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PRDM1/Blimp-1, a master regulator in terminal B-cell
differentiation, has been recently identified as a tu-
mor suppressor target for mutational inactivation in
diffuse large B-cell lymphomas of the activated B-cell
type. Our studies here demonstrate that PRDM1/
blimp-1 is also a target for microRNA (miRNA)-medi-
ated down-regulation by miR-9 and let-7a in Hodgkin/
Reed-Sternberg (HRS) cells of Hodgkin lymphoma
(HL). MiRNA expression profiling by direct miRNA
cloning demonstrated that both of these miRNAs are
among the most highly expressed in cultured HRS
cells. These miRNAs functionally targeted specific
binding sites in the 3� untranslated region of PRDM1/
blimp-1 mRNA and repressed luciferase reporter ac-
tivities through repression of translation. In addi-
tion, high levels of miR-9 and let-7a in HL cell lines
correlated with low levels of PRDM1/Blimp-1. Sim-
ilar to their in vitro counterparts , the majority of
HRS cells in primary HL cases showed weak or
no PRDM1/Blimp-1 expression. Over-expression of
miR-9 or let-7a reduced PRDM1/Blimp-1 levels in U266
cells by 30% to 50%, whereas simultaneous inhibition
of their activities in L428 cells resulted in an approxi-
mately 2.6-fold induction in PRDM1/Blimp-1. MiRNA-
mediated down-regulation of PRDM1/Blimp-1 may

contribute to the phenotype maintenance and patho-
genesis of HRS cells by interfering with normal B-cell
terminal differentiation, thus representing a novel
molecular lesion, as well as a potential therapeutic
target in HL. (Am J Pathol 2008, 173:242–252; DOI:

10.2353/ajpath.2008.080009)

PRDM1, also known as Blimp-1, belongs to the PRDM
gene family of transcription repressors containing Krup-
pel-type zinc fingers and the SET-related PR (PRDI-BF1-
RIZ) domain. PRDM1 is expressed as two isoforms, � and
�, as a result of alternative promoter usage. They differ in
that the latter lacks the amino-terminal acidic domain and
part of the PR domain, and is functionally impaired.1

PRDM1 plays a critical role in terminal differentiation of
lymphocytes2 and epidermal cells,3 as well as cell fate
specification of primordial germ cells4 and other cell
types.5 In B cells, PRDM1 is a key differentiation factor in
post-germinal center (GC) cells and is regarded as a
master regulator for plasma cell differentiation.6 In normal
lymphoid tissues, PRDM1 is co-expressed with interferon
regulatory factor-4 (IRF4) in plasma cells and in a subset
of GC cells that demonstrate evidence of plasma cell com-
mitment and differentiation.7–9 Both of these transcription
factors are required for plasma cell differentiation.9 Microar-
ray profiling demonstrates that PRDM1/Blimp-1 orches-
trates plasma cell differentiation by repressing genetic pro-
grams associated with activated B cells and/or GC B cells,
including those that control cell proliferation, and by activat-
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ing genetic programs associated with plasma cell func-
tions, including apoptosis.10

Recent published data supported a role for interfer-
ence of PRDM1 functions in the pathogenesis of human
lymphomas. PRDM1 has been shown to be inactivated
by a classic mechanism for tumor suppressor genes in
large B-cell lymphoma diffuse (DLBCL), specifically
those of the non-GCB type, strongly suggesting that in-
hibition of terminal B-cell differentiation may play a role in
their pathogenesis.11,12 In addition, BCL-6-mediated
transcription repression of PRDM1 causes blockade of
terminal differentiation in GC-type DLBCL.13

The neoplastic cells in classical Hodgkin lymphoma
(HL), the Hodgkin/Reed-Sternberg (HRS) cells, resemble
post-GC cells immunophenotypically and genetically, de-
spite their putative origin from preapoptotic GC cells.14,15

They frequently lack BCL-6 and consistently express
IRF4.16–18 They harbor somatic mutations in their immu-
noglobulin genes but show no evidence of ongoing so-
matic hypermutation.15 In addition, HL cell lines have a
similar gene expression pattern as that of Epstein Barr
Virus-transformed B cells and DLBCL cell lines showing
features of in vitro-activated B cells.19 Since HRS cells
and non-GCB DLBCL appear to be in similar differentia-
tion stages, we hypothesize a role of interference of
PRDM1 functions in HRS cell pathogenesis. Sequence
analysis has not identified inactivating mutation of
PRDM1 in HL cell lines (unpublished data). Decrease in
accumulation of PRDM1, however, may occur through
quantitative changes in its synthesis or stability. One way
by which PRDM1 synthesis can be altered is via regula-
tion by miRNA. In fact, deregulation of target protein
production by altered expression of miRNA is a well
documented mechanism of oncogenesis.20 In this report,
we provide experimental evidence that PRDM1 is a target
for down-regulation by miRNAs in HRS cells.

