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MicroRNA in combination 
with HER2‑targeting drugs reduces 
breast cancer cell viability in vitro
Lisa Svartdal Normann1,2,3, Miriam Ragle Aure3, Suvi‑Katri Leivonen4, 
Mads Haugland Haugen2, Vesa Hongisto5, Vessela N. Kristensen3,6, 
Gunhild Mari Mælandsmo2,7 & Kristine Kleivi Sahlberg1,2*

HER2‑positive (HER2 +) breast cancer patients that do not respond to targeted treatment have a poor 
prognosis. The effects of targeted treatment on endogenous microRNA (miRNA) expression levels are 
unclear. We report that responsive HER2 + breast cancer cell lines had a higher number of miRNAs with 
altered expression after treatment with trastuzumab and lapatinib compared to poorly responsive 
cell lines. To evaluate whether miRNAs can sensitize HER2 + cells to treatment, we performed a 
high‑throughput screen of 1626 miRNA mimics and inhibitors in combination with trastuzumab and 
lapatinib in HER2 + breast cancer cells. We identified eight miRNA mimics sensitizing cells to targeted 
treatment, miR-101-5p, mir-518a-5p, miR-19b-2-5p, miR-1237-3p, miR-29a-3p, miR-29c-3p, miR-

106a-5p, and miR-744-3p. A higher expression of miR-101-5p predicted better prognosis in patients 
with HER2 + breast cancer (OS: p = 0.039; BCSS: p = 0.012), supporting the tumor‑suppressing role of 
this miRNA. In conclusion, we have identified miRNAs that sensitize HER2 + breast cancer cells to 
targeted therapy. This indicates the potential of combining targeted drugs with miRNAs to improve 
current treatments for HER2 + breast cancers.

Breast cancer patients with overexpression of the human epidermal growth factor receptor 2 (HER2) are clas-
si�ed as HER2-positive (HER2 +). �is subtype of breast cancer shows an aggressive path with intracellular 
signaling resulting in increased cell survival and proliferation. �e receptor is encoded by the ERBB2 gene, 
which is ampli�ed in about 20% of all breast cancer  patients1–3. Over the last two decades several HER2-targeting 
drugs have been introduced. �e most pronounced drug is the monoclonal antibody trastuzumab, which has 
improved disease free survival and outcome for HER2 + patients when used adjuvantly in combination with 
 chemotherapy1,4–6. Despite the introduction of trastuzumab, many patients respond poorly to the treatment or 
develop resistance, and experience disease progression or relapse. To overcome the lack of response to treatment, 
other HER2-targeting drugs, such as the small molecule inhibitor lapatinib, the monoclonal antibody pertuzumab 
and the antibody—cytotoxic agent conjugate trastuzumab emtansine (TDM-1), have been introduced in combi-
nation with chemotherapy and other HER2-targeted drugs. Recently, the Food and Drug Administration (FDA) 
approved the use of the tyrosine kinase inhibitor tucatinib in combination with trastuzumab and capecitabine, 
and the monoclonal antibody margetuximab-cmkb in combination with chemotherapy as third line treatments 
based on the e�ects shown in the HER2CLIMB trial (NCT02614794) and the SOPHIA trial (NCT02492711), 
respectively. Despite new and improved regimens entering the clinic, there is still a need for continuous explora-
tion of better treatment strategies for patients that respond poorly to the treatment given.

MicroRNAs (miRNAs) are short, single stranded oligonucleotides that regulate gene expression at a posttran-
scriptional level. �ese non-coding RNA molecules bind complementary messenger RNA (mRNA) molecules, 
causing either blockage of translation or degradation of the mRNA. miRNAs may have oncogenic or tumor 
suppressive functions depending on whether they bind tumor suppressor or oncogenic mRNAs, respectively. 
Furthermore, one miRNA can target di�erent mRNAs, and several miRNAs can target the same mRNA. In 

OPEN

1Department of Research and Innovation, Vestre Viken Hospital Trust, P.O. Box 800, 3004 Drammen, 
Norway. 2Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo 
University Hospital, Oslo, Norway. 3Department of Medical Genetics, Institute of Clinical Medicine, Faculty of 
Medicine, University of Oslo, Oslo, Norway. 4Applied Tumor Genomics Research Program, Medical Faculty, 
University of Helsinki, Helsinki, Finland. 5Division of Toxicology, Misvik Biology, Turku, Finland. 6Division 
of Medicine, Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, 
Norway. 7Institute for Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, Tromsø, 
Norway. *email: Kristine.Sahlberg@vestreviken.no

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-90385-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10893  | https://doi.org/10.1038/s41598-021-90385-2

www.nature.com/scientificreports/

breast cancer, multiple pre-clinical and prognostic implications of miRNAs have been reported. �ese include 
the identi�cation of miRNAs essential for HER2-positive breast cancer cell  growth7, miRNAs that regulate 
estrogen receptor  signaling8, miRNAs that increase the proliferation of breast cancer cell  lines9, miRNAs acting 
as metastasis suppressors in breast  cancer10, miRNAs positively regulating cell migration and  invasion11, and 
previously we linked a high expression level of miR-29c to disease speci�c  survival12.

miRNAs also show a therapeutic potential either alone or in combination with other treatment strategies. 
Promising e�ects are reported for miRNAs sensitizing tumors to  radiation13,14,  chemotherapy15,16 and targeted 
 treatment17,18 in multiple cancer types. A phase I dose escalating trial using TargomiRs (minicells loaded with 
miR-16 mimics) in malignant pleural mesothelioma and non-small cell lung cancer patients concluded on an 
acceptable safety pro�le and early signs of therapeutic  activity19 (NCT02369198). �is latter example lays a 
promising ground for further work on miRNA therapy.

