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Abstract

In mammals, the primordial follicle pool, providing all oocytes available to a female throughout her reproductive life, is established

perinatally. Dysregulation of primordial follicle assembly results in female reproductive diseases, such as premature ovarian insufficiency

and infertility. Female mice lackingDicer1 (Dicer), a gene required for biogenesis of microRNAs, show abnormal morphology of follicles

and infertility. However, the contribution of individual microRNAs to primordial follicle assembly remains largely unknown. Here, we

report that microRNA 376a (miR-376a) regulates primordial follicle assembly by modulating the expression of proliferating cell nuclear

antigen (Pcna), a gene we previously reported to regulate primordial follicle assembly by regulating oocyte apoptosis in mouse ovaries.

miR-376a was shown to be negatively correlated with Pcna mRNA expression in fetal and neonatal mouse ovaries and to directly bind

to PcnamRNA 3 0 untranslated region. Cultured 18.5 days postcoitummouse ovaries transfected with miR-376a exhibited decreased Pcna

expression both in protein and mRNA levels. Moreover, miR-376a overexpression significantly increased primordial follicles and reduced

apoptosis of oocytes, which was very similar to those in ovaries co-transfected with miR-376a and siRNAs targeting Pcna. Taken together,

our results demonstrate that miR-376a regulates primordial follicle assembly by modulating the expression of Pcna. To our knowledge,

this is the first microRNA–target mRNA pair that has been reported to regulate mammalian primordial follicle assembly and further our

understanding of the regulation of primordial follicle assembly.
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Introduction

Primordial follicles are composed of oocytes surrounded
by several flattened granulosa cells, which are formed in
fetal ovaries in humans and during the first few days after
birth in rodents (Borum 1961, Baker 1963, Maheshwari &
Fowler 2008). Once formed, the primordial follicles
serve as a finite source of developing follicles that
decrease in size with age. The reproductive aging process
of women is dictated by a gradual and steady decrease in
the quantity and quality of oocytes held within the
follicles. By the time of menopause, the number of
primordial follicles falls below 1000 (Faddy et al. 1992,
Faddy & Gosden 1996, Broekmans et al. 2007). Thus,
primordial follicle assembly is a critical process for
female reproduction by determining the number of
available oocytes. Disturbance of this process would
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lead to ovarian diseases, such as premature ovarian
insufficiency and infertility (Sullivan & Castrillon 2011).

Primordial follicle assembly occurs, when oocytes are
individually surrounded by squamous pre-granulosa
cells (Pepling & Spradling 2001, Pepling 2006). Up to
two thirds of the oocytes are lost before or shortly after
birth (Pepling & Spradling 2001, Pepling 2006). Apopto-
sis has been proposed to be the major mechanism
underlying oocyte loss (Coucouvanis et al. 1993, Pesce &
De Felici 1994, De Pol et al. 1997, Pepling & Spradling
2001, Lobascio et al. 2007, De Felici et al. 2008,
Rodrigues et al. 2009). The deletion of the anti-apoptotic
gene Bcl2 in mice reduces the number of both oocytes
and primordial follicles at the sixth week postpartum but
does not affect the number of primary and preantral
follicles (Ratts et al. 1995, Flaws et al. 2001). On the
contrary, targeted disruption of the apoptotic gene Casp2
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significantly increases the number of primordial follicles
at 4 days postpartum (dpp; Bergeron et al. 1998).

We recently found that proliferating cell nuclear
antigen (Pcna), a key factor for DNA polymerase d
during DNA replication and repair, affects primordial
follicle assembly by regulating oocyte apoptosis (Essers
et al. 2005, Xu et al. 2011a). The expression of Pcna has
been widely studied in ovaries of several arthropods and
mammals (Oktay et al. 1995, Korfsmeier 2002, Musk-
helishvili et al. 2005, Hutt et al. 2006, Balla et al. 2008,
Picut et al. 2008, Zhang et al. 2010). For example, an
increased Pcna expression during primordial follicle
assembly has been observed in rats (Balla et al. 2008).
The fluctuation of PCNA protein level was also observed
during the development of fetal and neonatal mouse
ovaries, with expression decreasing from 13.5 to
18.5 days postcoitum (dpc) and increasing from 18.5
dpc to 5 dpp (Xu et al. 2011a). During primordial follicle
assembly, most ovarian cells are in a quiescent state with
oocytes arrested in diplotene stage and pre-granulosa
cells arrested at the G0 stage (Robker & Richards 1998).
An earlier report showed that in quiescent cells, the level
of Pcna is largely posttranscriptionally regulated (Chang
et al. 1990). So this variation of Pcna expression we
observed during ovarian primordial follicle assembly
suggested that the level of this protein is highly regulated
posttranscriptionally. microRNAs provide one possible
posttranscriptional regulatory mechanism.