Materials and Methods

Cell Lines

The GC-like DLBCL cell lines SUDHL6 and OCI-Ly1, the
myeloma cell line U266, the primary effusion lymphoma
(PEL) cell lines BC1, BC2, BC3, and BCBL1, and the HL
cell lines L428, KMH2, and L1236, were cultured in RPMI
medium 1640 with 10% heat-inactivated fetal calf serum
(Invitrogen, Carlsbad, CA). 293T cells were maintained in
Dulbecco’s modified Eagle’s medium with 10% heat-in-
activated fetal bovine serum (Invitrogen).

Patient Tissue Samples

Formalin-fixed, paraffin-embedded archival tissue of
classical HL cases were obtained according to the pro-
tocols approved by the Institutional Review Board. All
samples were reviewed and classified according to the
World Health Organization criteria.

Antibody

For Western blots and immunohistochemistry, a mono-
clonal antibody against human PRDM1 (ROS) was used.
This antibody recognizes both PRDM1� and PRDM1�.21

Western Blotting and Immunohistochemistry

Immunoblotting and immunoperoxidase staining on par-
affin tissue sections were performed as previously de-
scribed.21 Quantitation of PRDM1� expression in West-
ern blots was done by densitometry and normalized with
loading controls (lamin B or �-actin).

Reverse Transcription and Real-Time PCR

Total RNA was extracted from cell lines and treated with
RNase-free DNase I. For quantitative detection of
PRDM1� mRNA, cDNA was synthesized from 1 �g of
total RNA using random primers. Monoplex real-time PCR
was conducted using ABI PRISM 7000 Sequence Detec-
tion System (Applied Biosystems, Foster City, CA). The
PCR reaction was done using 50 ng of cDNA template
according to the manufacturer’s protocol using the fol-
lowing PCR conditions: 50°C for 2 minutes, 95°C for 10
minutes, followed by 40 cycles of 95°C for 15 seconds,
58°C for 30 seconds, and 72°C for 1 minute. A standard
curve, consisting of serially diluted U266 RNA, was in-
cluded on each 96-well reaction plate for each run. Each
cDNA template was assayed in duplicate, and each sam-
ple was run three independent times. Relative quantities
of PRDM1� mRNA were calculated using the standard
curve method, normalized, and expressed relative to
U266 (set as one). For normalization, the 6 most stable
reference genes identified using the freely distributed
MicroSoft Excel application geNorm22 among 11 candi-
date genes described previously23 were used. These
six genes are: glyceraldehyde-3-phosphate dehydroge-
nase, protein kinase cGMP-dependent, type 1, hypoxan-
thine phosphoribosyltransferase 1, TATA box bind-
ing protein, large ribosomal phospoprotein PO, and
�-glucoronidase.

Primer and probe sequences for real-time detection of
PRDM1� mRNA are as follows: Forward: 5�-TCCAG-
CACTGTGAGGTTTCA-3�; Reverse: 5�-TCAAACTCAGC-
CTCTGTCCA-3�; Probe: FAM-5�-ATGGACATGGAGGAT-
GCGGATATG-3�-TAMRA. Real-time quantification of the
endogenous control genes was performed using the Hu-
man Taqman predeveloped assays reagents endoge-
nous controls (Applied Biosystems).

For quantitative measurement of luciferase reporter
mRNA in cell transfectants, cDNA was generated and
real-time PCR was performed as described above using
SYBR Green PCR Master Mix (Applied Biosystems). The
relative Renilla luciferase mRNA levels (negative control
transfectant set as 100) were calculated by the ��Ct
method using firefly luciferase mRNA expression as nor-
malization. Primer sequences are as follows: Renilla lucif-
erase: Forward: 5�-AAGAGCGAAGAGGGCGAGAA-3�,
Reverse: 5�-TGCGGACAATCTGGACGAC-3�; Firefly lu-
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ciferase: Forward: 5�-CGTGCCAGAGTCTTTCGACA-3�,
Reverse: 5�-ACAGGCGGTGCGATGAG-3�.