In the present study, we aim to explore whether miRNAs may sensitize cancer cells to HER2-targeted treat-
ment. We hypothesize that the treatment of HER2 + breast cancer cell lines that respond poorly to trastuzumab 
and lapatinib can be improved by adding miRNA mimics and inhibitors as therapeutic agents. To identify miR-
NAs that may sensitize to treatment, we have performed a high-throughput screen of miRNA mimics and inhibi-
tors in HER2 + cell lines in combination with HER2-targeted treatment. Hits from the screen were explored and 
we here present the most relevant miRNAs to include in combinatorial treatment with trastuzumab and lapatinib.

Results
Deregulations of miRNA expression after HER2‑targeted treatment. �e level of speci�c miR-
NAs in a cell is context-dependent and may vary due to cellular processes or in response to other stimuli. �ere-
fore, we wanted to study to what extent treatment with HER2-targeted drugs impact the endogenous miRNA 
expression levels in breast cancer cells. Four HER2 + breast cancer cell lines were tested, of which two were 
responsive to trastuzumab and lapatinib (SKBR3 and BT-474) and two were poorly responding (SUM190PT and 
KPL4)20. We identi�ed miRNAs di�erentially expressed before versus a�er treatment considering three treat-
ment groups (trastuzumab, lapatinib or the combination of trastuzumab and lapatinib).

Altogether, the expressions of 12 miRNAs were signi�cantly changed when studying the miRNA expression 
levels in all cell lines combined between treatment groups (Kruskal–Wallis p-value < 0.05; Table 1). For the 
responsive cell lines, 36 miRNAs changed in expression levels due to treatment. Nine of these overlap with the 
miRNAs regulated when combining results from all four cell lines, indicating that the e�ects in the responsive 
lines are substantial enough to withstand the smaller or lack of e�ects in the poorly responsive cell lines. For the 
poorly responding cell lines, the expression level of only one miRNA, miR-1268, changed signi�cantly due to 
treatment (p = 0.05; Table 1). �e higher number of altered miRNAs in the responsive versus poorly responsive 
cells may re�ect some of the intracellular processes leading to cell death or cell growth inhibition upon treatment 
with HER2-targeted drugs.

Overall, the miRNA regulations were mainly positive, i.e. the drug treatment caused upregulation of certain 
miRNAs (Supplementary Tables S2-S4). �e responsive cell lines not only show the highest number of altered 
miRNAs, but also the largest magnitude of signi�cant changes in miRNA expression (Supplementary Table S3). 
Boxplots showing signi�cant changes in miRNA expression are presented in Supplementary Fig. S2. �ese results 
show that endogenous miRNA expression is a�ected by drug treatment which again may have downstream 
cascading e�ects.

To examine which pathways the miRNAs with altered expression may be relevant for, we identi�ed predicted 
mRNA targets using the MicroRNA Target Filter in the Ingenuity Pathway Analysis (IPA) so�ware program 
and further used these mRNAs to assess any enrichment of speci�c pathways in the web-based online tool 
 Enrichr21,22. �e analysis was performed three times; considering all four cell lines, responsive cell lines alone 
and �nally poorly responsive cell lines alone (Supplementary Tables S2-S4). For the responsive cell lines, the 
predicted mRNA targets of the deregulated miRNAs were signi�cantly enriched for 26 pathways, whereof the 

Table 1.  miRNAs responding to HER2-targeted treatment (miRNAs are ordered alphabetically). p-values 
calculated using a Kruskal–Wallis test. Repeating miRNAs are highlighted in bold font.

Cell lines miRNAs

All four cell lines
BT-474, SKBR3,
KPL4, SUM190PT

hsa-let-7b* (p = 0.02), hsa-miR-1207-5p (p = 0.02), hsa-miR-1236 (p = 0.02), hsa-
miR-1307 (p = 0.04), hsa-miR-134 (p = 0.03), hsa-miR-15b (p = 0.04), hsa-miR-25* 
(p = 5E-3), hsa-miR-2861 (p = 0.04), hsa-miR-3656 (p = 0.03), hsa-miR-3663-3p 
(p = 0.03), hsa-miR-3940 (p = 0.02), hsa-miR-885-5p (p = 0.02)

Responding cell lines
BT-474, SKBR3

hsa-let-7b* (p = 0.02), hsa-miR-1207-5p, hsa-miR-1225-5p (p = 0.01), hsa-miR-1226* 
(p = 0.01), hsa-miR-1236 (p = 0.02), hsa-miR-134 (p = 1E-3), hsa-miR-150* (p = 0.02), 
hsa-miR-15b* (p = 0.05), hsa-miR-1915 (p = 0.03), hsa-miR-25* (p = 0.02), hsa-miR-3188 
(p = 0.02), hsa-miR-320a (p = 0.03), hsa-miR-320b (p = 0.01), hsa-miR-320c (p = 0.02), 
hsa-miR-320d (p = 0.02), hsa-miR-320e (p = 0.03), hsa-miR-324-3p (p = 0.03), hsa-
miR-3656 (p = 0.02), hsa-miR-3663-3p (p = 0.01), hsa-miR-3665 (p = 4E-3), hsa-miR-
371-5p (p = 3E-3), hsa-miR-3940 (p = 0.02), hsa-miR-4270 (p = 0.02), hsa-miR-4271 
(p = 0.01), hsa-miR-4281 (p = 0.01), hsa-miR-431* (p = 0.04), hsa-miR-4327 (p = 0.01), 
hsa-miR-484 (p = 0.02), hsa-miR-595 (p = 0.05), hsa-miR-602 (p = 0.04), hsa-miR-762 
(p = 0.05), hsa-miR-885-5p (p = 0.02), hsv1-miR-H18 (p = 0.04), hsv2-miR-H10 (p = 0.05), 
hsv2-miR-H6 (p = 0.01), kshv-miR-K12-3 (p = 0.02)

