it potentiates the development of worsening scar tissue. In the

heart, miR-21 expression increases in cardiac fibroblasts of the

failing heart [33]. In an in vivo pressure-overload-induced disease

model, inhibition of miR-21 using an antagomiR decreased

interstitial fibrosis and cardiac hypertrophy. In the kidney, miR-21

expression increases fibrosis due to ureteral obstruction in a

murine model [34]. Inhibition of miR-21 in vivo significantly

attenuated fibrosis development. The architecture of each of these

three non-cancerous conditions resembles that of the PDAC

stromal environment. Furthermore, in regards to drug delivery,

miR-21 in the stromal environment has been shown to decrease

angiogenesis by inhibiting RhoB in endothelial cells [35]. These

mechanisms are likely present in the majority of patients with

PDAC as we show miR-21 expression in TAFs of 78.4% of early-

stage PDACs.

In our previous analysis, we identified a prognostic gene

signature of 171 genes in PDAC TCs [7]. However, genes with

prognostic significance are not just limited to the TC compartment

but have also been identified in the stroma of other malignancies.

In breast cancer, 53 laser capture microdissected human samples

were used to identify gene expression changes that clustered to

angiogenesis, immune and hypoxic responses. These stromal

changes stratified survival outcome for multiple subtypes of breast

cancer and were independent of standard clinicopathologic factors

[36]. Combining the stromal gene expression changes with

standard prognostic factors enhanced the survival prediction

accuracy in independent datasets. Likewise, in non-small cell lung

Figure 2. microRNA-21 in the PDAC stroma is expressed in activated myofibroblasts. (A) miR-21 in situ hybridization and co-
immunofluorescence for a-SMA and nestin on serial sections of two human PDAC tumors (Whipple resection - WR 22 & 28) reveals miR-21 expression
in a subset of activated myofibroblasts, not exclusive to stellate cells (nestin positive). miR-21 positive staining is white in the merge. (B) High-power
magnification (40x) again reveals miR-21 expression in a subset of a-SMA expressing myofibroblasts. Vimentin, a marker for quiescent fibroblasts,
does not localize with miR-21.
doi:10.1371/journal.pone.0071978.g002
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cancer, using 15 patient-matched cancer-associated and normal

fibroblasts, 46 differentially expressed genes were identified [37]. A

subset of 11 of these genes formed a prognostic signature and were

associated with survival in independent patient cohorts. While a

similar analysis has not been done for PDAC, these studies provide

proof of principle that stromal gene expression changes are

important for biologic progression of disease. We identify that

stromal miR-21 expression in PDAC is associated with disease

progression as manifested by LN metastasis, poor prognosis and

TC invasion.

During PDAC tumor development – from low to high grade

PanINs to invasive cancer – the stromal volume expands. The

predominant components of this rich microenvironment include

fibroblasts as well as stellate, inflammatory and endothelial cells.

The fibroblasts and stellate cells are responsible for production

of the dense fibrotic matrix [19]. They are recruited to the

PDAC tumor microenvironment by paracrine mediators secret-

ed by TCs. These mediators include TGFb, PDGF, and VEGF

[27]. After recruitment, stellate cells are activated and fibroblasts

transform from a quiescent to a myofibroblast-like state via

growth factors or cytokines released from TCs, or the hypoxic

environment of PDAC [19,38,39]. Interestingly, the genomic

profile of activated and quiescent stellate cells is identical,

suggesting that the gene expression differences between the two

states are mediated by cues from the environment or epigenetic

and post-translational modifications [28]. Once activated, they

enhance PDAC progression and have been shown to contribute

to chemoresistance, tumor growth, and metastasis in cell culture

and in vivo. Therefore, we investigated the etiology of increased

miR-21 expression in the PDAC stroma and focused on

hypoxia and induction by the TCs. miR-21 did not increase

in primary TAFs grown under hypoxic conditions (data not

shown). Rather, we found that miR-21 expression was highest

around TCs and decreased in a radial gradient away from

malignant ducts. Assuming that the O2 levels are constant in

these two regions, it is suggestive that, much like TAF

Figure 3. PDAC tumor cells induce tumor-associated fibroblasts (TAFs) to express microRNA-21. (A) Representative images of miR-21 in