MicroRNA Quantitation

Let-7a and miR-9 levels in cell lines were determined
using TaqMan MicroRNA Assays (Applied Biosystems)
following the protocols recommended by the manufac-
turer. Five ng of total RNA was used per 15 �l reaction
during reverse transcription, and 1 �l of reverse tran-
scription product was used for subsequent real-time PCR
reactions. For each sample, three independent reverse
transcription reactions were performed and each reac-
tion was assayed in triplicate for real-time PCR. The levels
of miRNAs were normalized with 5S RNA and the relative
levels were calculated using the ��Ct method. Direct
cloning of miRNAs was performed as previously
described.24

Computer Prediction of MiRNA Target Sites in
the 3� Untranslated Region of PRDM1 mRNA

Putative target sites for miRNA in the 3� untranslated
region (UTR) of human, mouse, rat, and chicken
PRDM1 mRNA were identified using the MiRANDA Hu-
man miRNA Targets web site (http://cbio.mskcc.org/
cgi-bin/mirnaviewer/mirnaviewer.pl) and the Targetscan
(version 4.1) web site (http://genes.mit.edu/targetscan)
based on the target prediction algorithms developed
by John et al25 and Lewis et al,26 respectively. The
binding of chicken miR-9 to its target sequences is not
depicted in either of these web sites, and was deduced
based on the available chicken sequence database and
with the assistance of the mFOLD program (version 3) avail-
able at the website http://mfold.bioinfo.rpi.edu/cgi-bin/rna-
form1.cgi.27

Constructs

The miR-155/BIC expression plasmid has been previ-
ously described.28 To generate the miR-9-expressing
plasmid pcDNA3.miR-9-1, a 515-bp DNA fragment en-
compassing pre-miR-9-1 was amplified by PCR using
genomic DNA template with sense and antisense primers
flanked at the 5� end by EcoRI and BamHI sites, respec-
tively. The sequences of the primers were 5�-ATATAGAAT-
TCCCAAGCAGTGACCCAGA-3� (sense) and 5�-TAATAG-
GATCCTTCCCTCCTACTCCCGCTGA-3� (antisense). The
PCR-generated fragment were digested with EcoRI and
BamHI and subcloned into pcDNA3(�) (Invitrogen) be-
tween the EcoRI and BamHI sites.

Construction of pSIC.PRDM1.3�UTR.538–2419 is as
follows: A genomic fragment encompassing nucleotides
1 to 2419 of the PRDM1 3�UTR was PCR-amplified using
primers flanked by XhoI and NotI sites, and cloned into
pGEM-T-Easy (Promega, Madison, WI). The sequences of
the primers were: 5�-CTCGAGGATTTTCAGAAAACACT-
TATTTTGTTTC-3� (sense) and 5�-GCGGCCGCACATTTT-
GACAATTTGCACATAAATAAC-3� (antisense). Sequence

of the insert was confirmed by double-stranded sequenc-
ing. Plasmid DNA was isolated from recombinant clones
and digested with XhoI and NotI. The insert was gel
purified and cloned into psiCHECK-2 (Promega) down-
stream of the Renilla luciferase coding region between the
XhoI and NotI sites. The resulting plasmid was then di-
gested with XhoI and PshAI, followed by fill-in. The larger
product was then gel purified and self-ligated to give the
final product.

The mutant reporter constructs were generated by
using pSIC.PRDM1.3�UTR.538-2419 as a template and
mutating the fifth and sixth positions (from the 3�end) of
the putative miR-9 or let-7a binding sites using the Gene-
Editor in vitro Site-Directed Mutagenesis System (Pro-
mega). Mutations were generated in one or more of the
three putative miR-9 binding sites, designated as Mut1,
Mut2, Mut3, Mut(2 � 3), and Mut(1 � 2 � 3). The num-
bers 1 to 3 denote positions from the proximal to distal
end. Sequence of the mutant report constructs thus ob-
tained were confirmed by double-stranded sequencing.

The mutagenic primers used (mutant nucleotides in
italics) were as follows: miR-9.Mut1: 5�-CTTTTATTCT-
GCTAAGCCGTAAGATTACATGTTGG-3�; miR-9.Mut2: 5�-
CTGAAGGTAAACGTAAGCATCACGTTGAC-3�; miR-9.Mut3:
5�-CAAAGTTAAAACTGACGTAAGTTACTGGCTTTTTAC-3�;
and, let-7a: 5�-AGTTGTTCAACAACAGTTTGCTCATTGAG-
TGTGTCC-3�.