Poorly responding cell lines KPL4, SUM190PT hsa-miR-1268 (p = 0.05)
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MAPK signaling pathway was the most signi�cant (adjusted p-value = 0.003; Supplementary Table S3). �is 
could indicate that one of the e�ects of HER2-targeting drugs is alterations in a certain set of miRNAs, which 
further a�ects the MAPK signaling pathway. When examining all four cell lines and the poorly responsive cell 
lines alone, no signi�cant (adjusted p-value < 0.05) pathways were identi�ed.

miRNAs sensitizing HER2 + cells to HER2‑targeted treatment. To identify miRNAs that sensitize 
HER2+ breast cancer cells to trastuzumab and lapatinib, we performed a high-throughput screen of 810 miRNA 
mimics and 816 miRNA inhibitors in KPL4 and SUM190PT cell lines treated with either of the drugs or the 
combination. �e cell lines were chosen due to their low response to the two drugs.

Of the 1626 miRNA mimics and inhibitors, 93 signi�cantly a�ected the cell viability in one or more treatment 
groups compared to the control group (vehicle treated cells; Supplementary Table S5). �e miRNA sensitization 
e�ects were dependent upon the treatment (Fig. 1). �ere were few sensitization e�ects with only trastuzumab 
treatment (Fig. 1a) and more in the lapatinib (Fig. 1b) and combination treated cells (Fig. 1c). In addition, the 
miRNA inhibitors were accountable for all but one sensitizing case in the trastuzumab setting (Fig. 1a), while 
the mimics were the sensitizing agent in the majority of cases in the lapatinib (Fig. 1b) and lapatinib plus tras-
tuzumab (Fig. 1c) treated cells. Overall, there was a stronger e�ect of miRNAs on cell viability in KPL4 than in 
SUM190PT cells.

Sixteen miRNA candidates were selected for further exploration. �e selection was based on miRNAs having 
multiple sensitization e�ects, either with an e�ect in both cell lines, or in more than one treatment setting within 
one cell line, e.g. sensitizing for both lapatinib and for the combination of trastuzumab and lapatinib. �ese 
candidates included two inhibitors: miR-361-5p and miR-502-3p; and fourteen mimics: mir-15b-5p, miR-19b-
2-5p, miR-26b-3p, miR-29a-3p, miR-29c-3p, miR-32-3p, miR-93-3p, miR-101-5p, miR-106a-5p, miR-132-3p , 
miR-153-3p, miR-518a-5p, miR-744-3p and miR-1237-3p. �e miRNA mimics and inhibitors caused little e�ect 
on cell viability alone in the screen, but in the presence of lapatinib and/or trastuzumab the viability decreased 
(Supplementary Table S5).

Protein expression changes after miRNA and HER2‑targeted treatment. In order to investigate 
possible pathways that could be a�ected by the miRNA mimics and inhibitors and HER2-targeted treatment, the 
two cell lines were treated with the drugs and subjected to a second miRNA screen. Cell lysates were prepared 
directly in the wells, and selected protein markers representing apoptosis, cell viability and members of the 
HER2 pathway were measured using a lysate microarray method (LMA). Protein deregulations with Z score ± 2 
standard deviations were considered hits. We used the cell viability data to select miRNAs from the screen 
(n = 16), and the protein deregulations for these miRNAs in KPL4 cells are shown in Supplementary Table S6. 
Overall, the miRNAs showed most e�ect on protein expression levels in cells treated with lapatinib alone or in 
combination with trastuzumab, indicating that lapatinib was the strongest in�uencer. �is was in concordance 
with the viability data. �e protein data suggested miRNA-associated downregulation of proliferative markers 
and pathways (KI67, ERK, AKT and HER2), and upregulation of the apoptotic marker cPARP (Supplementary 
Table S6). �is is in line with the decreased cell viability observed upon miRNA and HER2-targeted treatment.

Figure 1.  Viability for sensitizing miRNAs in high-throughput screen. �e cells were treated with (a) 
Trastuzumab (10 μg/mL), (b) Lapatinib (100 nM) or (c) Trastuzumab and lapatinib together with a panel of 
miRNAs, and viability was measured using a CellTiter-Glo assay a�er 72 h. �e scatterplots show viability (loess 
log) of treated cells (x-axis) vs untreated cells (y-axis) for signi�cant miRNAs. I.e. miRNAs causing a viability 
reduction greater than three standard deviations from the median of all miRNAs in the same treatment group. 
Each point represents either a miRNA inhibitor (dot) or a miRNA mimic (triangle). Black color indicates result 
in KPL4 cells, and orange color indicates result in SUM190PT cells.
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Eight miRNAs sensitize KPL4 cells to HER2‑targeted treatment. Next, we validated the 16 most 
promising sensitization candidates by a cell viability assay using KPL4 cells. �is was the cell line presenting the 
strongest hits in the original screen. �e miRNA mimics and inhibitors were transfected into the cells simul-
taneously as the cells were treated with trastuzumab and/or lapatinib. CellTiter-Glo assay was used to measure 
viability a�er incubation. Of the 16 miRNA mimics and inhibitors, 8 miRNA mimics showed a signi�cant reduc-
tion in viability, compared to treatment with the scrambled negative control, in combination with either trastu-
zumab, lapatinib or both drugs (Student’s T-test, p-value < 0.05). �ese eight miRNA mimics were miR-101-5p, 
mir-518a-5p, miR-19b-2-5p, miR-1237-3p, miR-29a-3p, miR-29c-3p, miR-106a-5p, and miR-744-3p (Fig. 2).

