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1. Introduction 

Investigation of how genetic variation within complex gene regulatory networks results in 
phenotypic alterations may represent a useful approach towards the understanding of 
human evolution and disease. In this regard, genetic studies can contribute to the 
identification of genes and pathways underlying the susceptibility to psychiatric disorders 
including anxiety disorders. However, this has shown to be difficult due to the complexity 
of both, the genetics and the phenotypes of these disorders. In fact, even though the 
estimated heritability of psychiatric disorders is high, most genetic risk alleles for these 
disorders have still not been identified, leading to the conclusion that either major risk 
alleles are scarce or that they increase risks only marginally, that is to say that their 
associated Odds Ratio is low. Genetic heterogeneity for complex disorders is widely 
accepted and, in addition, it has been suggested that non-standard factors, such as 
epigenetic or regulatory changes or combinations of various of these elements could be 
involved in the aetiology of psychiatric disorders (Burmeister et al., 2008). Accordingly, 
increasing evidence at a population and experimental level indicates that genetic variation 
at regulatory regions underlies differences in gene expression and could be a major 
contributor to phenotypic diversity in human populations (Buckland et al., 2005; Knight, 
2005; Rockman and Wray, 2002). This may be particularly true in the case of psychiatric 
disorders, where changes in regulatory elements leading to small variations in the dosage of 
proteins involved in neuronal pathways may disrupt the fine-tuned equilibrium of complex 
brain functions and contribute to the development of the disease. In this respect, even 
though the search for susceptibility genes for anxiety disorders has led to the finding of 
positive associations, most of these studies have produced results that are inconsistent or 
not clearly replicated, indicating that the genetic basis of anxiety disorders requires further 
investigation using alternative approaches. 
Stress has also been shown to have a critical role in the development of anxiety disorders 

(Lupien et al, 2009), at least partially, through mechanisms related to neural plasticity. 

Synaptic connections in the brain undergo experience-dependent functional or 

morphological changes through complex pathways that are not yet fully understood, but for 

which microRNAs (miRNAs) might have a critical role (Kosik et al., 2006). miRNAs are 

endogenous small non-coding RNAs that regulate gene expression by means of partial 
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complementarity to miRNA binding sites at their target genes. These molecules have 

emerged as key regulators of almost every biological process including accurate control of 

neuronal gene expression (Krol et al., 2010). Due to their enormous regulatory potential, 

miRNAs could be considered as one of the most significant discoveries in molecular biology 

of the last decade.  

This chapter aims to give insights into the role of gene regulation and, in particular, into the 

involvement of miRNAs in the pathophysiology of anxiety disorders, with special focus on 

panic disorder. We will explore the hypothesis that changes in miRNA-mediated regulation, 

originated from changes in the miRNAs themselves or on their target sites, may alter the 

dosage of proteins involved in fundamental pathways for brain function, affecting the 

precise homeostasis of the central nervous system and contributing to the development of 

anxiety disorders. The chapter will go through recent research results that, by a combination 

of association analyses and functional approaches, involves particular miRNAs and several 

candidate genes in the susceptibility for anxiety disorders and indicates that polymorphisms 

affecting miRNA-mediated regulation may be determinant of a range of human traits 

related to anxiety (Muiños-Gimeno et al., 2009; 2011).  

2. Anxiety disorders 

Even though definitions, assessments and classifications of mental disorders may vary along 

time, guideline criteria listed in the International Statistical Classification of Diseases and 

Related Health Problems, Diagnostic and Statistical Manual of Mental Disorders and other 

manuals are widely accepted by mental health professionals. According to the latest version 

from the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text 

Revised (DSM-IV-TR) (American Psychiatric Association, 2000), anxiety disorders include a 

broad category of heterogeneous disorders where the primary feature is abnormal or 

inappropriate anxiety. The central and unifying features of all anxiety disorders are 

heightened sense of arousal or fear that is episodic or continuous and may be related to 

exposure to a specific trigger. There are both psychological and physiological components to 

anxiety disorders such as worry and fear or increased heart rate and sweating. Symptoms of 

anxiety are also part of a normal process called the 'fight or flight' phenomenon. This means 

that the body is preparing itself to either fight or protect itself or to flee a dangerous 

situation. These symptoms become problematic when they occur without any recognizable 

stimulus or when the stimulus does not warrant such a reaction. Population prevalence of 

these disorders is approximately 16%, when considering developed and developing 

countries (Kessler, 2009), and the age at onset is variable, some of them starting in the early 

childhood (Kessler, 2007).  

Biological theories on anxiety disorders suggest abnormalities of the neurobiological 

pathways associated with modulating normal and pathological fear and/or stress states. In 

fact, animal models of stress have delineated major components of the stress response 

(Sullivan et al., 1999). However, nowadays, imaging studies also seek to identify the unique 

patterns and combinations of activated or deregulated brain regions involved in certain 

anxiety disorders (Gorman et al., 2000). A model that focuses on the amygdala and its 

interconnected structures has been proposed for anxiety disorders. The amygdala and 

hippocampus are important nuclei of the limbic system that regulate emotions and memory 
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storage, respectively. The amygdala seems to play an essential role in the acquisition of 

conditioned fear and the expression of innate and learned fear responses (Li et al., 1996). 

Specifically, the model describes 2 parallel pathways carrying information to the amygdala: 

the thalamic-amygdala pathway and the cortico-amygdala pathway. Sensory information 

(coming from either one out of these two pathways) enters the lateral amygdala, from which 

processed information passes to the central nucleus. The central nucleus, then, acts as the 

central component of the fear neural circuitry and projects to multiple brain systems 

involved in the physiologic and behavioural responses to fear. Projections from the 

amygdala to the hypothalamus take 2 primary routes: 1) the lateral hypothalamus, leading 

to sympathetic activation; and 2) the paraventricular nucleus, leading to activation of the 

hypothalamus-pituitary-adrenal axis. 

Nowadays the DSM-IV-TR classifies anxiety disorders into several disorders: acute stress 

disorder, agoraphobia (with or without a history of panic disorder), anxiety disorder due to 

general medical condition, generalized anxiety disorder, obsessive-compulsive disorder, 

panic disorder (with or without agoraphobia), phobias (including social phobia), 

posttraumatic stress disorder and substance-induced anxiety disorder. However, categorical 

classification of these disorders has not been static during the years and remains still 

controversial (American Psychiatric Association, 2000). Problems arise from the overlapping 

of phenotypes within the broader context of anxiety disorders, variable expressivity of panic 

and anxiety or depression, and the presence of phenocopies within a family. On the other 

hand, since the diagnostic remains purely clinical, genetic studies are arduous to perform. 