Transfections and Luciferase Reporter Assays

293T cells were transfected with 75 ng of miRNA ex-
pression plasmids (miR-9 or miR-155) or pcDNA3
(negative plasmid control) in 96-well plates using Ef-
fectene (Qiagen, Valencia, CA), or with 20 nmol/L of
miRNA precursor molecules (let-7a or negative miRNA
control) purchased from Ambion (Austin, TX) in 24-well
plates using Lipofectin (Invitrogen). For experiments
evaluating the cooperative effects of miR-9 and let-7a,
50 nmol/L of either miRNA was transfected. These
plasmids and miRNA analogs were co-transfected with
25 ng of pSIC.PRDM1.3�UTR.538 –2419 (wild type or
mutants), respectively. Twenty-four hours after trans-
fection, Renilla and firefly luciferase activities were de-
termined using the Dual-Glo Luciferase Assay System
(Promega). The Renilla luciferase activities were nor-
malized by firefly luciferase activities, which served as
internal controls. The normalized values were com-
pared with that of the negative controls to determine
percentage change. The mean values (�SE) from
three or four independent experiments are shown.

Transfection of Suspension Cell Lines with
miRNAs or Anti-miRNA Inhibitors

Optimized nucleofection protocols generated by Amaxa
(Cologne, Germany) were followed for the transfection of
U266 (Nucleofector Kit C, Program X-005) and L428
(Nucleofector Kit L, Program X-001) with miRNA precur-
sors (Ambion) or anti-miRNA inhibitors (Ambion), respec-
tively. A total of 100 nmol/L was used for all transfections.
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For co-transfections of anti-miR-9 and anti-let-7a inhibi-
tors, 50 nmol/L each was added. Cells were collected at
24 to 48 hours after electroporation and subject to West-
ern blot analysis for determination of PRDM1 expression.
These transfection experiments were repeated four inde-
pendent times.

Statistical Analysis

P values were calculated by Student’s t-test using the
StatView software (SAS Institute Inc., Cary, NC).

Results

Direct Cloning and Computer Prediction
Identified miRNAs that Potentially Interact with
PRDM1 mRNA

As a first step to identify miRNAs that may regulate
PRDM1 expression, miRNA profiles for HL cell lines L428,
KMH2, and L1236 generated by direct cloning29 were
examined (Figure 1). Based on these expression profiles,
we selected for further analysis two miRNAs, miR-9 and
let-7a, with high potential to functionally interact with
PRDM1 mRNA. Both these miRNAs are among the 10
most abundant miRNAs in HL cell lines and constitute on
average about 3.5% and 1.9% of the total miRNA popu-
lation, respectively. These expression levels rank close to
miR-155, a highly expressed miRNA in HRS cells.30,31 In
addition, putative binding sites for these miRNAs, includ-
ing three for miR-9 and one for let-7, are predicted in the
PRDM1 3�UTR independently by two computer algo-
rithms: miRanda and Targetscan (release 4.1, January
2008).25,32,33 The pairing between these miRNAs and
their target sequences are evolutionarily conserved, with
absolute conservation between the 6bp “seed” region32

at the 5� end of the miRNA and the complementary se-
quence of the target site (Figure 2). Conserved binding
sites for two other miRNAs, miR-125/351 and miR-365,
are also predicted in the PRDM1 3�UTR by both miRanda
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and Targetscan; however, these miRNAs are present at
very low amount in HL cell lines based on miRNA cloning
(�0.5% of the total miRNA population) and therefore not
selected for further analysis.

miR-9 and let-7a Target the 3�UTR of PRDM1
mRNA

Luciferase reporter assays were performed to determine
whether miR-9 and let-7a can target the 3�UTR of PRDM1
mRNA. The reporter plasmid, psiC.PRDM1.3�UTR.538–
2419, contains the majority of the PRDM1 3�UTR that
harbors all of the putative binding sites for the two
miRNAs (Figure 2A). This plasmid was cotransfected into
293T cells with miR-9, let-7a, miR-155, or negative miR
controls. No mir-155 binding sites were predicted in
the PRDM1 3�UTR. MiR-9 and let-7a decreased nor-
malized Renilla luciferase activities to 39.2% � 4.6%,
and 41.7% � 3.8% of negative controls, respectively,

whereas cotransfection with miR-155 showed no sig-
nificant difference (Figure 3A). Reduction in luciferase
activities by miR-9 and let-7a is mediated mainly by
translation repression. No significant difference in Re-
nilla luciferase mRNA levels was detected among the
negative control, miR-9 and let-7a transfectants after
normalization, although miR-9 transfectants may tend
to show a slight reduction (Figure 3B).