�e e�ect of the HER2-targeting drugs alone in KPL4 cells was a 4% reduction in viability due to trastuzumab, 
while lapatinib lowered the viability with 17% and �nally, the combination of lapatinib and trastuzumab resulted 
in a 33% viability reduction compared to untreated cell. Addition of the above-mentioned eight miRNAs to 
the targeted treatment further reduced the viability to various extents (Fig. 2). miR-101-5p alone reduced cell 
viability with 50% (p < 0.001), and in combination with lapatinib, the viability was reduced with 75% (p < 0.001; 
Fig. 2a). �e other seven miRNA mimics, miR-518a-5p, miR-19b-2-5p, miR-1237-3p, miR-29a-3p, miR-29c-3p, 
miR-106a-5p, mir-744-3p, all signi�cantly reduced cell viability either alone or in combination with the two 
HER2-targeting drugs compared to the drugs alone (Fig. 2). �e data from these eight mimics provide evidence 
that transfection of a single miRNA can a�ect cell viability and improve the in vitro e�cacy of traditional drugs.

We evaluated the intrinsic expression of these eight sensitizing miRNAs in the previously described poorly 
responsive cell lines (KPL4 and SUM190PT) and the two responsive cell lines (SKBR3 and BT-474) before and 
a�er treatment with trastuzumab and/or lapatinib. �e expression of the miRNAs did not signi�cantly change 
due to HER2-targeted treatment. Further, there was no signi�cant di�erence between the expression of the 
miRNAs in untreated responsive or untreated poorly responsive cells (data not shown).

Correlations between miRNAs and mRNAs in primary tumors. To elucidate the clinical relevance 
of the sensitizing miRNAs, we calculated for each of the miRNAs the Spearman correlation between its expres-
sion and all mRNAs across 377 primary tumors. In this analysis miRNA expression was available for six out of 
the eight sensitizing miRNAs. To get an overall insight into biological processes associated with the sensitizing 
miRNAs, both positive and negative correlations were considered. �e number of signi�cant correlations varied 
from 86 (miR-1237) to 5943 mRNAs (miR-29c) (Supplementary Table S7), and the correlation coe�cients were 
almost equally distributed into positive (52.6%) and negative (47.4%). For each miRNA, the list of signi�cantly 
correlated mRNAs was imported to the Enrichr online tool for pathway enrichment  analyses21,22 and KEGG 
2019 Human pathways with an adjusted p-value below 0.05 were considered signi�cant.

For miR-29a and miR-29c, we identi�ed ��een and two correlating pathways, respectively. For both miR-
NAs, cell cycle was the most signi�cant reported pathway from the enrichment analyses (p = 1.05*10–15, and 
p = 3.94*10–6, respectively; Supplementary Table S7). Resembling pathway results for miR-29a and miR-29c is 
not surprising, as 26% of the signi�cantly correlated mRNAs of these miRNAs overlapped. DNA replication 
and p53 signaling pathway were also among the signi�cant pathways enriched among the correlated mRNAs 
of mir-29a. �ere were no signi�cant pathways enriched among the genes correlated with miR-101, miR-1237, 
miR-518a and miR-744. Without p-value correction, MAPK signaling was among the signi�cant pathways for 
miR-1237 (p = 0.04). �ese miRNA-mRNA correlations and pathway analyses may help explain some of the 
molecular mechanisms associated with the sensitizing miRNAs.

We further studied the association between HER2+ tumor miRNA expression and breast cancer stage in the 
Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, where four of the eight 
miRNAs were expressed (mir-101-5p, miR-29a-3p, miR-29c-3p and miR-744-3p). �ere was a higher expression 
of miR-101-5p and miR-29a-3p in the early stage group compared to the more advanced stages of breast cancer 
(Fig. 3). Speci�cally, there was a signi�cant di�erence between breast cancer stages 1 and 3 for miR-101-5p 
expression (p = 0.031), and between stages 1 and 2 for miR-29a-3p (p < 0.001). �ese results further support a 
tumor suppressor role for the two miRNAs.

miR‑101‑5p expression is associated with survival in HER2 + patients. Next, we investi-
gated miRNA expression in relation to breast cancer speci�c survival (BCSS) and overall survival (OS) in 
HER2 + patients from the METABRIC and �e Cancer Genome Atlas (TCGA) datasets. Of note, data for 
METABRIC was collected before trastuzumab was introduced, thus the patients had not received HER2-tar-
geted therapy. Patients with a high expression (> median) of miR-101-5p had a signi�cantly higher BCSS and 
OS in METABRIC (BCSS: p = 0.012, OS: p = 0.039; Fig. 4). No signi�cant di�erence was found within the TCGA 
dataset. Kaplan–Meier plots for the other miRNAs can be found in Supplementary Fig. S3. �is suggests that 
miR-101-5p expression has prognostic value for HER2 + breast cancer patients. In addition, it supports our �nd-
ing of miR-101-5p being a favorable miRNA with tumor suppressor properties in HER2 + breast cancer.

Discussion
Although targeted therapeutics have improved survival for HER2-positive breast cancer patients, poor response 
and disease progression is still a major problem. �e treatment is continuously evolving, including agents as 
trastuzumab, lapatinib and pertuzumab, to the lately approved tucatinib and margetuximab-cmkb. �ese drugs 
are o�en administered in combination with chemotherapy. In this study, we present miRNAs that sensitize 
HER2-positive breast cancer cells to HER2-targeted treatment.