The use of dimensional personality traits, such as shyness, behavioural inhibition and 

neuroticism, in order to better define an anxiety phenotype instead of clinical diagnosis has 

been proposed as a solution to this problem (Hettema et al., 2001; Kessler et al., 2005; 

Smoller and Tsuang, 1998). Within anxiety disorders, in this chapter we will mainly focus on 

panic disorder and obsessive-compulsive disorder 

2.1 Panic disorder 

The DSM-IV-TR defines panic disorder as the spontaneous, unexpected occurrence of panic 

attacks followed by persistent concern, worry, and anxiety about having additional panic 

attacks. Panic attacks are defined as a discrete period of intense fear or discomfort (no more 

than 30 minutes) that develops abruptly and reaches a peak within 10 minutes, in which at 

least 4 of 13 symptom criteria are met. Some of these criteria include cardiac palpitations, 

sweating, feelings of choking, fear of losing control, and fear of dying. Panic attacks often 

mimic symptoms of physical complaints such as a heart attack or other life-threatening 

illnesses (American Psychiatric Association, 2000) and typically occur spontaneously, with 

no apparent trigger. However, there is evidence that shows that for the majority of patients 

mild phobic or hypocondriacally symptoms precede the panic attacks. It has been therefore 

proposed that panic attacks are more unpredictable than unexpected (Gratacos et al., 2007). 

Panic disorder may manifest with or without accompanying agoraphobia. However, 

agoraphobia can also occur without panic disorder, and panic attacks can occur in the 

absence of panic disorder. Comorbidity with depressive and addictive disorders is frequent 

as much as a lifetime prevalence rate of 50-60%. Life prevalence of panic disorder is 1- 2% 

(Regier et al., 1990) and twice as many women suffer from the disorder if compared to men 

(Weiller et al., 1998; Weissman et al., 1997). Panic disorder has a bimodal age at onset 
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distribution, with highest incidence in late adolescence and a second peak in the mid 30s 

(Sansone et al., 1998). This disorder is, however, less often observed in the elderly (Gratacos 

et al., 2007). Panic disorder has moderate estimated heritability rate of 44% (van den Heuvel 

et al., 2000), and results from a meta-analysis performed on genetic epidemiology studies 

showed that there is a significant association between panic disorder in the probands and 

panic disorder in the first-degree relatives (p<0.0001) (Hettema et al., 2001). Furthermore, 

risk for panic disorder increases in adult first-degree relatives, when the age at onset of the 

proband is under twenty years of age (17-fold to 6-fold), suggesting that age at onset might 

be useful in differentiating familial subtypes of panic disorder (Goldstein et al., 1997). In 

addition, panic disorder and agoraphobia with panic attacks were shown to be more than 

five times more frequent in monozygotic twins than in dizygotic twins (Torgersen, 1983). 

This was further corroborated by a later study which found a significantly higher 

concordance among monozygotic than dizygotic twins for panic disorder (73% vs. 0%), 

confirming a role for genetic factors in panic disorder, but not for spontaneous panic attacks 

(57% vs. 43%) (Perna et al., 1997). Agoraphobia is also thought to be a more severe variant of 

panic disorder as suggested by the fact that the risk of panic disorder is increased among the 

relatives of patients with agoraphobia (8.3%) and the relatives of patients with panic 

disorder (17.3%). However, while the risk for agoraphobia is also increased among the 

relatives of patients with agoraphobia (11.6%), it is not among the relatives of patients with 

panic disorder (1.9%) (Noyes et al., 1986). 

2.2 Obsessive-compulsive disorder 

Obsessive-compulsive disorder is characterised by obsessions and compulsions. Obsessions 

are recurrent intrusive and unwanted thoughts that the sufferer cannot dispel. Common 

themes of the obsessive thoughts include thoughts that the person may cause harm to others 

or that harm may befall others, or thoughts that the person or others are contaminated. 

Other common themes are centred on the need for order, symmetry or perfection. The 

obsessive thoughts are associated with negative feelings, usually anxiety, but other 

emotions such as disgust, guilt or shame may also be experienced. As a response to these 

feelings generated by the obsessive thoughts, the person may perform compulsions, and 

performance of the compulsions temporarily decreases the negative effect. The compulsions 

are stereotypic, ritualised behaviours that are usually observable but which may include 

covert mental rituals. Common rituals include repetitive checking, washing or cleaning, or 

repetitive rearranging and ordering of objects. Examples of covert mental rituals include 

repetitive counting, praying or thinking magical statements (Gelder et al., 2001). In 

summary, the obsessions and compulsions are distressing, time-consuming, and often lead 

to impairment in occupational, scholastic, or social functioning. According to the DSM-IV-

TR to meet criteria for obsessive-compulsive disorder, the individual must report ineffective 

efforts to resist, neutralise, or suppress thoughts or behaviours with other thoughts or 

actions. In addition, the thoughts must be distinct from those associated with other anxiety 

disorders, and the individual must acknowledge that the thoughts are a product of his or 

her own mind (American Psychiatric Association, 2000). The disorder affects approximately 

1–3% of adults (Kessler et al., 2005) and is ranked by the World Health Organization as 

among the ten most disabling medical conditions (Grisham et al., 2008). Although there is 

strong evidence that obsessive-compulsive disorder has a genetic component (Hettema et 
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al., 2001), definitive single domain or integrative models have not yet been established 

(Stein, 2002). The broader obsessive-compulsive disorder phenotype has been divided into 

subgroups that are potentially more etiologically and genetically homogenous: 

symmetry/order, aggressive/checking, contamination/cleaning and hoarding (Mataix-Cols 

et al., 2005). A more controversial fifth dimension may be also included, consisting of 

somatic, sexual, religious obsessions and mental rituals (‘‘pure obsessional’’) (Mataix-Cols et 

al., 2006). Obsessive-compulsive disorder usually begins before 25 years of age and often in 

childhood or adolescence.  

3. Problems of the genetic study of anxiety disorders - high level of 
regulatory control in brain 

The hereditary basis for psychiatric disorders was already recognised at the turn of the 

nineteenth century. After that, genetic influence on all major psychiatric disorders has been 

consistently demonstrated by twin and adoption studies (Plomin et al., 1994). In fact, estimated 

heritabilities for bipolar disorder, schizophrenia and autism -80% to more than 90%- 

(Bespalova and Buxbaum, 2003; Gupta and State, 2007; Kieseppa et al., 2004; McGuffin et al., 

2003; Sullivan et al., 2003) have been shown to be much higher than that of breast cancer -5% to 

60%- for instance (Locatelli et al., 2004; Schildkraut et al., 1989), for which several genetic 

factors are now well established (Plomin, et al., 1994). However, although genetic influences 

on psychiatric disorders have been well established, localization of genes responsible for these 

effects has proven to be extremely difficult. This is probably due to several reasons, among 

others:  Problems arising from the difficult diagnosis of Psychiatric disorders, the probable 

multifactorial and polygenic origin of these disorders and the high level of regulatory control 

and gene interactions to what human brain and behaviour are exposed.  