Over the past few years, microRNAs, small (w22
nucleotides in length) non-coding RNA molecules, have
emerged as a class of negatively regulatory factors that
mainly regulate the turnover or translational efficiency of
target mRNAs through base-pairing with their 3 0 untrans-
lated region (UTR) (Bartel 2009, Huntzinger & Izaurralde
2011). The small size of microRNAs, combined with their
target recognition, provides microRNAs with the capacity
and versatility to act as global gene regulators in a wide
array of biological processes including cell proliferation
and apoptosis (Bartel 2009, Krol et al. 2010, Huntzinger
& Izaurralde 2011). Many microRNAs are present in
ovaries around the time of primordial follicle assembly in
mammals (Choi et al. 2007, Ahn et al. 2010, Tripurani
et al. 2010, Huang et al. 2011, Torley et al. 2011, Zhang
et al. 2011, 2013). Female mice lacking Dicer1 (Dicer), a
gene required for the biogenesis of vast majority of
microRNAs, show abnormal follicle morphology (Lei
et al. 2010, Baley & Li 2012). Thus, microRNAs probably
play important roles during primordial follicle assembly.
However, the contribution of individual microRNAs to
primordial follicle assembly is largely unknown.

In this study, we found that miR-376a level was
negatively correlated with that of Pcna mRNA in fetal
and neonatal mouse ovaries. miR-376a has been
demonstrated to directly bind to the 3 0 UTR of Pcna
mRNA. Transfection of miR-376a mimics into cultured
ovaries at 18.5 dpc increased primordial follicle
assembly by decreasing oocyte apoptosis via suppressing
Reproduction (2014) 148 43–54
Pcna mRNA and protein expression. Our results indicate
that miR-376a is a novel regulator of primordial follicle
assembly that regulates oocyte apoptosis by modulating
the expression of Pcna.
Materials and methods

Animals

ICR mice were purchased from the National Rodent Laboratory
Animal Center (Shanghai Branch, China) and housed under
controlled photoperiod conditions (lights on 0800–2000 h) and
were supplied with food and tap water ad libitum. All animal
studies were conducted in accordance with the Institutional
Animal Care and Use Committee of University of Science and
Technology of China. Fetal or neonatal mouse ovaries were
obtained from the pregnant mice between 13.5 dpc and 5 dpp.
The presence of a copulation plug in the noon after mating was
designated as 0.5 dpc.
RNAi on cultured fetal mouse ovaries

The ovaries from 18.5 dpc mice were cultured as described
(Shen et al. 2007). Fetal ovary RNAi was initiated as described
(Wang & Roy 2006). Briefly, cultured ovaries were transfected
with 200 nM siRNAs (Invitrogen) using Metafectene (Biontex,
T020-1.0, Munich, Germany) following the supplier’s instruc-
tions. Half of the medium was changed at the 48th hour after
RNAi initiation with complete medium without siRNAs.

The sequence of Pcna siRNAs is 50-GGCATTGCTAGAAATT-
GAGAA-30, targeting 930–950 nt of Pcna mRNA (Paddison et al.
2004), and the non-targeting control siRNA sequence is
50-TTCTCCGAACGTGTCACG-30 which has no homology to
anyknownmousemRNAs.All datawereobtained from didymous
ovaries (for two ovaries of a mouse, one was transfected with
target siRNAs and the other with non-targeting control siRNAs).
Transfection of microRNA mimics

microRNA mimics are chemically synthesized, double-
stranded RNAs that mimic mature endogenous microRNAs
after transfection into cells. For the microRNA overexpression
in vitro, cultured ovaries were transfected with microRNA
mimics (200 nM, Genepharma, Shanghai, China). These
microRNA mimics were delivered using Metafectene (Biontex)
according to the manufacturer’s protocol. Forty-eight hours
after transfection, the medium was changed with replacement
of half of the complete medium. Ovaries were harvested 96 h
after transfection. All data were obtained from didymous
ovaries (one ovary was transfected with microRNA mimics
and the other with non-targeting siRNAs, which are random
double-stranded sequence molecules that can mimic micro-
RNAs and were validated not to produce identifiable effects
on known microRNA function, as control).
Immunofluorescence and western blot assay

Immunohistochemistry and western blot assays were
performed as described previously (Xu et al. 2011a).
www.reproduction-online.org
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Construction of luciferase reporter vectors

The sequence encoding the mouse Pcna mRNA 30 UTR that
contains the putative miR-376a binding site was amplified by
PCR using the following two primers: forward primer
50-GCTCTCTCGAGGCATTGCTAGAAATTGAGAAAACT-30 and
reverse primer 50-GTCGAGCGGCCGCTGACTTTTCAAATTGT-
TAACTTTA-3 0. These two primers contain XhoI or NotI
recognition sites at their 50 end. The sequence encoding the
mutant Pcna mRNA 30 UTR that lacks the putative miR-376a
binding ability was synthesized by PCR according to the
published method (Higuchi et al. 1988). For mutation of the
putative binding site (243–263 bp from the start of the 30 UTR),
the following pair of primers was employed in addition to the
pair of primers used for amplification of WT 3 0 UTR:
50-GCTTTACAAATACTGGTGATTTTCATCATGCTTCTTGACG-30

and 5 0-CGTCAAGAAGCATGATGAAAATCACCAGTATTTG-
TAAAGC-3 0. These PCR products were digested with XhoI
and NotI and cloned into the psiCHECK-2 luciferase reporter
vector (Promega) at the corresponding restriction sites. The
sequences of inserted fragments were verified by sequencing.
Luciferase assay