To demonstrate that both miRNAs interact specifically
with their predicted target sequences, additional reporter
constructs harboring mutations in the “seed pairing” se-
quences of the putative binding sites were generated
using site-directed mutagenesis. These mutated reporter
constructs were transfected into 293T cells with the cor-
responding miRNAs as described above and luciferase
reporter assays were measured. Mutations in the pre-
dicted target sites for each of these miRNAs relieve
repression of luciferase activities (Figure 3A). These
results indicate that miR-9 and let-7 can repress trans-
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control oligonucleotides (Ambion) were used as negative controls. Luciferase
activities (in triplicates) were measured 24 hours after transfection. Renilla lucif-
erase activities were normalized against firefly luciferase activities, and mean
normalized Renilla luciferase activities (�SE) from three or four independent
experiments were determined and expressed relative to control values. B: Levels of
Renilla luciferase mRNA in 293T cells transfected with wild-type psiC.PRDM1/
3�UTR.538-2419 and either miRNA Negative Control oligonucleotides pcDNA3.miR-
9-1, or precursor let-7a (see above) were measured by quantitative real time PCR
and normalized against firefly luciferase mRNA expression. The mean (�SE) from
three independent experiments were shown. There is no significant difference in
the miR-9 (P � 0.06) or let-7a (P � 0.24) transfectants compared with the negative
control. C: 293T cells were transfected with psiC.PRDM1/3�UTR.538-2419 and
precursor miRNAs (Ambion) as indicated. Relative luciferase activities were calcu-
lated as in (A). Transfection of both miR-9 and let-7a (each at 50 nmol/L) resulted
in significantly greater reduction of luciferase activities compared with transfection
of either miR-9 or let-7a (at 50 nmol/L) with negative miRNA control (at 50 nmol/L).
Transfection of miR-9 at 100 nmol/L leads to further repression in luciferase
activities, whereas let-7a at 100 nmol/L results in no further decrease.
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lation by direct and specific interaction with the PRDM1
3�UTR.

Interestingly for miR-9, the extent of de-repression de-
pends on which and how many miR-9 binding sites are
mutated. Mutations in the most proximal site (Mut 1)
resulted in partial relief in repression (77.0% � 2.5% of
negative control), whereas mutations in each of the other
two miR-9 binding sites (Mut 2 and Mut 3) do not have
significant effects compared with wild type (48.6% �
2.4% and 45.2% � 2.6%). Mutations in the middle and
distal sites (Mut[2 � 3]) resulted in a slight de-repression
(59.1% � 4.7% of negative control), whereas mutations in
all three miR-9 binding sites (Mut[1 � 2 � 3]) led to a
complete de-repression (117.5% � 9.9%). These results
suggest a differential, as well as cooperative, repression
effect for the three miR-9 target sites in the PRDM1 3�
UTR.

We tested whether interaction of both miR-9 and let-7a
with the PRDM1 3�UTR may increase the repression ef-
fects relative to either miRNA alone by cotransfecting
psiC.PRDM1.3�UTR.538–2409 with miR-9 and let-7a. Co-
transfection of miR-9 and let-7a (each at 50 nmol/L) re-
duced luciferase activity to 19.7% � 1.5% of negative
control, significantly different from the effects of miR-9 or

let-7a alone (P � 0.05 and P � 0.001, respectively)
(Figure 3B). This increase in repression is likely due to
additive effects of miR-9 and let-7a, because similar re-
pression was obtained when miR-9 concentration was
increased to 100 nmol/L. Let-7a at 50 nmol/L or 100
nmol/L shows no significant difference in repression, sug-
gesting that it has already reached saturation at these
concentrations.

High miR-9 and let-7 Levels Are Associated
with Low Levels of PRDM1 Expression in HRS
Cells

If miR-9 and let-7a functionally interact with endogenous
PRDM1 mRNA to down-regulate PRDM1 protein expres-
sion in HRS cells, we should expect association of high
levels of miR-9 and let-7a with relatively lower levels of
PRDM1 in these cells. For comparisons, we selected cell
lines that exhibit plasmablastic/plasmacytic differentia-
tion such as PEL and myeloma cell lines, and cell lines
that correspond to the GC differentiation stage such as
the GC-DLBCL cell lines.

Real-time RT-PCR analysis confirmed the miRNA clon-
ing data and showed that miR-9 expression in HL cell
lines is distinctly higher: �10-fold of PEL lines (P � 0.03),
�4-fold of U266, and �12-fold of GC-DLBCL lines.
Let-7a expression levels in HL cell lines are similar to
GC-DLBCL lines, but �11-fold that of PEL lines (P �
0.004) and �5 fold of U266 (Figure 4).