Regarding the latter, the search for susceptibility genes for anxiety disorders has classically 

focused on neurotransmitters and members of neurotransmitter synthesis and degradation 

pathways, although other groups of molecules including genes involved in neurodevelopment 

and synaptic plasticity have been also studied more recently. Nevertheless, the complexity of 

the central nervous system requires not only of a precise function of its formal components but 

also of an accurate gene regulation of the system. Hence, genetic variation in regulatory 

regions is nowadays recognized as a major contributor to phenotypic diversity (Buckland et 

al., 2005; Knight, 2005; Rockman and Wray, 2002). Taking into account the importance that 

minimal changes in gene regulation could have in gene dosage, and gene dosage in turn, to 

genetic susceptibility to disease, regulator elements acting in the brain should be included in 

every psychiatric candidate gene study. Accordingly, post-transcriptional regulation, 

previously underestimated, is growing in importance and is thought to play an important role 

on mammalian development and disease (Sun and Tsao, 2008). Contrary to what was thought 

during many years, it is nowadays accepted that more than half of the human genome is 

transcribed and that most of the generated transcripts (~98%) are actually non-protein coding 

(Mattick, 2009). RNAs that do not code for proteins and directly function as RNAs are called 

non-protein coding RNAs (ncRNAs). Importance of ncRNAs is supported by the fact that their 

accumulation tends to increase with organism complexity along the evolutionary scale 

(Mattick, 2009) and, even though a recognized function is lacking for most of these ncRNAs, 

they are mostly predicted to have regulatory functions (Costa, 2010) and should thus be 

considered as candidate genes for disease. 
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4. MicroRNAs 

In the last few years additional species of ncRNAs have increasingly been discovered (Costa, 
2010), among which, small ncRNAs, and among them microRNAs (miRNAs), attract 
particular attention because of their role in processes such as RNA silencing and 
modification (Kawaji and Hayashizaki, 2008). miRNAs are endogenous small ncRNAs that 
regulate gene expression by means of partial complementarity to miRNA binding sites at 
their target genes (Bartel, 2004). Recent estimates indicate that they regulate more than 30% 
of all protein-coding genes, building complex regulatory networks that control almost every 
cellular process (Filipowicz et al., 2008). The founding member of the miRNA family, lin-4, 
was identified in C. elegans in 1993 through a genetic screening for defects in the temporal 
control of post-embryonic development (Lee et al., 1993). Withal, it was not until 2001 that 
miRNAs were recognized as a large and phylogenetically extensive family of non-protein 
coding RNAs representing a new layer of gene regulation (Lagos-Quintana et al., 2001; Lau 
et al., 2001; Lee and Ambros, 2001). Since then, the number of identified miRNAs has 
increased vertiginously, in humans for example, their growth has ranged from none, in 
2001, to a total of 1424 human miRNAs that are being recognized by the last version of the 
miRNA database (April 2011, Sanger miRBase, release 17.0). Remarkably, during the last 4 
years (2007-2011), the number of identified miRNAs has been triplicated. Consequently, 
publications and knowledge on this class of small RNAs has also increased considerably. As 
a matter of fact, the number of pubmed publications on miRNAs was of five in 2001, while 
nowadays there are roughly 12000. It is estimated that miRNAs will comprise 1%-5% of 
animal genes (Bartel, 2004), being, in consequence, one of the most abundant classes of 
regulators in the genome.  
On the other hand, it is known that a single miRNA can target as many as several hundred 

genes, and that one gene can be targeted synergistically by more than one miRNA. Taken 

together, miRNAs form an interconnected regulatory network that does not simply turn 

genes on or off, but are thought to ‘‘tune’’ the expression level of their target genes (Sun and 

Tsao, 2008). Post-transcriptional regulation by miRNAs may thus represent an important 

mechanism through which the central nervous system accomplishes its demands for precise 

but rapid changes in gene regulation. In fact, both the synthesis and degradation of RNAs 

are likely to require less time and energy than those of proteins.  Consequently, non-protein 

coding RNAs and particularly, miRNAs, are suitable candidates for the regulation of a 

constantly changing microenvironment, like the central nervous system.  

The importance of miRNAs is made evident by their conservation along evolution and by the 
multiple processes in which they are implicated, such as developmental timing, cell 
differentiation and morphogenesis (Stark et al., 2005), synaptic plasticity (Schratt et al., 2006), 
regulation of immunological functions (Pauley and Chan, 2008) and stress response (He et al., 
2007). Different types of cellular stress have been shown to alter miRNA levels; for example, 
hypoxia-responsive transcription factors such as nuclear factor-kappa B and p53 induce 
miRNA genes (He et al., 2007; Taganov et al., 2006). In general, studies on oxidative stress, cold 
stress and nutrient deprivation indicate that long-term stress may have an impact on miRNAs 
and on global gene expression, perhaps leaving tissues more susceptible to pathogenic 
processes. It is thought that chronic stress can initiate cellular reprogramming through 
alterations in miRNA expression or activity, leading to sustained changes in gene expression 
and cellular physiology (Hudder and Novak, 2008). It is also worth mentioning that miRNAs 
are also involved in cell cycle progression and apoptosis (Carleton et al., 2007), as emphasized 
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by their implication in cancer or in endocrine regulation of energy homeostasis, (Poy et al., 
2004). 
In particular, miRNAs have important functions in the brain and have been involved, 

among others, in learning and memory (Fiore and Schratt, 2007) as well as in synaptic 

plasticity. The prime example of a miRNA implicated in synaptic plasticity in mammalian 

neurons is miR-134, which localizes to dendrites close to synapsin-positive puncta (Schratt et 

al., 2006). Its over-expression causes a significant decrease in dendritic spine size, while its 

depletion leads to a small increase in spine volume. miR-134 targets LIMK1 (Lim-domain-

containing protein kinase 1), whose activity is controlled by BDNF and which is involved in 

actin filament dynamics, a key step in the cytoskeletal modifications of spines associated 

with plasticity. The concomitant over-expression of miR-134 with a mutated form of LIMK1, 

that has a defective target site, rescues the alterations in spine morphology, indicating that 

the spine size defects caused by miR-134 are indeed due to the deregulation of LIMK1 

(Schratt et al., 2006). Furthermore, miR-134-mediated repression of LIMK1 is relieved upon 

BDNF stimulation of synaptic plasticity, showing that neuronal activation intervenes to put 

a brake on miRNA-mediated silencing. Finally, another indication of the involvement of 

microRNAs in controlling local protein translation and synaptic function comes from a 

recent study that demonstrated that miR-128 is deregulated in HIV-1 encephalopathy (a 

manifestation of HIV-1 infection that often results in neuronal damage and dysfunction) and 

that, in addition, miR-128 inhibits the expression of SNAP25, a pre-synaptic protein that 

regulates Ca++ responsiveness (Eletto et al., 2008). The degree of complexity of miRNA 

pathway regulation has been revealed to be particularly high when studying neurons where 

several mechanisms of control have been discovered, such as the transport of miRNAs to 

distal sites in dendrites, the association of miRNA regulation with synaptic activation, or the 

reported role for the rapid miRNA turnover in neurons regarding miRNA activity-

regulation (Reviewed in Krol et al., 2010). 