HEK 293T cell was transfected using Lipofectamine 2000
(Invitrogen, 11668) according to the manufacturer’s instruc-
tions. In short, 105 cells were plated in a 24-well tissue culture
plate the day before transfection. The luciferase reporter
constructs (100 ng), together with miR-376a mimics (50 nM)
(GenePharma) were incubated with 1.5 ml Lipofectamine 2000
and transfected into cells. After 6 h, the transfection solution
was replaced with fresh medium. Cell lysates were produced
24 h after transfection and assayed using the Dual-Luciferase
Reporter Assay System (Promega, E1910) following the
manufacturer’s instructions. The Renilla luciferase activity
was normalized to that of the firefly luciferase.
Cell proliferation and apoptosis analysis

To assess cell proliferation, transfected mouse ovaries were
cultured in medium with 100 nM bromodeoxyuridine (BrdU)
(Sigma, B9285) added 24 h before ovary harvesting. The
ovaries were fixed and embedded in paraffin and sectioned.
BrdU-labeled cells in the sections were detected immuno-
histochemically using a mouse anti-BrdU MAB (NeoMarkers,
MS-1058-P0, Fremont, CA, USA; 1:200) and imaged using a
BX61 Olympus fluorescence microscope. Apoptotic cells were
detected in sections by TUNEL assay according to the
manufacturer’s specifications. Ovarian sections were imaged
and TUNEL assay-positive cells were counted manually using
Image-Pro plus Software (Media Cybernetics, Rockville, MD, USA).
Real-time PCR for mRNAs

RNA isolation, RT-PCR, and real-time PCR were performed as
described previously (Xu et al. 2011a). All PCR primers used
were listed in Supplementary Table 1, see section on
supplementary data given at the end of this article. For real-
time PCR analyses, CT values of samples were normalized to
www.reproduction-online.org
the corresponding CT values of Gapdh. Quantification of the
fold change in gene expression was determined by the
comparative CT method.
Real-time PCR for microRNAs

For quantitative PCR analysis of microRNAs, pooled tissues or
transfected ovaries were collected and total RNAs were
extracted using TRIzol reagents (Invitrogen). For detecting
and quantifying the expression of specific microRNAs, 1 mg
RNA was reverse transcribed using RT Kit (ABI, 4366596,
Carlsbad, CA, USA) with preformulated primers (ABI). Probe
sets (ABI) were designed to perform real-time PCR amplifi-
cation with products from RT reaction using TaqMan Universal
PCR Master Mix (ABI, 4324018). For real-time PCR analyses,
CT values of samples were normalized to the corresponding CT
values of U6. Quantification of the fold change in microRNA
expression was determined by the comparative CT method.
Locked nucleic acid in situ hybridization

Locked nucleic acid in situ hybridization (LNA–ISH) was
performed on paraffin sections using LNA probes for miR-376a
(Exiqon, Woburn, MA, USA). Ovaries were fixed in 10%
formaldehyde for 20 min before paraffin embedding and
4 mm-thick paraffin sections were attached to microscope
slides. Paraffin sections were incubated at 60 8C for 1 h.
Following de-paraffinization in xylene, sections were
re-hydrated in a series of graded ethanol/water solutions.
After incubation in acetylation solution (acetic anhydride
(Sigma, 320102; 0.25%) and triethanolamine (Sigma, T1377;
1.33%)) for 15 min, the slides were digested in proteinase K
(Promega, V3021; 1:500) for 20 min and subsequently washed
in PBS. Following rinse in PBS, the slides were de-hydrated in a
series of graded ethanol/water solutions and incubated with
hybridization buffer containing the digoxigenin-labeled LNA
probe in an oven at 56 8C overnight. After washed with 5! SSC
(saline-sodium citrate buffer) twice, 1! SSC twice, and 0.2!
SSC twice, 15 min each at 55 8C, the slides were blocked with
blocking buffer for 20 min and incubated with anti-digoxigenin
Fab fragment (Roche, 11214667001; 1:500) overnight at 4 8C
in a humid chamber. The visualization was performed using
BCIP/NBT Liquid Substrate System (Sigma, B1911) in the dark.
After stringent washes, the slides were mounted with cover-
slips using vectashield mounting medium.
Morphometric evaluation of oogenesis and
folliculogenesis