As a group, the steady-state levels of PRDM1� mRNA
levels in HL cell lines are approximately half of those in PEL
cell lines and U266, but did not reach statistical significance
(P � 0.24) (Figure 5A). On the other hand, PRDM1� is
present at much lower levels (�9 to 25-fold lower) in the HL
cell lines compared with PEL lines (P � 0.007) and U266
(Figure 5B). Further comparison of individual cell lines from
the HL and PEL groups further illustrates the discordance in
PRDM1 mRNA and protein levels in HL cell lines. For ex-
ample, whereas the HL cell line L1236 has similar levels
of PRDM1� mRNA as the PEL cell lines BC3 and BCBL1,
PRDM1 expression in L1236 is �10 to 20-fold lower.
PRDM1 is undetectable in GC-DLBCL lines, as expected
from their low levels of transcript expression.

In keeping with the Western blotting results, immuno-
histochemical staining on formalin-fixed, paraffin-embed-
ded cell blocks prepared from the cell lines using the
ROS monoclonal antibody showed strong and uniform
reactivity in the PEL and U266 cells. In contrast, only a
small fraction of relatively weaker positive cells were de-
tected in the HL cell lines. SUDHL6 and OCI-Ly1 cells
show few positive cells (Figure 5C).

PRDM1 expression in primary HRS cells reflects their in
vitro counterparts (Table 1; Figure 5D). In 13 of the 21 HL
cases (62%) examined, positivity for PRDM1 was detected
in 20% or fewer of the HRS cells. In 8/21 of the cases,
PRDM1 is expressed in more than 20% of the HRS cells,
although the majority of them exhibit only weak positivity. In
one case (#13), strong PRDM1 expression was observed in
the majority of HRS cells. A variable fraction (10 to 70%) of
reactive lymphocytes and plasma cells are also positive for
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PRDM1 in each case. Thus, PRDM1 is either absent or
expressed at low levels in the majority of primary HRS cells,
a finding similar to previously published results.18,21 In ad-
dition, PRDM1 expression in primary HRS cells is indepen-
dent of Epstein Barr Virus infection status. In contrast, HRS
cells consistently and strongly express IRF4/MUM1 (Figure
5D). Because PRDM1 and IRF4/MUM1 are normally co-
expressed in GC centrocytes that are committed to the
plasma cell differentiation pathway and both factors are
required for the generation of competent plasma cells,9 the
absence or low level expression of PRDM1 in HRS cells
implies a pathogenetic dissociation between PRDM1 and
IRF4/MUM1 expression.

Our results indicate that cultured HRS cells, as well as
HRS cells of primary HL cases, harbor low levels of

PRDM1 that correlate better with miR-9 and let-7a ex-
pression than PRDM1 transcript levels. This data pro-
vides circumstantial evidence for down-regulation of
PRDM1 expression in HRS cells by miR-9 and let-7a. In
contrast, the low levels of PRDM1 in GC-DLBCL cells
appear to be mediated by transcriptional repression.

Manipulation of miR-9 or let-7a Levels Alters
Endogenous PRDM1 Expression

To confirm further that PRDM1 is an in vivo target for miR-9
and let-7a, U266 cells were transfected with miR-9, let-7a or
negative miRNA controls. The levels of PRDM1 were deter-
mined by Western blotting 24 to 48 hours after transfection.
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MiR-9 or let-7a transfected at a concentration of 100 nmol/L
reduced endogenous PRDM1 expression in U266 cells by
�30 to 50% relative to negative controls (Figure 6A).

To directly demonstrate that PRDM1 expression in HL
cell lines is negatively regulated by endogenous levels of
miR-9 and/or let-7a, L428 cells were transfected with miR-9
and/or let-7a antisense RNA oligonucleotides to reduce
their endogenous levels, and PRDM1 expression was de-
termined by Western blotting 24 to 48 hours after transfec-
tion. Cells transfected with anti-miR-9 or anti-let-7a showed
an increase in PRDM1 by 64.5% � 17.4% and 67.6% �
27.4%, respectively, compared with negative control anti-
miRNA-transfected cells. Inhibition of both miR-9 and let-7a
resulted in a greater increase in PRDM1 expression, up to
2.6 � 0.37-fold that of negative control (Figure 6B). This
increase is significantly different from that observed for anti-
miR-9 alone (P � 0.05). These results suggest that both
miR-9 and let-7a contribute to down-regulate PRDM1 ex-
pression in L428 cells and are in line with the additive
regulatory effects observed between miR-9 and let-7a in the
luciferase reporter assays (Figure 3B).