Another interesting observation that illustrates how much more complicated miRNA-

mediated regulation of mRNAs can be is based on initial studies that show that miRNAs are 

prone to tissue-specific RNA editing. Editing is a post-transcriptional mechanism, by which 

some RNA molecules are altered to contain bases not encoded in the genome (specific 

nucleotides are either deleted, inserted or modified to change one nucleotide into another). 

Such editing events alter the properties of miRNAs and seem to regulate alternative mRNA: 

miRNA interactions. This has been, at least, demonstrated by miR-376 targeting of a 

different set of genes after RNA editing in different tissues (Erson and Petty, 2008; 

Kawahara et al., 2007). 

5. MicroRNAs and anxiety disorder 

In addition to the modulation of physiological functions and due to their important 
regulatory role in processes of physiopathological relevance, a close relationship between 
miRNAs and human disease has been described. Regulatory changes that alter miRNA 
activity can be caused by both in cis and trans factors (relative to the locus coding for the 
miRNA), making possible to schematically group known miRNA-related diseases based on 
the specific process altered. Cis deregulation of miRNAs can be caused by chromosomal 
alterations, epigenetic modifications, polymorphic promoter elements and polymorphisms 
within the miRNA itself (pri-, pre- and mature miRNA sequences). Trans factors affecting 
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miRNA activity, on the other hand, include functional mutations in the proteins involved in 
miRNA transcription, processing and targeting, and polymorphisms in miRNA target sites 
(poly-miRTS). We, ourselves, based our research on anxiety disorder on the hypothesis that 
changes in miRNA-mediated regulation, originated from changes in the miRNAs 
themselves (cis) or on their target sites (trans), could alter the dosage of proteins involved in 
fundamental pathways of brain function, affecting the fine-tuned central nervous system 
homeostasis and contributing to the development of anxiety disorders. In an attempt of 
identifying genetic factors related to anxiety, we divided our strategy into the study of 
genetic variation in regulatory regions of candidate genes for anxiety disorders and the 
genetic study of miRNA genes “per se”. As described later, even though major risk alleles 
have not been found, results on these studies indicate that genetic variation affecting 
miRNA-mediated regulation may be underlying a range of anxiety related phenotypes, 
being the first time that miRNAs are involved in the pathophysiology of human anxiety 
disorders (Muiños-Gimeno et al., 2009; 2011). Table 1 shows a list of all miRNAs that have 
been involved in anxiety disorders. 

5.1 Cis-deregulation involving miRNAs and disease 

Cis-deregulation of miRNAs has been involved in several human disorders. Early clues linking 

chromosomal alterations in miRNA loci and disease came from observations in chronic 

lymphocytic leukaemia (CLL), where chromosome band 13q14, commonly lost or altered in 

CLL patients, was found to harbour miR-15 and miR-16 (Calin et al., 2002). Both miR-15 and 

miR-16 were later shown to target the 3’UTR of BCL2, a well- known anti-apoptotic oncogene 

(Cimmino et al., 2005). Initial observations that miRNA genes were located on genomic 

instability and fragile sites by Calin et al. (Calin et al., 2004) led to further analyses that have 

demonstrated deregulated miRNA expression profiles in various diseases.  

With respect to disorders of the central nervous system an increase in miR-9, miR- 125b and 

miR-128 levels was detected in the hippocampus of Alzheimer’s disease brains (Lukiw, 

2007). Later, miRNA expression profiles of human brain tissue from individuals with 

Alzheimer’s disease at different stages of the disease were compared (Wang et al., 2008a). 

This comparison reported significantly decreased miR-107 levels in patients with even the 

earliest stages of Alzheimer’s disease. When further analyzing the role of this miRNA, the 

authors concluded that miR-107 might be involved in accelerated disease progression 

through regulation of the beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1). 

Moreover, other studies demonstrated that miR-29a, miR-29b-1, and miR-9 can also regulate 

BACE1 expression in vitro and that these miRNAs were also decreased in patients with 

Alzheimer’s disease, resulting in high BACE1 protein levels in patients (Hebert et al., 2008). 

On the other hand, reduced expression of miR-133b has been observed in dopaminergic 

neurons of Parkinson’s disease patients and reduced levels of this miRNA have been thus 

associated with the typical degeneration of this type of neurons in Parkinson disease (Kim et 

al., 2007). Interestingly, distinct miRNA expression patterns have also been implicated in 

chronic psychiatric disorders: miR-26b, miR-30b, miR-29b, miR-195, miR-92, miR-24, miR-

30e, for instance, were shown by microarray and quantitative reverse transcriptase-

polymerase chain reaction to be decreased in samples from individuals with schizophrenia 

(Perkins et al., 2007). However, the way in which these miRNAs and their targets may be 

involved in common complex neurological and psychiatric disease states are yet to be 

examined. Concerning mutations in miRNAs or in their promotor sequences and in relation 
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to schizophrenia, two known SNPs, located in the adjacent +/- 100 bp genomic region of 

miR-206 and miR-198 were claimed to be associated with schizophrenia. One of them, in the 

miR-206 adjacent genomic region, remained significant after correction for multiple testing. 

In order to elucidate what biological signalling network might be the one affected by these 

miRNAs in schizophrenia, the authors performed target predictions for both miRNAs. 

Target predictions rendered a list of 15 genes that were predicted to be corregulated by both 

miRNAs. Interestingly, two of the common targets had been previously related to 

schizophrenia; CCND2 had been shown to be deregulated in post-mortem schizophrenia 

brains and PTPN1 had been positioned under a significant linkage peak (Hansen et al., 

2007). Similar studies have implicated mutations in miRNAs or their regulatory regions 

with different diseases. Worth mentioning is a common SNP within pre-miR-146a that was 

reported to be strongly associated with papillary thyroid carcinoma. (Jazdzewski et al., 2008; 

2009). This study is one of the few studies that clearly evidences that polymorphisms in 

miRNA coding regions can lead to disease and contrary to what is generally thought, the 

study proposes that mature miRNAs from the passenger strand may, as well, regulate many 

genetic processes. This is particularly interesting since the study uncovers the fact that 

miRNA processing and action are still to be deeply studied and that, as in every emerging 

topic of research, there might be false dogmas that should be redirected. 