To identify oocytes and follicles, ovarian sections were
immunohistochemically labeled with an antibody-recognized
MVH, a protein specifically expressed in germ cells
(Fujiwara et al. 1994) and Hoechst 33342 for nuclei of ovarian
cells. The sections were analyzed using an Olympus fluor-
escence microscope (BX61). All cells labeled by MVH
antibodies (oocytes) were counted. Based on their localization,
oocytes were designated as in primordial or primary follicles
according to the previous reports (Meredith et al. 2000, Pepling
& Spradling 2001).
Reproduction (2014) 148 43–54
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Statistical analysis

For each ovary, oocytes or follicles were counted as previously
reported (Chen et al. 2007, Nilsson et al. 2007, Reddy et al.
2008, Xu et al. 2011a, Kim et al. 2013). For real-time PCR and
western blot analysis, two or three cultured ovaries per group
were pooled to form one sample and repeated at least three
times for statistical analysis. Student’s t-test was used to compare
means between two independent samples in real-time PCR
analysis. In other statistical analyses, Tukey’s multiple compari-
son test was used to compare means among multiple groups.
Results

miR-376a is negatively correlated with Pcna mRNA
level in mouse ovaries in vivo during follicle assembly
and can bind to the 3 0 UTR of Pcna mRNA directly

To find microRNAs that may regulate mouse Pcna
expression, the local package of miRanda v3.3a was
used to predict the microRNAs that may target Pcna
mRNA based on its 3 0 UTR (Betel et al. 2008). The
parameters used for the prediction process were listed
in Supplementary Table 2, see section on supplementary
data given at the end of this article. According to
miRanda results, Pcna was potential target of 163
microRNAs (Supplementary Table 3). Among these
microRNAs, 37 microRNAs were detected by our
microarray chip assay in mouse ovaries during follicle
assembly, and when 1.5-fold change in microRNA
abundance was considered, only three microRNAs
remained, of which only one microRNA, miR-376a,
exhibited a negative correlation with Pcna mRNA level
(H Zhang, X Jiang, Y Zhang, B Xu, J Hua, W Zheng
and R Sun, unpublished data). To confirm the relationship
between miR-376a and Pcna mRNA expression, the
level of miR-376a and Pcna mRNA was measured in fetal
and neonatal mouse ovaries by real-time PCR (Fig. 1A).
miR-376a levels slightly increased from 13.5 to 16.5 dpc,
then decreased, and reached a minimum in 3 dpp ovaries
and increased again thereafter. miR-376a was also
found to express very differently in various tissues, with
much higher expression in ovary and testis of newborn
and brain of adult mice than in other tissues (Fig. 1B).
Furthermore, microRNA ISH experiments demonstrated
that miR-376a was localized in cytoplasm of some
oocytes in cysts at 16.5 dpc. At 1 dpp, miR-376a was
mainly localized in cytoplasm of oocytes and granulosa
cells in primordial follicles (Fig. 1C). This expression
pattern in the developing ovaries and tissue specificity
are consistent with a regulatory role of miR-376a in fetal
and neonatal mouse ovaries.

To determine whether miR-376a can directly bind to
the 3 0 UTR of Pcna mRNA, a dual-luciferase reporter
system was used as previously reported (Grentzmann
et al. 1998). We constructed dual-luciferase reporter
vectors by inserting the DNA sequence encoding the WT
or mutant (which cannot bind miR-376a) 3 0 UTR of Pcna
Reproduction (2014) 148 43–54
mRNA downstream the Renilla luciferase gene (Fig. 1D)
and transfected them with miR-376a mimics into 293T
cells respectively. A significant decrease in relative
luciferase activity was observed in cells co-transfected
with the WT constructs and miR-376a mimics, but not in
cells co-transfected with the mutant constructs and
miR-376a mimics (Fig. 1E). These results demonstrate
that miR-376a can directly bind to the 3 0 UTR of mouse
Pcna mRNA.
miR-376a negatively regulates Pcna expression in
cultured mouse ovaries

To determine whether miR-376a can regulate Pcna
expression in cultured ovaries, we transfected miR-376a
mimics into cultured 18.5 dpc mouse ovaries and
measured Pcna mRNA and protein levels 96 h after
transfection. An w20-fold increase in miR-376a level
was observed in ovaries transfected with miR-376a mimics
for 96 h, compared with those in control ovaries (Fig. 2A).
This indicates a high efficiency of microRNA transfection
in our fetal mouse ovary culture system. Of note, PCNA
protein level as well as mRNA level was greatly decreased
in ovaries transfected with miR-376a mimics,Pcna siRNAs
or both together compared with controls (Fig. 2B, C
and D). These results indicate that miR-376a is able to
downregulate Pcna expression in cultured mouse ovaries.
miR-376a increases primordial follicle assembly by
promoting oocyte survival around primordial follicle
formation via downregulating Pcna expression