First, we explored miRNA expression changes in breast cancer cell lines with di�erent response to trastu-
zumab and lapatinib. Based on the expression pro�les before and a�er treatment, we saw that responsive cell 
lines had a higher number of deregulated miRNAs (n = 36) than less responsive cell lines. �is indicates that 
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Figure 2.  Viability measurements a�er treatment with sensitizing miRNAs. Viability measurements (by 
CellTiter-Glo) in cells transfected with indicated miRNA and treated with trastuzumab (10 μg/mL) and 
lapatinib (100 nM). �e �gure presents the top eight miRNA mimics that signi�cantly sensitize KPL4 cells 
to trastuzumab and / or lapatinib. Viability is normalized to the median negative control for each plate. Each 
experiment is performed with three technical replicates and three biological replicates. Error bars = SEM. 
*p < 0.05, **p < 0.01, ***p < 0.001 (Student’s T-test).
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the miRNAs altered in expression may be associated with some of the molecular mechanisms contributing to 
reduced cell viability in the responsive cell lines. �e predicted mRNA targets of the miRNAs in the responsive 
cell lines were involved in the MAPK signaling pathway, which can explain some of the response mechanisms 
upon treatment.

�e e�ect of trastuzumab and lapatinib on the endogenous miRNA expression landscape showed di�erences 
between responsive and poorly responsive cell lines. �is was however not su�cient to identify miRNAs sensitiz-
ing HER2 + breast cancer cells to targeted treatment. In order to identify such miRNAs and to look into possible 
mechanisms involved, we performed a high-throughput screen and used cell viability and expression of central 
growth regulatory and apoptotic proteins as readout. �rough validation in vitro, we report eight miRNAs as 
sensitizing agents that downregulate cell viability in KPL4 cells alone or in combination with trastuzumab and/
or lapatinib.

�e protein lysate analyses included proteins that represents proliferation and growth (KI67, HER2, phos-
phorylated HER2, ERK and total AKT) and apoptosis (cPARP). �e data showed deregulations that may explain 
some of the reduction in viability we observe upon miRNA and targeted treatment. miR-101-5p in combination 
with trastuzumab and lapatinib downregulated HER2, p-HER2-Y1222 and ERK, which supports the decrease 

Figure 3.  Expression of miR-101-5p and miR-29a-3p decrease with advanced breast cancer stage. miRNA 
expression and breast cancer stage in HER2+ breast cancer patients from the METABRIC dataset. �e boxplots 
show miRNA expression level on the y-axis and breast cancer stage on the x-axis. �ere is a signi�cantly higher 
expression of miR-101-5p in stage 1 patients versus stage 3 patients (p = 0.031; (a)) and of miR-29a-3p in stage 1 
patients versus stage 3 patients (p < 0.001; (b)). p-values resulting from Wilcoxon tests.

Figure 4.  Higher expression of miR-101-5p is associated with better survival of HER2 + breast cancer patients. 
Survival curves presented as Kaplan–Meier plots for HER2 + breast cancer patients in the METABRIC dataset 
(n = 160). �ere is a signi�cantly better breast cancer speci�c survival (BCSS; p = 0.012; (a)) and overall survival 
(OS; p = 0.039; (b)) with above median expression of miR-101-5p.
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in cell viability (Supplementary Table S6). When a�ecting targets in the HER2 axis, the cells’ ability to survive is 
weakened. For the seven other validated miRNAs presented here, all signi�cant protein deregulations from the 
initial screen represented changes that support the tumor suppressive role of these miRNAs. Downregulation 
of one or more proliferative markers was observed for �ve miRNAs (miR-101-5p, miR-19b, miR-29a, miR-518a 
and miR-744), and upregulation of the apoptotic marker cPARP was observed for one miRNA (miR-744).

We here present the growth inhibitory and sensitizing e�ects of miR-101-5p in HER2-positive breast cancer 
cells. �is miRNA in combination with lapatinib caused a pronounced reduction in KPL4 cell viability and is 
a strong sensitizing candidate among the validated miRNAs. �e growth inhibitory e�ects of this miRNA are 
supported by Toda and colleagues, who present miR-101-5p as a tumor suppressive miRNA regulating multiple 
oncogenic  targets23. In addition, miR-101 has been demonstrated to promote  apoptosis24 and inhibit growth in 
both in vitro and in vivo breast cancer  models25. Furthermore, paclitaxel sensitivity increased through miR-101 
by inhibiting MCL-1 in triple negative breast  cancer25. Altogether, this may explain some of the growth inhibiting 
e�ect miR-101-5p exerts in KPL4 cells. To our knowledge, we are the �rst to report that miR-101-5p sensitizes 
HER2 + breast cancer cells to targeted treatment.

Our cell viability �ndings also suggest miR-19b to act as a tumor suppressor in KPL4 cells. Others have 
reported an opposite e�ect; the same miRNA promotes migration and invasion in ovarian cancer through the 
inhibition of  PTEN26. However, as KPL4 cells are PTEN  de�cient20, other properties of the miRNA may be more 
dominant in our model system. Further, Li and colleagues report increased cell proliferation in MCF-7 and 
MDA-MB-231 cells when overexpressing miR-19b, which is contradictory to our  results27. However, both these 
cell lines are HER2-negative. �ese opposing results clearly display the importance of cancer entity and cell line 
speci�city when investigating the e�ect of biological modi�ers, as for instance miRNAs. In a broader sense these 
observations underline the importance of personalized medicine.