5.1.1 Association studies of miRNA genes with anxiety disorder 

As stated in the previous section, allelic changes as well as genomic variants involving 
either miRNAs or their regulatory machinery may represent an important source of 
phenotypic variation and contribute to the susceptibility for complex disorders. Even 
though poorly considered until now, association studies using SNPs in miRNA genomic 
regions might help to evaluate the involvement of miRNAs genes in disease. In this regard, 
a panel of SNPs covering miRNA regions suitable for association studies was designed, 
constructed and used for the study of panic disorder (Muiños-Gimeno et al, 2010; 2011). 
Prior to the design of the SNP panel, the first step consisted in the analysis of the genomic 
distribution and genetic variation of all at that moment known miRNAs-containing regions. 
The analysis of the SNP coverage on miRNAs revealed that miRNA regions are 
characterized by a lower density of SNPs than the rest of the genome. In fact, at the moment 
of the panel design, only 24 SNPs (dbSNP 125) mapped within the miRNA sequences of 325 
miRNAs, (Sanger miRBase release 7.1) -and interestingly none of them was located within a 
mature miRNA sequence-; this represented a density of 0.86 SNPs per kb at miRNA regions 
compared with the observed average of 3.99 SNPs/kb SNP for the whole human genome. 
The lack of mutations identified at the mature miRNAs was in agreement with the reported 
negative selection acting at both miRNAs as well as miRNA target sites. Existence of 
negative selection in conserved miRNA target sites at 3’UTRs has already been described 
(Chen and Rajewsky, 2006). Likewise, it has been extensively proposed that SNP density is 
lower in miRNA loci with respect to their flanking regions (Saunders et al., 2007). However, 
screening of SNPs from public databases deals with the problem of SNP ascertainment bias, 
mainly due to underrepresentation of low-frequency variants and the fact that not all the 
genome has been equally characterized. Remarkably, very recently Quach et al. (2009) 
confirmed this lower SNP density by re-sequencing 117 miRNAs in four different human 
reference populations, therefore avoiding ascertainment bias coming from public databases. 
Their analyses reported a lower SNP density in miRNAs than in other non-coding regions, 

www.intechopen.com



 
Anxiety Disorders 

 

290 

which were shown to be twice as dense. The study also showed that strong purifying 
selection affects the sequence corresponding to the mature miRNA (particularly the first 14 
nucleotides, where no mutation is tolerated) as well as the complementary miRNA sequence 
(miRNA*), stem region and loop (Quach et al., 2009). In summary, these studies indicate that 
mutations in miRNA hairpins or in miRNA binding sites, such as the previously mentioned 
SNP occurring in miR-146a, are likely to be deleterious and may have severe phenotypic 
consequences on human health. Therefore, extensive re-sequencing in patients and controls 
of 3’UTRs and of miRNAs themselves, would be definitely interesting to test the putative 
role of miRNA-mediated regulation in the susceptibility for anxiety disorders. 
Unfortunately, only 117 out of the actual 1424 miRNAs could be resequenced in this study 
of Quach. In this regard, the fast increase in the number of newly discovered miRNAs is 
being one of the main handicaps that researchers are facing. This is further complicated by 
the frequent corrections and modifications miRNAs suffer in their annotation (as far as 
sequences, nomenclature, etc).  
The exponential increase in the number of miRNAs discovered was also a handicap for the 
design of the SNP panel used later for association analyses in disease, since the number of 
known miRNAs increased more than 50% from the beginning of the design to the moment 
that the association analyses were performed. Apart from the analyses in disease, the SNPs 
panel was also employed to study variability in miRNAs regions among different 
populations. After genotyping a group of 341 Spanish control individuals, allele frequencies 
between the HapMap European population and the specific North-East Spanish (Catalan) 
population were compared and pointed out to two genomic regions showing geographic 
genetic variation among populations. Remarkably, one of these regions is the LCT region 
(containing hsa-miR-128-1), a region that has already been shown to be under selective 
pressure (Beja-Pereira et al., 2003; Hollox, 2005).  
Our group has been the first to show an implication of miRNAs in the aetiology of panic 
disorder (Table 1). Case-control studies for the 712 SNPs in the panel tagging human 
miRNA regions were performed in 203 Spanish patients with panic disorder and in 341 
controls. Two SNPs associated with panic disorder: rs6502892 tagging miR-22 (p<0.0002) 
and rs11763020 tagging miR-339 (p<0.00008). Other SNPs tagging miR-138-2, miR-488, miR-
491 and miR-148a regions associated with different panic disorder phenotypes, panic 
disorder with or without agoraphobia, or age at onset. Replication in a north-European 
sample of 321 anxiety patients and 653 controls from Finland and 102 patients and 829 
controls from Estonia confirmed the association for several of these miRNAs. Associations 
alone did not result conclusive, as the associated SNPs did not resist correction for multiple 
testing (Muiños-Gimeno et al., 2011). Modest associations, however, are repeatedly 
identified in most studies on panic disorder, a disorder for which multiple genes of small 
effect interacting with each other and/or with non-genetic factors have been proposed to 
participate in disease susceptibility (Smoller and Tsuang, 1998). In fact, results on whole 
genome association studies suggest that susceptibility alleles are likely to be modest in effect 
size and require large sample sizes for detection (Sklar et al, 2008). Performing functional 
studies rather than replicating associations in other cohorts is gaining more attention 
nowadays, as recent association studies in complex disorders do not have enough power 
and have failed to replicate. In order to search for possible causal variants that might be in 
linkage disequilibrium with the associations, we re-sequenced the pre-miRNA sequences of 
these six associated miRNAs as well as their flanking regions. This analysis identified ten 
common and fourteen rare allelic variants, in addition to four short deletions, none of which 
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was located within the mature or pre-miRNA sequences, and therefore no effect in the 
targeting spectrum of the studied miRNA was predicted to occur. In contrast, effects 
derived from variants in the proximity of pre-miRNA sequences, if any, would be related to 
changes in miRNA dosage (Muiños-Gimeno et al., 2011). Indeed, variants affecting miRNA 
expression and processing could explain the neuronal disequilibrium proposed for 
psychiatric disorders, where correct dosage could be crucial. 
Taking into account the fact that the targeting spectrum of the associated miRNAs was 
unlikely to be affected, we aimed to identify candidate genes for panic disorder, among 
those predicted to be targeted by the associated miRNAs, and to functionally validate these 
predictions. miRNA over-expression experiments using a luciferase-based assay indicated a 
repression of RGS2, BDNF, HTR2C, and MAOA by miR-22, of POMC by miR-488, of 
GABRA6 by miR-138-2 and of CCKBR by miR-148a (Muiños-Gimeno et al., 2011). All of 
these genes have been implicated in the aetiology of anxiety disorders, often in a dosage 
dependent manner (Maron et al, 2010). For instance, serotonergic pathways have been 
involved in the pathogenesis of anxiety disorders, mainly because of the observation that 
patients with anxiety disorders respond well to serotonergic medications and because the 
occurrence of panic attacks has been reported after administration of serotonergic agonists 
(Sklar et al., 2008; Wu et al., 2008). Interestingly, the expression of RGS2 has been 
demonstrated to be a quantitative trait (Betel et al., 2008), for which association with a 
haplotype within the 3’UTR has been reported (Maron et al., 2010; Koene et al., 2009). 
Moreover, RGS2 knock-out mice show increased anxiety-like behaviour compared to their 
wild-type counterparts (Yalcin et al., 2004), remarkably, the expression of RGS2 was 
significantly reduced in experiments where over-expression of miR-22 was simulated in 
neuroblastoma SH-SY5Y cells (Muiños-Gimeno et al., 2011). Interestingly, another down-
regulated gene after miR-22 over-expression was ASCL1, which has been demonstrated to be 
essential for the development of central serotonergic neurons and has been proposed as a 
candidate for Ondine syndrome, a rare disorder of the chemical control of breathing (Pattyn et 
al, 2004, de Pontual et al., 2004). Other down-regulated genes also have important neuronal 
functions, such as CHGA with roles in neuroendocrine secretion (Taupenot et al., 2003) or the 
promotion of dendritic outgrouth by NPTX2 (Tsui et al., 1996). Furthermore, it is worth 
remarking the deregulation of the corticotropin releasing hormone (CRH) signalling pathway 
associated with the over-expression of miR-488 in the same cellular system, this is a crucial 
pathway activated in response to stress and includes the pro-opiomelanocortin (POMC) gene. 
POMC is the precursor molecule for several important components of the hypothalamic-
pituitary-adrenal axis (Figure 1), which is involved in the neurobiology of mood and anxiety 
disorders (Swaab et al., 2005). Regardless of the genetic mechanism involved in these 
associations, the development of the phenotype could depend upon the expression and 
activity of these miRNAs, some of which are known to be expressed or to have important 
functions in the brain. miR-22, for example, is expressed ubiquitously in several tissues 
including the pituitary and the midbrain; miR-488 is a brain-enriched miRNA that is more 
abundantly expressed in the hippocampus and cerebellum; miR-138 is highly enriched in the 
brain, including the frontal cortex, the hippocampus and the midbrain (Betel et al., 2008). 
Furthermore, miR-138 is localized within dendrites, and is known to negatively regulate the 
size of dendritic spines in rat hippocampal neurons (Siegel et al., 2009)  
Finally, it is important to mention two studies that, using animal models, involve particular 
miRNAs with anxiety behaviour. The diversity of phenotypes available for several mouse 
strains has allowed to determine differences in miRNA expression across inbred strains and 
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to analyze their correlation with both phenotype data and mRNA regulation (Parsons et al., 
2008). Following this approach the authors managed to nominate miRNAs that have 
potential roles in anxiety, exploration, and learning and memory. In particular, they found 
correlation between the differential expression of miR-34c and mir-323 with behavioural 
measures for anxiety. It is interesting to highlight that the authors also suggest a miR-34c-
mediated regulation of genes involved in long-term depression and neuroactive ligand 
receptors. This study has opened the door for further research using mouse genetic 
reference populations and importantly points out to two miRNAs, miR-34c and miR-323, as 
candidate genes for anxiety disorders (Parsons et al., 2008). Another recent study working 
with Fischer 344 rats, as an animal model for the study of vulnerability to repeated stress -
and therefore for anxiety and mood disorders-, described a role for miR-18a in the 
regulation of hypothalamic-pituitary-adrenal axis. Suppressed or decreased hypothalamic-
pituitary-adrenal axis responses have been repeatedly described on chronically stressed 
animals upon re-exposure to the same stressor. This phenomenon, called habituation, is 
likely to protect the organism from hypercoticosteroidism and is thought to be partly 
controlled via activation of glucocorticoid type I (mineralocorticoid) and/or glucocorticoid 
type II (glucocorticoid receptor). Interestingly, Fischer 344 rats have been reported to exhibit 
no habituation of hypothalamic-pituitary-adrenal axis activity during restraint stress 
episodes. The study of Shusaku et al.  reported an increased expression of miR-18a and 
lower glucocorticoid receptor protein levels in the hypothalamic paraventricular nucleous of 
Fischer 344 rats. This along with the fact that miR-18a seems to inhibit glucocorticoid 
receptor translation (Figure 1) suggests that miR-18-a could be a vulnerability factor for the 
development of stress-related behaviours (Shusaku et al., 2008). Consequently, miR-18a 
together with miR-34 and miR-323 should be considered as potential susceptibility factors 
for stress-related disorders such as panic and mood disorders (Table 1). 