The effects of miR-376a on primordial follicle assembly in
cultured ovaries were determined in cultured ovaries 96 h
after transfection of miR-376a mimics or controls at 18.5
dpc (Fig. 3A). miR-376a mimic-transfected ovaries
exhibited more primordial follicles than the controls;
similar results were observed in ovaries transfected with
Pcna siRNAs (Fig. 3A and B and Supplementary Fig. 1, see
section on supplementary data given at the end of this
article). To be noted, in the control group, there were
fewer primordial follicles, in which oocytes were larger
than those in miR-376a mimic-transfected ovaries, as
reported in Pcna siRNA transfected ovaries (Xu et al.
2011a). We prolonged the culture to 6 days and found
that there were still more primordial follicles in miR-376a
mimic-transfected ovaries; however, the difference in the
developing follicle index (the ratio of developing
follicles:total follicles) between experimental and control
ovaries decreased (Supplementary Fig. 2). We also
employed miR-376a inhibitors in cultured ovaries;
however, they had no obvious effect on primordial follicle
assembly (Supplementary Fig. 3). To show whether the
increase in primordial follicles in miR-376a mimic-
transfected ovaries is caused by downregulation of Pcna
expression, we co-transfected miR-376a mimics and
Pcna siRNAs into 18.5 dpc ovaries and analyzed the
www.reproduction-online.org
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Figure 1 Expression and localization of miR-376a in fetal/neonatal ovaries and the direct binding of miR-376a to Pcna mRNA 3 0 UTR. (A) miR-376a
and Pcna mRNA levels were detected by real-time PCR in fetal and neonatal mouse ovaries respectively. U6 and Gapdh were used as internal
control respectively. Data are presented as meanGS.E.M. (nZ3). (B) miR-376a expression in various mouse organs, detected by real-time PCR,
normalized to U6 expression. Negative control, no template control. Data are presented as meanGS.E.M. (nZ3). (C) Expression and localization of
miR-376a in fetal/neonatal mouse ovaries detected by in situ hybridization. White arrows, miR-376a-positive oocytes. Black arrows, miR-376a-
positive somatic cells. Bar: 25 mm. (D) Mature miR-376a sequence and its putative binding site in the 3 0 UTR of mouse Pcna mRNA. Dual-luciferase
reporter constructs contain a DNA sequence encoding WT or mutant Pcna mRNA 3 0 UTR, which is or is not able to bind miR-376a respectively.
(E) Relative luciferase activity is measured 24 h after co-transfection of each of the constructs together with miR-376a mimics (50 nM) or controls in
293T cells. Data are presented as meanGS.E.M. (nZ3). Differences between groups were considered significant when the Student’s t-test gave
a P value !0.05 (*).
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primordial follicles 96 h after transfection. Indeed, results
observed in ovaries after co-transfection were very similar
to those in ovaries transfected with either miR-376a
mimics or Pcna siRNAs alone (Fig. 3A and B and
Supplementary Fig. 1). These results together with those
mentioned earlier indicate that both miR-376a and Pcna
siRNAs are functioning in the same pathway to regulate
primordial follicle formation.

Increased primordial follicle number in neonatal
mouse ovaries has been attributed to the increased
number of surviving oocytes during follicle formation
(Meredith et al. 2000). To understand whether the
increased primordial follicles in miR-376a-transfected
ovaries result from more surviving oocytes, we counted
the oocytes in cultured ovaries every 24 h after miR-376a
mimics transfection in 18.5 dpc ovaries (Fig. 3C).
www.reproduction-online.org
Ovaries transfected with miR-376a mimics exhibited
more oocytes at 72 and 96 h after transfection than the
control ovaries (Fig. 3D). Similar results were observed in
ovaries transfected with Pcna siRNAs, and importantly in
those co-transfected with Pcna siRNAs and miR-376a
mimics (Fig. 3D). These results indicate that transfection
of miR-376a in mouse ovaries around the time of
primordial follicle assembly causes the increase of
surviving oocytes by decreasing the Pcna expression.
miR-376a overexpression reduces oocyte apoptosis in
fetal mouse ovaries around primordial follicle assembly
by suppression of Pcna expression

It has been established that Pcna promotes apoptosis of
oocytesduringprimordial follicleassembly (Xuetal. 2011a).
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Downloaded from Bioscientifica.com at 08/24/2022 07:13:35PM
via free access

http://www.reproduction-online.org/cgi/content/full/REP-13-0508/DC1


25

20

15

10

5

0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

PCNA

C
on

tr
ol

m
iR

-3
76

a

P
cn

a 
si

R
N

A
s

m
iR

-3
76

a+
P

cn
a 

si
R

N
A

s

GAPDII

Control

Control

*
*

*

NS
NS

NS

**
**

**

NS

Pcna
siRNAs

miR-376a miR-376a+
Pcna siRNAs

Control Pcna
siRNAs

miR-376a miR-376a+
Pcna siRNAs

miR-376a

**

A B

C D

Fo
ld

 c
ha

ng
e 

of
 r

el
at

iv
e

m
iR

-3
76

a 
ex

pr
es

si
on

/U
6

(c
on

tr
ol

 d
es

ig
na

te
d 

as
 1

)