situ hybridization (ISH) on a patient-matched primary tumor and lymph node metastasis reveals high peritumoral expression of miR-21 in the stroma,
decreasing in a radial gradient away from the tumor cells. (B) From miR-21 ISH on 23 patient-matched samples, miR-21 expression in the primary
TAFs correlates with that of TAFs found in lymph node metastases (p = 0.06). miR-21 expression was dichotomized into high (n = 12) vs. low (n = 11)
based on the median intensity level. (C) miR-21 expression in early-passage (p2) primary TAFs derived from resected human PDACs is elevated .8
times that of human pancreas fibroblasts (HPF) from noncancerous tissue. (D) Co-culture of HPFs with MiaPaCa tumor cells reveals a .5 fold increase
in miR-21 in HPFs versus co-culture with normal human ductal epithelial (HPDE) cells. miR-21 expression was normalized to RNU6B. Error bars 6 SD.
Data are representative of 3 independent experiments.
doi:10.1371/journal.pone.0071978.g003

MicroRNA-21 in Fibroblasts Promotes Metastasis

PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e71978



activation, TCs induce TAFs to increase expression of miR-21.

We also observed a near-significant correlation for miR-21

expression between primary tumor TAFs and TAFs found in

LN metastases. While recent studies have characterized the

invasive potential of fibroblasts themselves [40], providing a

possible explanation for how miR-21-high expressing TAFs in

the primary tumor could directly invade to the LN, we have

provided evidence that miR-21 expression can be induced in

non-cancer associated fibroblasts by TCs. That the highest

intensity of miR-21 TAF expression is universally peritumoral

and that we do not observe isolated islands of miR-21-high

expressing TAFs is further evidence of an induction mechanism.

miRs, and miR-21 in particular, function by regulating a

network of genes [5]. However, to our knowledge, the miR-21

‘‘targetome’’ has not been identified in PDAC TAFs or TAFs of

other solid cancers. As potential mechanisms of enhanced TC

invasion, miR-21 has been previously shown to promote matrix

remodeling and regulate TGF-b-induced epithelial-to-mesenchy-

mal transition [41]. We tested several markers of EMT (SNAI1,

ZEB1, S100A4, CDH1/2, VIM) in TCs and matrix remodeling

(TIMP2, RECK, MMP2/9) in LFs with miR-21 overexpression

and TAFs with miR-21 inhibition, and did not identify changes

in transcript levels via qRT-PCR (data not shown). A potential

explanation for these findings is that miRs inhibit translation of

target genes by (i) transcript degradation if the binding affinity is

high with near-perfect complementary base-pairing or (ii)

cessation of translation through the RISC complex without

degradation of mRNA for less specific binding [42]. Therefore,

the lack of quantitative changes in these transcripts does not

exclude them as miR-21 targets in PDAC TAFs. The next step

is CLIP-sequencing, the most accurate method to identify miR

‘‘targetomes,’’ whereby mRNA and miR pairs bound to

Argonaute protein are sequenced [43,44].

miRs have the potential to be effective therapeutic targets.

Silencing of miRs using intravenously administered chemically

engineered oligonucleotides (a.k.a. ‘‘antagomiRs’’) has been

successfully completed in many solid organs, in vivo models, and

disease states [45,46]. For example, miR-122 expression in the

liver is associated with cholesterol biosynthesis and hepatitis C

virus (HCV) propagation. Systemically administered LNA antag-

omiRs to miR-122 in nonhuman primates successfully reduced

plasma cholesterol [47], and HCV viremia and associated liver

changes [48]. A phase I/II human clinical trial using anti-miR-122

for patients with hypercholesterolemia is now in progress (www.

santaris.org). To our knowledge, effective distribution of LNA

antagomiRs via systemic administration to the pancreas and

hypovascular PDACs has not been demonstrated. This will be a

challenge to accomplish before antagomiR therapy is possible for

this disease.