5.2 Trans-deregulation of miRNAs 

Trans-deregulation of miRNAs can be broadly summarized into structural alterations 

involving genes that are important in miRNA biogenesis (e.g Fragile X and DiGeorge 

syndromes), or mutations in miRNAs target mRNA sequences (e.g. Tourette syndrome and 

pathological aggressiveness). A few examples of human diseases affecting the central 

nervous system caused by deregulation in the miRNA pathway have been reported, such as 

cancer or Fragile X Syndrome (Gong et al., 2005). Fragile X syndrome (FX) is one of the most 

common forms of mental retardation, and is characterized by abnormalities in the structural 

development of dendritic spines. It is caused by a CGG repeat in the 5’UTR of the FMR1 

gene, which is located on the long arm of chromosome X. The condition becomes clinically 

manifest when the repeat expands as the gene is passed from generation to generation, until 

its transcription is completely shut down in the full-blown syndrome (Penagarikano et al., 

2007). The current view is that Fragile X protein (FMRP) associates with endogenous 

miRNAs and with Ago1 -in mammals -to translationally repress a subset of dendritic 

mRNAs (Jin et al., 2004) and that the disease is caused by the deregulated  expression of its  

mRNA targets which encode factors required for synaptic plasticity and development. In 

relation to this, another study carried out in Drosophila has shown an interesting 

overlapping between the composition of FMRP-containing neuronal granules and P-bodies, 

which suggests that these classes of granules might be similar not only in composition but 

also in function (Hillebrand et al., 2007). Similarly, most cases of DiGeorge syndrome 
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miRNA Involvement with Anxiety Disorder Reference 

miR-18a 

Possible repressor of the glucorcorticoid receptor gene 

in the hypothalamic paraventricular nucleus regulating 

stress responses  

Shusaku et al., 

2008 

miR-34c 
Correlation between differential expression of this 

miRNA and behavioural measures for anxiety in mice 

Parsons et al., 

2008 

miR-323 
Correlation between differential expression of this 

miRNA and behavioural measures for anxiety in mice 

Parsons et al., 

2008 

miR-128 

Association of an allelic variant in the target site for 

miR-128 in NTRK3 (ss102661458) with Panic Disorder - 

Reduction of NTRK3 repression 

Muiños-Gimeno 

et al., 2009 

miR-509 

Association of an allelic variant in the target site for 

miR-509 in NTRK3 (ss102661458) with Panic Disorder - 

Reduction of NTRK3 repression 

Muiños-Gimeno 

et al., 2009 

miR-765 

Association of an allelic variant in the target site for 

miR-765 in NTRK3 (ss102661460) with Panic Disorder - 

Reduction of NTRK3 repression 

Muiños-Gimeno 

et al., 2009 

miR-485-3p 

Association of an allelic variant in the target site for 

miR-765 in NTRK3 (rs28521337) with Obsessive-

Compulsive Disorder 

Muiños-Gimeno 

et al., 2009 

miR-22 
Associated with Panic Disorder - Repression of RGS2, 

BDNF, HTR2C, and MAOA  

Muiños-Gimeno 

et al., 2011 

miR-138-2 
Associated with age at onset in Panic Disorder - 

Repression of GABRA6 

Muiños-Gimeno 

et al., 2011 

miR-148a Associated with Panic Disorder - Repression of CCKBR 
Muiños-Gimeno 

et al., 2011 

miR-339 Associated with Panic Disorder  
Muiños-Gimeno 

et al., 2011 

miR-488 Associated with Panic Disorder - Repression of POMC 
Muiños-Gimeno 

et al., 2011 

miR-491 Associated with Panic Disorder  
Muiños-Gimeno 

et al., 2011 

NTRK3, neurotrophic tyrosine kinase, receptor, type 3; RGS2, regulator of G protein signaling 2; BDNF, 
brain-derived neurotrophic factor; HTR2C, 5-hydroxytryptamine (serotonin) receptor 2C; MAOA, 
monoamine oxidase A; GABRA6, gamma-aminobutyric acid A receptor, alpha 6; CCKBR, 
cholecystokinin B receptor; POMC, proopiomelanocortin preproprotein. 