Fo
ld

 c
ha

ng
e 

of
 r

el
at

iv
e

PC
N

A
 in

te
ns

ity
/G

A
PD

H
(c

on
tr

ol
 d

es
ig

na
te

d 
as

 1
)

Fo
ld

 c
ha

ng
e 

of
 r

el
at

iv
e 

P
cn

a 
m

R
N

A
ex

pr
es

si
on

/G
ap

dh
 (

co
nt

ro
l d

es
ig

na
te

d 
as

 1
)

Figure 2 miR-376a overexpression downregulates Pcna expression in fetal mouse ovaries. (A) The overexpression efficiency of miR-376a in cultured
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highly significant when the Student’s t-test gave a P value !0.01 (**). (B) PCNA protein levels in fetal mouse ovaries transfected with miR-376a
mimics, Pcna siRNAs, both together or non-targeting microRNA mimics (Control) for 96 h were measured by western blot assays. GAPDH were used
as an internal control. (C) Relative intensity of PCNA to GAPDH of the western blot bands. The data of control ovaries was designated as 1. Data are
presented as meanGS.E.M. (nZ3–9). Differences among groups were considered significant when the Tukey’s multiple comparison test gave a
P value !0.05 (*). (D) Relative Pcna mRNA expression levels in fetal mouse ovaries transfected with miR-376a mimics, Pcna siRNAs, both together
or non-targeting microRNA mimics (control) for 96 h were detected by real-time PCR. The relative Pcna mRNA expression in control ovaries was
designated as 1. Data are presented as meanGS.E.M. (nZ3–9). Differences among groups were considered significant when the Tukey’s multiple
comparison test gave a P value !0.05. *P!0.05 and **P!0.01.
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To investigate whether the increased oocytes in ovaries
caused by miR-376a transfection result from the decreased
oocyte apoptosis mediated by downregulation of Pcna
expression, TUNEL assays were performed on ovaries
transfected with miR-376a mimics. The results showed that
miR-376a mimics transfection apparently inhibited oocyte
apoptosis (Fig. 4A) and statistical analysis revealed that the
number of apoptotic oocytes in ovaries transfected with
miR-376a mimics was significantly lower than in the
controls (Fig. 4B). Additionally, we measured the expression
levels of some genes that related to apoptosis and oocyte
survival. mRNA levels significantly decreased for pro-
apoptotic genes such as Bax, Tnf, and Tnfrsf1b (Tnfr2),
increased for anti-apoptotic gene Bcl2 and oocyte survival
genes Pard6a (Par6), Lhx8 in ovaries transfected with
miR-376a, compared with the controls (Fig. 4C).
Altogether, these results indicate that miR-376a is able to
reduce oocyte apoptosis in fetal mouse ovaries during
primordial follicle assembly.

A similar decrease in the number of apoptotic oocytes
was observed in ovaries transfected with Pcna siRNAs,
co-transfection of Pcna siRNAs and miR-376a mimics
did not further decrease the number of apoptotic oocytes
(Fig. 4A and B). This indicates that transfection of
miR-376a decreases oocyte apoptosis by suppression
of Pcna expression.
Reproduction (2014) 148 43–54
Overexpression of miR-376a slightly decreases somatic
cell proliferation in mouse ovaries around primordial
follicle assembly mediated by repression of Pcna
expression

To determine whether miR-376a transfection induces a
slight decrease in somatic cell proliferation as does Pcna
siRNA transfection (Xu et al. 2011a), we measured cell
proliferation in miR-376a mimic-transfected ovaries
using BrdU incorporation as a marker of cell prolifer-
ation (Johnson et al. 2004). We counted the number of
BrdU-positive somatic cells in ovaries every 24 h after
transfection initiation (Fig. 5A and B). During the first
72 h when primordial follicles were formed actively,
miR-376a mimic-transfected ovaries showed a slight but
not significant decrease in the number of BrdU-positive
somatic cells, when compared with the controls. From
72 to 96 h after transfection, the number of BrdU-
positive cells increased apparently when compared with
that in the first 72 h in miR-376a mimic-transfected
ovaries. The BrdU-positive cells mainly localized in the
area where the primordial follicle assembly was not
active (Fig. 5A). A similar increase in somatic cell
proliferation was observed in ovaries transfected with
Pcna siRNAs, and co-transfection of Pcna siRNAs and
miR-376a mimics did not further the influence on
www.reproduction-online.org
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somatic cell proliferation (Fig. 5A and B). Taken together,
overexpression of miR-376a during primordial follicle
assembly slightly decreases somatic cell proliferation
that is not involved in primordial follicle formation.
Discussion