Discussion

PRDM1 as a Target of miR-9 and let-7a

Our study proposed an epigenetic mechanism that may
account for the low-level PRDM1 expression in HRS cells
of HL cell lines and primary HL cases. Several lines of
evidence presented in this report strongly suggest that
PRDM1 expression in HRS cells can be negatively regu-
lated by two endogenous miRNAs, miR-9 and let-7a,
through direct interaction with the 3�UTR of PRDM1

mRNA. First, the PRDM1 3�UTR contains complementary
binding sties for these two miRNAs, which are among the
major miRNAs in HL cell lines. Second, these miRNAs
can translationally repress expression of a reporter gene
through specific interactions with their target sites in the
PRDM1 3�UTR. Interestingly, although all three putative
miR-9 binding sites predicted in the PRDM1 3�UTR show
conserved pairing with the miR-9 seed sequence, their
regulatory effects differ. The most proximal target site
appears to be the major effector, whereas the other two
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Figure 6. Changes in miR-9 or let-7a levels alter endogenous PRDM1
expression in U266 and L428 cells. A: U266 cells were transfected with
miR-Control (NC), miR-9 or let-7a (each at 100 nmol/L). Total cell lysates
were isolated from the transfected cells after 24 to 48 hours and PRDM1 levels
were measured by Western blot analysis using the anti-PRDM1 monoclonal
antibody (ROS). �-actin was used as a loading control. Quantitation of
PRDM1� expression was determined by densitometry, normalized with �-ac-
tin, and expressed as a percent relative to the PRDM1 expression level in cells
transfected with miR-Control. The histogram was derived from four indepen-
dent transfection experiments. A representative Western blot was also
shown. B: L428 cells were transfected with anti-miRNA negative control (NC),
anti-miR-9, and/or anti-let-7a at a total concentration of 100 nmol/L. Western
blot analysis and quantitation were performed as described in (A) on total
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Western blot was also shown. P � 0.05 (anti-miR-9 vs. anti-miR-9/anti-let-7a);
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Table 1. PRDM1 Expression in HRS Cells in Primary
Hodgkin Lymphoma Cases

Cases EBV

PRDM1 (% H/RS cells)

0
1�

(weak)
2�

(strong)

1 N 100 0 0
2 P 100 0 0
3 N 30 40 30
4 N 70 30 0
5 P 95 5 0
6 N 95 5 0
7 N 35 65 5
8 N 30 60 10
9 P 80 20 0

10 N 100 0 0
11 N 95 5 0
12 N 100 0 0
13 N 20 10 70
14 N 90 10 0
15 N 45 50 5
16 N 95 5 0
17 P 100 0 0
18 P 95 5 0
20 P 20 75 5
21 P 95 5 0
22 P 20 80 0

Average 72 22 6
SE 7 6 4

P, positive; N, negative; SE, standard error.
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have minor contributory roles. All three sites cooperate to
produce a maximal effect. Thus, the functionality of a
miRNA binding site may not be determined solely by its
seed pairing sequence but also by its surrounding con-
text.33 In addition, miR-9 and let-7a can cooperate in their
repressive effects. Third, a reciprocal relationship can be
demonstrated between PRDM1 and miR-9/let-7a expres-
sion in HL cell lines (PRDM1 low, miR-9/let-7a high) and
in PEL or U266 cell lines (PRDM1 high, miR-9/let-7a low).
Fourth, enforced expression of these miRNAs in U266
cells caused a reduction in PRDM1 levels. Moreover, we
observed an increase in endogenous PRDM1 expression
on inhibition of miR-9 and/or let-7a activity in the HL cell
line L428, providing evidence that these two miRNAs
physiologically down-regulate PRDM1 expression in HRS
cells. However, the actual extent by which these miRNAs
down-regulate PRDM1 expression in vivo is unclear. We
are able to achieve a maximum of about 50% inhibition of
miR-9 and let-7a activity using the miR-9/let-7a an-
tagomirs in L428 cells based on estimation from the
reduction in endogenous miRNA levels34 (data not
shown). Considering this degree of knock-down, it is
possible that miR-9 and let-7a have greater in vivo effects
than what is shown in our experiments. However, we
cannot exclude the possibility that other mechanisms
unrelated to miRNA may also contribute in lowering
PRDM1 levels in HRS cells.

