Originally published in *Science* Express on 21 May 2009 *Science* 26 June 2009: Vol. 324. no. 5935, pp. 1710 - 1713 DOI: 10.1126/science.1174381

REPORTS

MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice

Angelika Bonauer,¹ Guillaume Carmona,¹ Masayoshi Iwasaki,¹ Marina Mione,² Masamichi Koyanagi,¹ Ariane Fischer,¹ Jana Burchfield,¹ Henrik Fox,^{1,3} Carmen Doebele,¹ Kisho Ohtani,¹ Emmanouil Chavakis,^{1,3} Michael Potente,^{1,3} Marc Tjwa,⁴ Carmen Urbich,¹ Andreas M. Zeiher,³ Stefanie Dimmeler^{1,*}

MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Here, we show that the miR-17~92 cluster is highly expressed in human endothelial cells and that miR-92a, a component of this cluster, controls the growth of new blood vessels (angiogenesis). Forced overexpression of miR-92a in endothelial cells blocked angiogenesis in vitro and in vivo. In mouse models of limb ischemia and myocardial infarction, systemic administration of an antagomir designed to inhibit miR-92a led to enhanced blood vessel growth and functional recovery of damaged tissue. MiR-92a appears to target mRNAs corresponding to several proangiogenic proteins, including the integrin subunit alpha5. Thus, miR-92a may serve as a valuable therapeutic target in the setting of ischemic disease.

http://www.sciencemag.org/cgi/content/abstract/1174381