Figure 4. microRNA-21 expression in fibroblasts enhances tumor cell invasion and can be inhibited with an anti-miR. (A) Transfection
of miR-21-low normal primary lung fibroblasts (LF) with miR-21 mimic enhances invasion of GFP-labeled MiaPaCa tumor cells (TCs) when co-cultured
in modified Boyden chambers. *P,0.05. There was no difference in invasion in co-culture of LFs transfected with negative control versus TCs alone.
Error bars 6 SD. (B) Co-culture of TAFs with MiaPaCa TCs enhances invasion when compared to TCs alone. Transfection of miR-21-high TAFs with a
miR-21 inhibitor decreases invasion of TCs. *P,0.05. Dual miR-21 inhibitor treatment of TCs and TAFs is the most effective at inhibiting TC invasion.
Error bars 6 SD. Data are representative of three independent experiments. (C–D) Representative photomicrographs of GFP-labeled TCs that had
invaded through the membrane for each treatment condition.
doi:10.1371/journal.pone.0071978.g004
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Conclusions

Our results reveal that miR-21 expression in PDAC activated

myofibroblasts is associated with poor prognosis, LN metastases,

and TC invasion. miR-21 inhibition in TCs and TAFs signifi-

cantly decreases TC invasion in cell culture. These results, taken in

conjunction with previous miR-21 findings on PDAC TC

chemoresistance, suggest that miR-21 is a promising dual TC

and TAF target in PDAC.

Supporting Information

Figure S1 microRNA-21 staining in tumor cells was not

correlated with survival. (A) High miR-21 staining in the

tumor cells did not correlate with worse survival. (B–C)

Distribution of histoscores for tumor-associated fibroblasts (TAF)

and tumor cells reveals that <80% of early stage PDAC tumors

express miR-21 in the stroma.

(TIF)

Figure S2 Tumor-associated fibroblasts (TAFs) are

KRAS wild type. Primary TAFs isolated via the outgrowth

method were sequenced for KRAS mutation at codon 12 and 13.

All primary TAFs were identified as KRAS wild type. Patient-

matched FFPE tumor samples were also sequenced and all

returned positive for KRAS mutation at codon 12 (data not shown).

As a positive control, the pancreatic cancer cell line L3.6pl harbors

the G12D mutation. This provides strong evidence that these

primary TAFs are not tumor-cell derived.

(TIF)

Figure S3 Primary human tumor-associated fibroblasts

(TAFs) show an activated myofibroblast phenotype. In situ

immunofluorescence staining of primary TAFs derived from

PDAC human tumor samples and human pancreatic ductal

epithelial (HPDE) cells as a control for a-smooth muscle actin (a-
SMA), Vimentin, glial fibrillary acid protein (GFAP), and pan-

cytokeratin (PanCK). These representative stains for TAF cell lines

reveal them to be spindle-shaped, positive for vimentin and weakly

positive for GFAP, consistent with a fibroblast phenotype that has

become activated in culture (positive a-SMA). All are negative for

the epithelial marker PanCK.

(TIF)

Figure S4 Primary human tumor-associated fibroblasts

(TAFs) enhance tumor growth but do not form de novo

tumors. Primary pancreatic TAFs were orthotopically injected in

NOD/SCID IL2Rc null mice (3.56105 cells) with or without

BxPC-3 tumor cells (1:1 ratio). Necropsy at 6 weeks revealed that

coinjection of TAFs with tumor cells enhances tumor growth but

does not produce a tumor when injected alone. Representative

photographs of pancreas (white outline) and tumor (yellow dotted

line).

(TIF)

Figure S5 In vitro microRNA-21 overexpression/knock-

down. Transfection with miR-21 mimic produces overexpression

in normal lung fibroblasts (low baseline miR-21 expression) and

anti-sense miR-21 leads to knockdown in primary tumor-

associated fibroblast cell lines (TAF) as assessed by qRT-PCR.

(TIF)

Table S1 TMA baseline patient characteristics. Abbrevi-

ations: TMA, tissue microarray, LVI, lymphovascular invasion.

(DOCX)
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