In our study, miR-29a shows a growth inhibitory e�ect in KPL4 cells in combination with targeted treatment. 
�is is supported in a study where overexpression of miR-29a inhibited breast cancer cell growth in MDA-
MB-453 (HER2 +) and MCF-10A (normal epithelial breast)  cells28. In pancreatic cancer cells, mir-29a functions 
as a tumor suppressor by targeting  MUC129. However, studies in breast cancer models also report miR-29a to 
contribute to epithelial to mesenchymal transition, migration and invasion in MDA-MB-231 (HER2-) and MCF-7 
(HER2-)  cells30, to play a role in drug  resistance31, and to induce cell proliferation and metastasis in MCF-7 and 
T47D (HER2-)  cells32. Once again, the diverging e�ects of speci�c miRNAs must be considered in the context 
of the speci�c cell line and model system.

We show that another member of the miR-29 family, miR-29c, exerts similar e�ects on KPL4 cell viability as 
miR-29a. Work by Li and colleagues re�ects the favorable properties of miR-29c in breast cancer by regulating 
the TIMP/STAT1/FOXO1  pathway33. We have previously described mir-29c to target the immunoregulatory 
protein B7-H3, and the expression of miR-29c is associated with survival in breast cancer  patients12. �ese data 
substantiate miR-29c as a tumor suppressor.

miR-518a, miR-106a and miR-1237 all increase the sensitivity of KPL4 cells to HER2-targeting drugs. �e 
tumor suppressing or growth inhibitory roles of these miRNAs are supported in various cancer forms. miR-518 
is reported to be favorable in  colorectal34, gastrointestinal  stromal35 and oral squamous cell  carcinoma36. In 
astrocytoma cells, miR-106a-5p is reported to inhibit proliferation and promote  apoptosis37, which supports 
the growth inhibitory role of this miRNA. A reduced expression level of miR-1237 was associated with tumor 
invasion and worse recurrence-free survival in spinal chordoma  patients38. Despite di�erent model systems 
and cancer types, these studies substantiate our results showing that upregulation of these miRNAs is favorable.

We have previously reported miR-744 as signi�cantly downregulated in HER2-positive breast cancer tumors 
compared to HER2-negative tumors in two clinical  cohorts7. When overexpressing this miRNA in KPL4 cells 
it reduced the cell viability with 82%. Although the miRNA increases tumorigenicity and progression in 
 pancreatic39,  prostate40 and laryngeal squamous cell  carcinoma41, the opposite e�ect is reported in  ovarian42, 
 cervical43 and hepatocellular  carcinoma44 in addition to breast  cancer45. When we stratify for HER2-positive 
breast cancer patients, there is not a signi�cant correlation between high mir-744 expression and survival in 
the METABRIC or TCGA datasets. But across all breast tumors; ER/PR-positive; lymph node-negative or non-
metastatic disease, Kim et al. report there is an association between high mir-744 expression and increased 
 survival46, which supports the role of miR-744 as a tumor suppressor in breast cancer.

�e correlation analyses between the sensitizing miRNAs and mRNAs in a clinical cohort resulted in 9840 
signi�cant miRNA-mRNA correlations. About half of the correlations were positive, underlining that this analysis 
captures an indirect as well as direct relationship between miRNAs and mRNAs. �e association between both 
miR-29a and miR-29c and their correlated mRNAs to cell progression through cell cycle signaling may contribute 
to deciphering the sensitizing e�ect of these miRNAs.

Of the sensitizing miRNAs presented here, both miR-101-5p and miR-29a-3p show higher expression levels 
in early stage versus more advanced stage breast cancers among HER2 + patients in the METABRIC cohort. �is 
supports that high expression levels are favorable. Further, miR-101-5p correlates signi�cantly to survival in 
HER2 + patients in the METABRIC dataset, where a high expression is associated with favorable outcome. �is 
has also been shown in non-small cell lung  cancer47. Based on the survival analysis combined with the in vitro 
viability data and the link to early breast cancer stage presented here, miR-101-5p is a strong candidate to sensitize 
HER2-positive breast cancer cells to targeted treatment.

To conclude, the combination of sensitizing miRNAs and targeted treatment has the potential to improve the 
current treatment for HER2 + breast cancer patients. We have identi�ed eight miRNA mimics that downregulate 
cell viability in HER2 + cells in combination with lapatinib and/or trastuzumab. Of these, miR-101-5p shows 
the most promising growth inhibitory e�ect in combination with lapatinib. Clinical data con�rm expression of 
miR-101-5p as favorable for breast cancer stage, disease speci�c survival and overall survival, which substantiates 
the relevance of this miRNA for HER2 + breast cancer.
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Methods
Cell cultures. Four HER2 + human breast cancer cell lines were used in this study. KPL4 cells were provided 
by Professor J. Kurebayashi (Kawasaki Medical School, Japan)48. SUM190PT cells were provided from Karmanos 
Cancer Institute in Michigan, USA. BT-474 and SKBR3 cells were obtained from American Type Culture Col-
lection (ATCC, Manassas, VA, USA). �e growth media are described in Supplementary Table S1. Cells were 
cultured in 37 °C, 5%  CO2 and for a maximum of 30 passages prior to use.

�e cell lines were chosen based on their responsiveness to trastuzumab and lapatinib. Both KPL4 and 
SUM190PT have previously been found nonresponsive to trastuzumab, while SKBR3 and BT-474 cause > 20% 
growth  inhibition20. KPL4 cells are less responsive to lapatinib (< 50% growth inhibition when cultured with 7 
dilutions between 0.34 pM and 20 µM for 5 days), SUM190PT and BT-474 cells are intermediately responsive 
to lapatinib (60-65% growth inhibition under the same conditions) while SKBR3 is characterized as highly 
responsive (> 75% growth inhibition)20.