Previous reports have shown that female reproductive
system-specific Dicer1 conditional knockout or Dicer1
general hypomorphic mutated mice are infertile due
to the interruption of overall microRNA production
(Murchison et al. 2007, Otsuka et al. 2008, Lei et al.
2010). Most recently, microRNA expression profiles
have been established in ovaries in human (Zhang
et al. 2011), mice (Choi et al. 2007, Ro et al. 2007,
www.reproduction-online.org
Ahn et al. 2010, Zhang et al. 2013), and cattle (Tripurani
et al. 2010, Huang et al. 2011) around the time of
primordial follicle assembly. All these studies suggested
important roles of microRNAs in the developing ovaries.
However, little is known about the exact function of
individual microRNAs and their targets in primordial
follicle formation. Here, we found that during primordial
follicle assembly, miR-376a can repress the expression
of Pcna through directly binding to Pcna mRNA 3 0 UTR.
Overexpression of miR-376a results in more oocytes and
primordial follicles in cultured mouse ovaries around
primordial follicle assembly by reducing oocyte apop-
tosis through down-regulation of Pcna expression. This
study demonstrates that miR-376a is a novel regulator
of primordial follicle assembly in mouse.
Reproduction (2014) 148 43–54
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The distinct expression profile of Pcna during the
ovary development was found in fetal and newborn rats,
with PCNA-positive oocytes observed decreasing after
birth and increasing when primordial follicles start to
assembly (Balla et al. 2008). In mice, during early ovary
development, a fluctuant expression pattern was
observed, i.e. decreasing expression from 13.5 dpc to
18.5 dpc and increasing expression from 18.5 dpc to
5 dpp (Xu et al. 2011a). The variable Pcna expression
before and during primordial follicle assembly has also
been detected by others in mice and rats (Muskhelishvili
et al. 2005, Kerr et al. 2006). All these results indicate
that the temporal expression of Pcna during primordial
follicle assembly is tightly regulated. microRNAs have
been shown to function as negative regulators of many
genes during ovary development (Carletti et al. 2010, Xu
et al. 2011b). The regulation of Pcna expression by
microRNAs has been mentioned in several studies (Han
et al. 2010, Sirotkin et al. 2010, Raschzok et al. 2011).
For example, downregulation of Dicer1 was associated
Reproduction (2014) 148 43–54
with enhanced expression of Pcna in human cancer cell
lines (Han et al. 2010), and a total of 53 microRNAs were
shown to most likely repress the expression of Pcna in
cultured human granulosa cells (Sirotkin et al. 2010).
However, these studies did not determine whether the
Pcna expression is directly regulated by microRNAs
because Pcna expression was always used as a cell
proliferation marker in these reports and changes in its
expression level might also be the accompanying effect
of microRNAs on cell proliferation.

According to miRanda prediction (Betel et al. 2008),
there is a putative binding site of miR-376a in Pcna
3 0 UTR (Fig. 1D). Dual-luciferase activity assay con-
firmed that miR-376a could directly bind to Pcna 3 0 UTR
(Fig. 1E). We also found that over-expression of miR-
376a in cultured 18.5 dpc ovaries could down-regulate
PCNA protein and mRNA levels (Fig. 2B, C and D).
The decrease in PCNA protein abundance in ovaries
transfected with miR-376a may be a consequence of
reducing Pcna mRNA abundance or a combination
www.reproduction-online.org
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result of reduced mRNA abundance and directly
suppressed translation. Several hypotheses have been
proposed to delineate how microRNAs suppress gene
expression (Omer et al. 2009, Huntzinger & Izaurralde
2011). In mammalian cells, it has been reported that the
reduction in message RNA abundance results from
accelerated deadenylation, which leads to rapid mRNA
decay (Wu et al. 2006, 2010, Omer et al. 2009, Ricci
et al. 2011). More recently, the direct repression of Aplp2
mRNA’s translation by miR-153 has also been showed
(Liang et al. 2011). Although the mechanism underlying
the decrease in PCNA protein abundance caused by
miR-376a remained unknown, our results indicated that
www.reproduction-online.org
miR-376a is able to suppress Pcna expression by directly
binding to the 3 0 UTR of its mRNAs.

The role of microRNAs during primordial follicle
assembly is poorly understood and previous studies on
microRNAs in the developing ovaries were largely limited
to assessing their expression profiles. For example, a total
of 398 known microRNAs and 30 novel microRNAs were
found to be expressed in the newborn mouse ovary;
however, the exact role of any of them in follicular
development is unknown (Ahn et al. 2010). Here, we
found that mouse fetal ovaries transfected with miR-376a
exhibited more primordial follicles than the controls
(Fig. 3B) and similar results were observed in ovaries
transfected with Pcna siRNAs (Fig. 3A and B). Further-
more, co-transfection of miR-376a mimics and Pcna
siRNAs did not further increase primordial follicles in
ovaries (Fig. 3A and B). These results strongly indicate that
miR-376a and Pcna siRNAs function in the same pathway
to regulate primordial follicle formation. However, the
transfection of miR-376a inhibitors had no obvious effect
on primordial follicle assembly (Supplementary Fig. 3).
This could be related to the low background concen-
tration of miR-376a in the ovary. Therefore, the present
observations demonstrate that miR-376a regulates
primordial follicle assembly through regulating Pcna
expression. This is the first microRNA–target mRNA
pairs that clearly demonstrated to regulate mammalian
primordial follicle assembly.