The mechanism(s) responsible for the high levels of
miR-9 and let-7 in HL cell lines remain(s) to be elucidated.
Though the expression patterns of miR-9 in different cell
types and tissues have not been studied in detail, it appears
to be preferentially expressed in neural tissues.35,36 Dereg-
ulation of miR-9 expression has been observed in tumors of
epithelial cell origin.37,38 Recently, miR-9, along with miR-
17-92 cluster and several other miRNAs, are found to be
differentially expressed in some hematological cell lines
relative to normal lymphocyte populations based on mi-
croarray profiling.39 In addition, miR-9 may play a role in B
cell activation, being up-regulated during in vitro activation
of B cells by interleukin (IL)-2 or IgM.39 Thus, it is conceiv-
able that the high levels of miR-9 observed in HRS cells
reflect an exaggerated response to signals related to B cell
activation. Let-7 has been implicated as a tumor suppres-
sor.40 However, an oncogenic potential for let-7a has also

been suggested.41 The ability of let-7a to down-regulate
PRDM1 suggests that it can function as an oncogene in
HRS cells. Our expression analysis on let-7a, which shows
high let-7a expression in GC-DLBCL and HL cell lines and
much lower let-7a expression in PEL and myeloma cell
lines, suggests let-7a down-regulation on plasmablastic dif-
ferentiation. Down-regulation of pre-let-7a in PEL cell lines
has also been observed in a recent microarray profiling
study.42 Whether the high let-7a observed in cultured HRS
cells is due to deregulation as a result of genetic or epige-
netic abnormalities or is simply a reflection of the differenti-
ation stage needs to be determined by further experiments.

Translation Repression of PRDM1 by miRNAs
as a Potential Novel Molecular Lesion in HL

Direct demonstration of the biological consequences of
miRNA-mediated down-regulation of PRDM1 in HRS cells
will probably require more stable inhibition of miRNA
function in selected HRS cell clones. However, a hypo-
thetical model can be inferred based on the known bio-
logical functions of PRDM1 as a master regulator of
plasma cell differentiation and as a tumor suppressor
(Figure 7). Full differentiation of an activated B cell to a
mature plasma cell proceeds through different develop-
mental stages associated with a gradual quantitative in-
crease in PRDM1 expression,43 beginning with a PRDM1/
Blimp-1-independent stage followed by a PRDM1/Blimp-
1-dependent stage.44 HRS cells are constantly exposed
to an environment containing cytokines that may induce
PRDM1 expression, for example, IL-5 and IL-21.45–48 In
addition, a constitutively activated nuclear factor-�B14 or
AP-149 in HRS cells may up-regulate PRDM1 expres-
sion.50 As suggested by the induction of PRDM1 mRNA
in HL cell lines, plasma cell differentiation appears to
have been initiated in HRS cells. However, it is conceiv-
able that the dampening effect of miRNA on PRDM1
production prevents PRDM1 from reaching a critical level
in HRS cells, resulting in abortive terminal differentiation
and arrest in the PRDM1-independent, pre-plasmablastic
stage (Figure 7). This interference is advantageous for
the continued survival and growth of HRS cells and may
also be pathogenetic in the transformation of postgermi-
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nal center B cells to HRS cells. Additional experiments
involving more long-term, regulatable manipulation of
miRNAs and PRDM1 expression will help address the
above hypothesis.

In view of the recent findings of PRDM1 as a target for
mutational inactivation in activated B cells-DLBCL11,12

and transcription repression in nm-GCB-DLBCL,13 our
data suggests that disruption of normal plasma cell dif-
ferentiation through functional inactivation of PRDM1 is a
common event in the pathogenesis of lymphomas de-
rived from GC B cells. The normal functions of this tumor
suppressor gene can be inactivated by genetic muta-
tions, transcriptional repression or epigenetic alterations
such as miRNA-mediated down-regulation.

Role of the miRNA Milieu in HL Pathogenesis

Ours studies provide supporting evidence that the
miRNA milieu present in HRS cells has the potential to
contribute to their pathogenesis and maintenance by
down-regulating genes important for B-cell develop-
ment and differentiation. It is likely that the pathobio-
logical functions of miR-9 and let-7 in HRS cells are
mediated not only through PRDM1, but also through
multiple other targets. Our miRNA profiling data iden-
tified other miRNAs that are highly expressed in HL cell
lines, for example, miR-155. Its functions in HRS cells
are not yet clear, but may be related to its normal role
in B-cell immunity. MiR-155 plays a critical role in
adaptive immune responses.51,52 MiR-155 deficient
mice demonstrated an intrinsic defect in the generation
of high-affinity, class-switched post-GC plasma cells
and memory B cells,53 suggesting that miR-155 regu-
lates selection of GC B cells and the formation and/or
maintenance of a common precursor before final dif-
ferentiation in the GC.54 The high miR-155 in HRS cells
may facilitate processes related to GC cell selection,
such as functioning of cytokine receptors and re-
sponse to T cells. Identification of miR-155 target
genes in HRS cells might explain how this miRNA
contributes to their pathogenesis of HL. Future re-
search is necessary to better define the role of the
miRNA environment that modulates expression of pro-
tein factors critical for the pathogenesis of HL.
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