A summarizing �owchart that illustrates all parts of the project is presented in Supplementary Fig. S1.

miRNA expression in HER2 + cell lines. KPL4, SUM190PT, SKBR3 and BT-474 cells were cultured in 
6-well plates. A�er 20 h, 10 µg/mL trastuzumab (Roche Applied Biosciences, Basel, Switzerland), 100 nM Lapa-
tinib Ditosylate (GW-572016, Selleckchem, Houston, TX, USA) or a combination of trastuzumab and lapatinib 
were added. A�er drug exposure for 24 h, the cells were scraped and RNA was puri�ed using the miRNeasy Mini 
kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocols. RNA yield was assessed spectrophoto-
metrically (NanoDrop 2000, �ermo Fisher Scienti�c, Waltham, MA USA). Expression of miRNA was measured 
by the one-color microarray SurePrint Human miRNA Microarray with design ID 031181, release 16.0, 8 × 60 K 
(Agilent Technologies, Santa Clara, CA, USA) according to the protocol supplied by the manufacturer (miRNA 
Microarray System v2.3). Scanning was performed on Agilent Scanner G2565B. Samples were processed using 
Feature Extraction (FE) version 10.7.3.1 (Agilent Technologies). Quality was assessed by the quality control 
parameters in FE. �e data were log2-transformed and for each sample, considering only expressed miRNAs, the 
data were median centered. All non-expressed miRNAs across samples were set to a common minimum value. 
miRNA expression data are available in the Gene Expression Omnibus  database49 (https:// www. ncbi. nlm. nih. 
gov/ geo/) under accession number GSE163490.

Kruskal–Wallis tests performed in R version 4.0.2 in R Studio version 1.1.42350, were used to study deregula-
tions in miRNA expression levels before and a�er drug treatment with trastuzumab and lapatinib. �e miRNAs 
were tested based on the cell lines’ response to trastuzumab and lapatinib in three groups (changes in expression 
before vs. a�er drug treatment): all four cell lines combined (SKBR3, BT-474, KPL4 and SUM190PT), responding 
cell lines (SKBR3 and BT-474), and poorly responding cell lines (KPL4 and SUM190PT). miRNA expression 
level changes with a nominal p-value < 0.05 were considered statistically signi�cant.

MiRNA target prediction and enrichment analyses. To identify in silico predicted mRNA targets 
of regulated miRNAs, we used IPA (QIAGEN Inc., https:// www. qiage nbioi nform atics. com/ produ cts/ ingen 
uity- pathw ay- analy sis51 version 57662101. �e MicroRNA Target Filter was used to predict mRNA targets 
and we selected ‘Experimentally observed’ and ‘High prediction’ con�dence targets. �e sources of the predic-
tions within the tool were Ingenuity Expert Findings, Ingenuity ExpertAssist Findings, TargetScan  Human52, 
 miRecords53 and  TarBase54. Enrichment analyses were performed in  Enrichr21,22, where KEGG 2019 Human 
pathways with an adjusted p-value below 0.05 were considered signi�cant.

High‑throughput miRNA screen and HER2‑targeted treatment. miRIDIAN miRNA Human 
Mimic Library and miRIDIAN miRNA Inhibitor Library (v. 10.1; Dharmacon, Lafayette, CO, USA) were used 
to transfect KPL4 and SUM190PT cells with 810 miRNA mimics and 816 miRNA inhibitors. Clear polystyrene 
384 well microplates (Sigma Aldrich, St. Louis, MO, USA) were pre-printed with the miRNA libraries to achieve 
a �nal concentration of 20 nM. SiLentFect™ Lipid Reagent for RNAi (Bio-Rad Laboratories, Hercules, CA, USA) 
diluted in OptiMEM (Gibco Invitrogen, Carlsbad, CA) was used for transfection. Cells were seeded in the wells 
(2000 cells/well) and treated with vehicle, 10 µg/mL trastuzumab (Roche Applied Biosciences), 100 nM Lapa-
tinib Ditosylate (GW-572016, Selleckchem) or a combination of trastuzumab and lapatinib. AllStars Hs Cell 
Death Control siRNA (Qiagen, Chatsworth, CA, USA) was used as a positive control and miRIDIAN microRNA 
Mimic Negative Control #1, miRIDIAN microRNA Mimic Negative Control #2, miRIDIAN microRNA Hairpin 
Inhibitor Negative Control #1 (Dharmacon), Negative Control siRNA, miScript Inhibitor Negative Control, All-
Stars Negative Control siRNA (Qiagen), anti-miR negative control #1, pre-miR negative control #1, and pre-miR 
negative control #2 (Ambion Inc., Austin, TX, USA) were used as negative controls. �e cells were incubated for 
72 h at 37 °C, 5%  CO2.

Cell viability following miRNA transfection. Cell viability was measured using CellTiter-Glo Lumi-
nescent Cell Viability Assay (Promega, Madison, WA, USA) according to provider’s protocol, and output was 
measured on the Envision plate reader (PerkinElmer, Norwalk, CT, USA). �e data were Loess  normalized55 and 
log2-transformed.

To determine which miRNAs were sensitizing the cells to treatment, we considered the cell viability inhi-
bition of all miRNAs within the same treatment group (i.e. no drug, lapatinib, trastuzumab or lapatinib plus 
trastuzumab). MiRNAs resulting in a viability inhibition larger than three standard deviations (SD) from the 
median of all miRNAs within the same treatment group were considered sensitizing. Two exclusion criteria 
were then applied: �rstly, the miRNAs should have no signi�cant e�ect (SD < 3) on viability in cells without drug 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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treatment, and secondly, miRNA inhibitors targeting miRNAs not endogenously expressed in the untreated cells 
were excluded.