 

Table 1. Overview of miRNAs reported to be involved in anxiety disorders.  
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Fig. 1. Overview of the hypothalamic-pituitary-adrenal axis activation in response to stress 
showing the putative regulation of the pathway at two different points by miR-18a and miR-
488. CRH, corticotropin releasing hormone ; POMC, pro-opiomelanocortin. 

result from a deletion of chromosome 22q11.2 (the DiGeorge syndrome chromosome region, 

or DGCR); this deletion includes the DGCR8 gene. DiGeorge syndrome is a developmental 

disorder characterized by mental retardation, as well as structural and functional palate 

anomalies, conotruncal cardiac malformations, immunodeficiency, hypocalcemia, and 

typical facial anomalies. DGCR8 is required for the maturation of miRNA primary 

transcripts. In fact, its knockdown leads to accumulation of pri-miRNAs and reduction of 

pre-miRNAs and mature miRNAs (Landthaler et al., 2004), indicating again a plausible 

involvement of miRNAs in the aetiology of the disease.  
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Since 2005 until now, the number of described mutations in miRNAs target mRNA 
sequences (poly-miRTS) has been growing exponentially, being the majority of these studies 
published in the last three years. On this section we will only focus on those poly-miRTS 
affecting central nervous system; nevertheless, poly-miRTS have also been implicated in 
different disorders such as breast cancer (Adams et al., 2007), hypertension (Martin et al., 
2007; Sethupathy et al., 2007), methotrexate resistance (Mishra et al., 2007), Childhood 
asthma (Tan et al., 2007) and colorectal cancer (Landi et al., 2008) among others. Abelson et 
al. were the first to associate a sequence variant in a miRNA target site with disease in 2005 
(Abelson et al., 2005). They reported a rare sequence variant enhancing a target site for miR-
189 in the SLITRK1 (Slit and TRK-like family member 1) gene in two patients with Tourette's 
syndrome and in none of the controls tested. An altered interaction between this miRNA 
and the SLITRK1 mRNA in the developing brain was suggested to contribute to this 
neuropsychiatric disorder. However this study has been treated with scepticism since a 
follow-up study indicated that the variant associated with Tourette Syndrome was 
overrepresented in certain subgroups such as Ashkenazi Jews, thereby complicating the 
interpretation of the results in a sample where cases and controls could happen to be not 
appropriately matched (Keen-Kim et al., 2006). After that, the putative importance of poly-
miRTS was strengthened by other studies involving SNPs affecting miRNA target sites with 
disease. Regarding those affecting the central nervous system two mutations were identified 
in the 3’UTR of the receptor expression enhancing protein 1 gene (REEP1), after previous 
association of this region with hereditary spastic paraplegia (Zuchner et al., 2006). These 
mutations were predicted to strengthen miR-140 mediated repression. Independently, in a 
similar approach, Beetz et al. identified one of these variants and discovered a third variant 
putatively affecting miR-691 regulation in two other hereditary spastic paraplegia families 
(Beetz et al., 2008). However, in these studies no functional experiments were performed. 
Jensen et al., aimed to study the role of miRNAs in human behaviours; as the deletion of 
serotonin receptor 1B (HTR1B) has been shown to cause aggressive behaviour in mice, the 
authors analyzed the gene’s 3’UTR. A common polymorphism in the serotonin receptor 1B 
affecting the target site for miR-96 was shown to be associated with aggressiveness in 
humans (Jensen et al., 2008). Finally, a polymorphism in fibroblast growth factor 20 (FGF20) 
conferring a risk to Parkinson’s disease was shown to disrupt a miR-433 target site. Unlike 
other studies, the authors went further to provide human in vivo validation of this target 
site and a molecular mechanism by which differential miR-433 targeting leads to 
Parkinson’s disease. According to their report, disruption of miR-433 target site leads to 
increased FGF20 translation, which in turn, increases alpha-synuclein expression and 
ultimately causes Parkinson’s disease (Wang et al., 2008b). 

5.2.1 Trans-deregulation of miRNAs and anxiety disorder 

Under the same hypothesis, the possible implication in anxiety disorders of genetic variants 

affecting miRNA-mediated regulation of candidate genes has been already studied in the 

particular case of the neurotrophic tyrosine kinase 3 gene, NTRK3. Based on the recent 

discovery of miRNA-mediated regulation for different isoforms of this gene (Laneve et al., 

2007; Guidi et al, 2010) NTRK3 was analyzed as a predisposition factor for anxiety disorders 

by re-sequencing the different 3’UTRs of two different isoforms of the gene (Muiños-

Gimeno et al., 2009). The study led to the identification of several variants in the 3’UTR of 

the truncated isoform of this gene (Table 1). Remarkably, one common SNP (rs28521337) 
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was found to be associated with obsessive-compulsive disorder. Nevertheless, this 

association did not resist correction for multiple testing in the obsessive-compulsive 

disorder sample and was only statistically significant for the hoarding sub-clinical type of 

this disorder, suggesting a different pattern of genetic inheritance for this group of patients, 

which would be in agreement with recent reports that indicate that hoarding subphenotype 

may constitute a neurobiologically and etiologically distinct variant of obsessive-compulsive 

disorder (Miguel et al., 2005; Samuels et al., 2007), being highly heritable as a quantitative 

trait (Mathews et al., 2007).  In the same study, other two rare variants in the 3’UTR of the 

truncated isoform of NTRK3 were identified, one of them is located in the target site and, 

specifically, in the sequence that binds to the seed region of miR-765 and the second variant 

in the target site for two different miRNAs, miR-509 and miR-128, the latter being a brain-

enriched miRNA involved in neuronal differentiation and synaptic processing. 

Interestingly, after mutagenesis and functional analyses of these two variants, both of them 

were shown to cause a significant alteration in the miRNA-mediated regulation of NTRK3 

resulting in the recovery of gene expression when compared with the control sequence 

(Muiños-Gimeno et al., 2009). On the other hand, the contribution of rs28521337 to the 

susceptibility to obsessive-compulsive disorder remains unclear because, although the 

variant is located in the seed region of a validated target site for miR-485-3p, it did not 

significantly change the affinity and efficiency of this miRNA. Albeit it is possible that 

rs28521337 is only in linkage disequilibrium with the real cause of the disorder, the 

possibility that this SNP might be altering the expression of NTRK3 in a miRNA 

independent mechanism or that HeLa cells, the cell type used for the functional study, lack 

the additional cofactors required for the release of miRNA mediated repression of NTRK3 

cannot be excluded. In this sense, it would be interesting to analyze the functional 

consequences of this SNP in a more biologically relevant context.  