In female mammals, germ cell loss is a crucial event
during primordial follicle assembly. In fetal and neonatal
mouse ovaries, approximately two thirds of oocytes
underwent cell death and only the surviving ones
developed into primordial follicles (Pepling & Spradling
2001, Pepling 2006). Apoptosis has been proposed to be
the major mechanism responsible for oocyte loss. Several
genes, e.g. the Bcl2 family genes (Bcl2 and Bax) and
Caspases (Casp2 and Casp4) have been reported to be
involved in the regulation of oocyte apoptosis (Ratts et al.
1995, Bergeron et al. 1998, Rucker et al. 2000, Flaws
et al. 2001, Morita et al. 2001). Our previous studies have
also demonstrated that Pcna contribute actively to oocyte
loss by regulating apoptosis during primordial follicle
assembly in mouse ovaries (Xu et al. 2011a). The
expression of miR-376a in mouse ovaries, decreasing
from 16.5 dpc to 3 dpp (Fig. 1A) indicates that this
microRNA may be involved in oocyte loss through
targeting Pcna during primordial follicle assembly.
Moreover, microRNA ISH experiments demonstrated
that miR-376a was localized in cytoplasm of some
oocytes in cysts in 16.5 dpc ovaries in which primordial
follicle formation has not occurred yet and in cytoplasm
of oocytes and some granulosa cells of primordial follicles
in 1 dpp ovaries (Fig. 1C). This different localization of
miR-376a before and after primordial follicle assembly
indicated that only the miR-376a–Pcna pairs present in
oocytes is involved in the assembly of primordial follicles.
Indeed, in cultured mouse ovaries, we found that
Reproduction (2014) 148 43–54
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miR-376a transfection reduced oocyte apoptosis (Fig. 4A
and B). This is consistent with the increased expression of
anti-apoptotic genes and suppression of pro-apoptotic
genes (Fig. 4C). Among the apoptosis-associated genes,
Casp3 expression was unchanged. This is consistent with
former reports that oocyte death, initiated as a result of
either developmental cues or pathological insults, was
unaffected by the absence of Casp3 (Matikainen et al.
2001). However, Casp7, a pro-apoptotic gene, increased
after miR-376a transfection, suggesting a more compli-
cated mechanism of oocyte apoptosis than anticipated.
During primordial follicle pool foundation, the pro-
survival genes, Pard6a and Lhx8, contribute to the
maintenance of oocytes arrested at the diplotene stage
(Choi et al. 2008, Wen et al. 2009). Increased expression
of these oocyte pro-survival genes after miR-376a
transfection is consistent with more surviving oocytes.
Furthermore, as the culture time increased, there are still
more primordial follicles in the miR-376a mimic-
transfected ovaries, while the difference in the developing
follicle index between experimental and control ovaries
decreased, which rules out the possibility that the
increased number of primordial follicles after miR-376a
mimics transfection are resulted from the postponing
oocyte apoptosis. Additionally, the lack of an additive
effect on oocyte loss in fetal mouse ovaries after
co-transfection of miR-376a mimics with Pcna siRNAs
(Fig. 4A and B) indicated that miR-376a and Pcna function
in the same pathway, and functionally confirmed that miR-
376a reduced oocyte apoptosis through targeting Pcna.

In studies using cultured cells, some microRNAs
involved in the regulation of apoptosis have been
reported. For example, the miR-34a, b, c, and miR-214
were observed to promote apoptosis by increasing
the expression of Caspases, P21, P53, and Bax (Corney
et al. 2007, Gammell 2007, Zenz et al. 2009). miR-210
and miR-155 repressed apoptosis by decreasing the
expression of pro-apoptotic Caspases (Wang & Lee
2009). However, all these data are obtained from
experiments using cultured somatic cells. Our obser-
vations provide the first evidence for the existence of a
new mechanism by which an individual microRNA
regulates oocyte apoptosis in perinatal mouse ovaries.

In summary, we found that miR-376a functions as a
negative regulator of Pcna by binding to Pcna mRNA 3 0

UTR. Overexpression of miR-376a increased primordial
follicle assembly by reducing oocyte apoptosis mediated
by the downregulation of Pcna in perinatal mouse
ovaries. To our knowledge, this is the first microRNA–
target mRNA pairs that functions during folliculogenesis
in mammalian ovaries and further our understanding of
the regulation of primordial follicle assembly.
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