Protein expression analysis by lysate microarrays. A second set of plates with miRNA and drug 
treated cells were prepared identically to run protein analyses using an LMA method, as previously  described8. 
In brief, a�er the 72 h incubation period, the cells were lysed directly in the 384 well plates using 15 µl of lysis 
bu�er (100 mM Tris, pH 8.0; 0.2% SDS; 25 mM DTT) before denaturation at 95 °C for 15 min. �e lysates were 
printed on nitrocellulose-coated microarray slides (FAST™ slides, Whatman Inc., Florham Park, NJ, USA) and 
blocked with near-infrared blocking bu�er (Rockland Immunochemicals, Inc., Gilbertsville, PA, USA). Anti-
bodies for AKT, pAKT, ERK, and pERK (Cell Signaling Technology Inc., Danvers, MA, USA), cPARP (Abcam, 
Cambridge, UK), KI67, HER2 (Dako, Glostrup, Denmark), pHER2-Y1222 and pHER2-Y877 (Cell Signaling 
Technology Inc.) were used, in addition to Sypro Ruby Blot solution (Invitrogen Inc., Carlsbad, CA, USA) for 
total protein measurement. �e Sypro signal was detected using Tecan LS400 (Tecan Inc., Durham, NC, USA) 
microarray scanner at 488/670 nm, and �uorescence from the secondary antibodies was detected at 700 nm 
using Odyssey Licor IR-scanner (LI-COR Biosciences, Lincoln, NE, USA). To measure the median pixel intensi-
ties of each spot and the slide background from each channel Array-Pro Analyzer Microarray Analysis So�ware 
(Median Cybernetics Inc., Bethesda, MD) was used. �e data were normalized to the Sypro signal, log2-trans-
formed and Z-score normalized.

Validation of miRNAs sensitizing single and combinatorial HER2‑targeted treatment. For the 
validation of miRNAs showing sensitization e�ect on viability, Costar 96-well white, clear-bottom polystyrene 
plates (Corning Inc., Corning, NY, USA) were used. Sixteen miRNAs (14 mimics: hsa-mir-15b-5p, hsa-miR-
19b-2-5p, hsa-miR-26b-3p, hsa-miR-29a-3p, hsa-miR-29c-3p, hsa-miR-32-3p, hsa-miR-93-3p, hsa-miR-101-5p, 
hsa-miR-106a-5p, hsa-miR-132-3p, hsa-miR-153-3p, hsa-mir-518a-5p, hsa-miR-744-3p , hsa-miR-1237-3p, 
two inhibitors: hsa-miR-361-5p and miR-502-3p, and miRIDIAN Mimic Negative Control #1, (Dharmacon)) 
and AllStars HS Cell Death Control siRNA (Qiagen) were added to the wells at a �nal concentration of 20 
nM. SiLentFect™ Lipid Reagent (Bio-Rad Laboratories) was diluted in Opti-MEM™ Reduced Serum Medium, 
no phenol red (�ermo Fisher Scienti�c), incubated for 10 min at room temperature and added to the wells. 
�e miRNAs/siRNAs and the lipids were incubated for 1 h at room temperature. �erea�er, 10,000 KPL4 cells 
were added to each well in combination with 100 nM lapatinib (dissolved in DMSO and diluted in cell culture 
medium) (Selleckchem), 10 µg/mL trastuzumab (Roche Applied Biosciences) or the combination of the two 
drugs in the same concentrations. All wells contained 0.0023% DMSO as lapatinib was dissolved in DMSO. �e 
plate was incubated for 72 h at 37 °C, 5%  CO2. Cell viability was measured using CellTiter-Glo Assay and Vic-
tor X Plate Reader (PerkinElmer). �e raw data were normalized to the negative control median plate wise. All 
experiments were conducted in three parallels with three technical replicates. P-values were calculated using a 
Student’s t-test.

Validation in clinical cohorts. Expression data from miRNA and mRNA of primary tumors from 377 
breast cancer patients in the Oslo2 study were used for correlation analyses. �e Oslo2 study is approved by 
Regional committees for medical and health research ethics (approval number 2016/433; 429-04148), with 
informed consent obtained from all participants and/or their legal  guardians56,57. All research was performed in 
accordance with relevant guidelines and regulations. miR-106a-5p was not present in the clinical dataset. miR-
19b-2-5p was present, but not expressed in the Oslo2 dataset. Spearman correlations were performed in R (v. 
4.0.2) in R Studio (v.1.1.423, RStudio Team). �e correlation p-values were Benjamini–Hochberg corrected and 
considered signi�cant for p < 0.05.  Enrichr21,22 was used for enrichment analyses, and KEGG 2019 Human path-
ways with an adjusted p-value below 0.05 were considered signi�cant. miRNA expression, breast cancer stage 
and survival data from breast cancer patients in the METABRIC cohort (nHER2+  = 160)58 and the TCGA dataset 
(nHER2+  = 69) were used for clinical analyses. We performed Wilcoxon tests to study the relationship between 
miRNA expression and breast cancer stage. Breast cancer stages 0 and 4 were excluded in the METABRIC data-
set due to few patients (n = 4 and n = 1, respectively). �ere were too few patients with both miRNA expression 
and stage data in the TCGA dataset to perform analysis. For the survival data, both datasets were analysed. Here, 
a log-rank test was applied to test the di�erence between the Kaplan–Meier curves when patients were split into 
two groups based on miRNA expression below or above median expression.

Data availability
miRNA expression data are available in the Gene Expression Omnibus  database49 (https:// www. ncbi. nlm. nih. gov/ 
geo/) under accession number GSE163490. All other data generated or analysed during this study are included 
in this published article (and its Supplementary Information �les) or publically available.
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