On the other hand, contribution to disease of the two rare allelic variants at the population 
level remains low, due to the fact that these variants were only identified in one male patient 
with panic disorder and agoraphobia, each. While it is widely accepted that rare allelic 
variants contribute little to heterozygosity, their putative role on disease cannot be ruled out 
as emphasized by the results on recent whole genome association studies, which have failed 
to identify major alleles for most of the disorders studied. These studies point out that 
susceptibility alleles are likely to be modest in effect size requiring large samples for 
detection (Sklar et al., 2008). Similarly, the rare allelic variant in the 3’UTR of SLITRK1 
affecting the binding of miR-189 was only identified in two patients with Tourette syndrome 
and in none of the controls tested (Abelson et al., 2005). However, as previously mentioned, 
other groups (Keen-Kim et al. 2006) were unable to replicate the study and identified this 
rare allelic variant among cases and controls within the same families. In their opinion these 
results indicate that the variant does not segregate with the disease and that the results from 
Abelson et al. might be confounded by hidden population stratification (Keen-Kim et al., 
2006). Confounding might originate on the fact that the screening for new causative allelic 
variants was carried out only in cases. Nevertheless, that the rare variant did not segregate 
completely with the disease may be explained, at least partly, by the difficulty, that the 
study of psychiatric disorders encompasses. In Tourette syndrome, as in anxiety disorders, 
diagnoses may not always be correctly assessed as most cases are mild and may remain 
undiagnosed. Moreover, genetic and environmental factors are likely to be involved in their 
aetiology and, consequently, among family members of an affected person, it is difficult to 
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predict who else may be at risk of developing the condition, in other words, their 
inheritance patterns are unclear. This fact underlies a heterogenic basis of the disorder, in 
which cases substantially differ from one another, even though they are considered to suffer 
from the same disease. Thus, most probably, environmental factors, genetic epistasis and/or 
accumulation of rare variants might be on the back of the susceptibility to these disorders. 
Consistently, the case-control studies that we performed with the SNP panel covering 
miRNA regions in panic disorder resulted on moderate associations for several miRNA 
regions and, in addition, increase of risk in most of the cases was in general moderate as 
indicated by Odds Ratios and Confidence Intervals. These findings are therefore in line with 
the genetic heterogeneity theory proposed for anxiety disorders. 
Other interesting methods used for the study of anxiety are based on a cross-species 
approach addressed to identify genes that regulate anxiety-like behaviour. Using this kind 
of approach, a SNP in the 3’UTR of the aminolevulinate dehydratase (ALAD) was found to 
be associated with social phobia. Even though this is not a true poly-miRTS study, this 
association is of particular interest since the authors comment on the possibility that this 
SNP generates an illegitimate target site for miR-211 and miR-204 -as predicted by a miRNA 
target prediction program- (Donner et al., 2008). In this regard, an important bottle-neck in 
the study of poly-miRTS is the identification of miRNA target sites itself. As part of the 
effort to understand interactions between miRNAs and their targets, computational 
algorithms have been developed based on observed rules for features, such as the degree of 
hybridization between the two RNA molecules. These in silico approaches provide 
important tools for miRNA target detection and, together with experimental validation, help 
to reveal miRNA target genes.  

6. Conclusions 

Anxiety disorders have long been believed to have abnormal neural regulatory mechanisms 
underlying symptom manifestation. We here propose that this deregulation is mediated, at 
least partially, by defective miRNA action, that consequently derives in dosage changes of 
proteins involved in central nervous system function. Mutations in miRNA target sites, such 
as those found in the NTRK3 gene, that might be affecting miRNA regulation, as well as 
anomalous dosage of miRNAs themselves, as observed for miR-18a, could be responsible 
for a disruption in the accurate equilibrium of complex brain functions, contributing to the 
development of anxiety disorders. In fact, miRNA expression differences between mice 
strains have been already showed to play a significant role in mice behaviour and have 
pinpointed to miR-34c and miR-323 as potential candidate genes for anxiety disorders. 
Moreover, the finding of at least four miRNAs (miR-22, miR-138-2, miR-148a and miR-488) 
associated with panic disorder that repress genes that have been previously involved in 
anxiety disorders, namely, NTRK3, RGS2, GABRA6, CCKBR, BDNF, HTR2C and MAOA, 
provides important new evidence that variation in genes coding for miRNAs may mis-
coordinate a number of risk genes and thereby contribute to the development of panic 
disorder. Taken together these data demonstrate the importance that alterations in the 
complex circuitry of gene regulation, in which miRNAs are involved, may have, not only in 
the fine functioning of the human central nervous system, but also in other physiological 
pathways linked to the development of stress-related disorders, further sustaining the 
hypothesis that miRNA-induced differential dosage may be participating in the aetiology of 
anxiety disorders.  
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7. Future perspectives 

Overall, the genetic complexity observed for anxiety disorders, where multiple alleles -rare 
or common- in protein coding genes or in regulatory elements might contribute 
independently to marginal increases of risk, together with the fact that these disorders are 
also influenced by environmental factors, evidences that traditional association analyses are 
probably underestimating the contribution of an analyzed locus to the studied disorder. In 
fact, methods based on linkage disequilibrium such as case-control analyses -using 
candidate genes or whole genome studies- have shown little success in identifying causative 
variants for anxiety disorders. Hence, the use of new high-throughput sequencing 
technologies and an increase of sample sizes would be of great help to dissect the 
underlying molecular causes of these complex disorders. In fact, the improvement and price 
reduction of these technologies are starting to make this type of analyses feasible nowadays. 
On the other hand, the recent and increasing evidence that supports an important role for 
regulatory regions in shaping phenotypes that, in last term, might be related to disease, 
makes the inclusion of these elements in future analyses of every single disorder of crucial 
importance. This is particularly true in the case of miRNAs; the rapid growth in the 
discovery of functional miRNA targets, as well as the involvement of new miRNA-related 
mechanisms in disease must be accompanied by an improvement in the tools needed to 
explore this new miRNA world. The latter should include the generation of proficient 
prediction algorithms and validation tools for the identification of miRNA target genes as 
well as generation of computational and experimental approaches to better understand how 
polymorphisms might be affecting pre-miRNA transcription, structure and mature miRNA 
expression and processing. In this sense, once potential causative allelic variants are 
identified, their contribution to disease remains always controversial and may only be 
assessed by means of functional experiments that demonstrate their possible involvement in 
the disorder. Accordingly, implementation of new functional approaches, as the ones 
presented along the chapter, are needed to identify candidate biological pathways involved 
in anxiety. We would finally like to encourage the current view that underlines the 
importance of converging data from genetics, analysis of cognitive function, study of animal 
models and neuroimaging in order to achieve a more integrative picture of complex human 
disorders in the near future.  
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