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MicroRNAs influence hematopoietic differentiation, but little is known about their 

effects on the stem cell state. Here, we report that the microRNA processing 

enzyme Dicer is essential for stem cell persistence in vivo and a specific 

microRNA, miR-125a controls the size of the stem cell population by regulating 

stem/progenitor cell (HSPC) apoptosis. Conditional deletion of Dicer revealed an 

absolute dependence for the multipotent HSPC population in a cell autonomous 

manner, with increased HSPC apoptosis in mutant animals. An evolutionarily 

conserved microRNA cluster containing miR-99b, let-7e and miR-125a was 

preferentially expressed in long term HSCs. miR-125a alone was capable of 

increasing the number of hematopoietic stem cells in vivo by more than eight fold. 

This was accomplished through a differentiation stage-specific reduction of 

apoptosis in immature hematopoietic progenitors, possibly through targeting 

multiple pro-apoptotic genes. Bak1 was directly down-regulated by miR-125a and 

expression of a 3’UTR-less Bak1 blocked miR-125a-induced hematopoietic 

expansion in vivo. These data demonstrate cell-state-specific regulation by 

microRNA and identify a unique microRNA functioning to regulate the stem cell 

pool size.   
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\body Hematopoietic stem cells (HSC) self-renew and differentiate to form all blood 

cells throughout animal life. The intricate balance between these two characteristic stem 

cell states is required for maintaining hematopoietic homeostasis and responding to 

tissue injury. Stem cell population size is tightly regulated and thought to be dictated by 

rates of proliferation, relative frequency of differentiative versus self-renewal outcomes 

and apoptosis. Disruption of any of these processes could lead to stem cell exhaustion 

or increased risk of leukemogenesis (1-5). However, the molecular events specifying 

stem cell population size are still poorly understood.  

MicroRNAs are emerging as a class of important cellular regulators that mediate cell 

state with specific patterns of microRNA expression demarcating developmental or 

differentiation stages (6-8). They are transcribed as longer primary microRNAs and their 

maturation is dependent on the RNase III enzyme, Dicer (9-13). In the blood system, 

multiple microRNAs have been found to direct differentiation, e.g. miR-181 for T cells 

(14), miR-150 for B cells (15, 16) and miR-223 for granulocytes (17-19). We have shown 

that miR-150, shunts megakaryocyte and erythrocyte common progenitors (MEP) toward 

megakaryocytes (20). To date, all known microRNAs reinforce specific lineage outcome 

and no specific microRNAs are known to regulate the number of stem/progenitor cells in 

the hematopoietic system.  

 

RESULTS 

Hematopoietic ablation of Dicer impaired the hematopoietic stem/progenitor 

compartment 

We hypothesized that microRNAs regulate HSCs and first evaluated this using a mouse 

with a conditional allele of the microRNA processing enzyme Dicer (10, 13). Dicerlox/lox 

mice were bred with MxCre mice, which express the Cre recombinase in response to 
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interferons (IFN) and can be experimentally induced with high efficiency in blood cells, 

including HSCs, via peritoneal injection of polyI:polyC (pIpC) (4, 5, 21). Mice with the 

genotypes of Cre+Dicerlox/lox (mutant) and Cre+Dicerwt/wt or Cre+Dicerlox/wt littermates 

(control) were used as we did not observe differences between Cre+Dicerwt/wt and 

Cre+Dicerlox/wt mice.  

HSC alteration by Dicer loss was assessed by long-term repopulation, a definitive 

assay for HSCs. Whole bone marrow (BM) from control or mutant mice (CD45.2+) prior 

to pIpC treatment were mixed 1:1 with wild-type competitor BM (CD45.1+) and 

transplanted into lethally irradiated recipient mice (CD45.1+). Seven doses of pIpC were 

administered 5 weeks after transplantation given every other day over a course of 13 

days. The day of the last pIpC injection was counted as day 0. The contribution to T, B 

and myeloid lineages in the peripheral blood (PB) was monitored over time (Figure 1A 

and B, Figure S1). While both mutant and control groups showed ~50% overall donor 

type (CD45.2+) reconstitution before pIpC injection, reconstitution by mutant marrow 

markedly declined after pIpC treatment, and remained reduced until 20 weeks post-

pIpC, when donor contribution was primarily stem-cell-derived. The reduction in 

reconstitution by mutant BM could also be observed in secondary transplant recipients 

(Figure S1C), underscoring the importance of Dicer in HSCs.  

Two lines of evidence support the notion that HSPCs are impaired by Dicer loss, 

rather than the alternative possibility that the reduction in mutant marrow repopulation 

capacity is completely due to impairing multiple independent committed lineages. First, 

mutant marrow gave reduced donor cell contribution to the Lin-Kit+Sca+ (LKS) population 

(Figure 1C), which contains all HSCs and multipotent progenitors. In addition, this 

reduction paralleled in magnitude the reduction in committed cell types. Second, the 

decline of mutant BM reconstitution occurred progressively after pIpC treatment over a 

period of 8-10 weeks (Figure 1A). Importantly, the drop in myeloid reconstitution was 
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evident as early as 1 day after the last dose of pIpC (13 days after initiation of pIpC), 

while the lymphoid lineages were still intact at this time (Figure S1D). This is consistent 

with the difference in the turnover rate among these lineages, with the rapidly turning-

over myeloid cells reflecting damage in the immature hematopoietic pools earlier than 

the longer-lived lymphoid populations. While we regard these data as consistent with an 

effect on more primitive cells, we cannot exclude and do not assert that Dicer deletion 

does not have effects on lineage committed cells. 

Donor cells were present months after pIpC treatment with largely normal lineage 

distribution (Figure S1A) raising the possibility that Dicer was not essential for HSPC 

function or that some HSCs had escaped Cre mediated Dicer excision. To evaluate this, 

we sorted donor cells from the PB 6 months post transplant (Figure S2A). Analyses of 

the genomic DNA indicate that all mice transplanted with control Cre+Dicerlox/wt cells 

showed complete deletion of the loxed alleles, however, in mice that received mutant 

Cre+Dicerlox/lox cells, the loxed allele (functionally wild type allele) persisted (Figure S2A, 

top table). To test deletion at a clonal level, donor-type (CD45.2+) BM cells were sorted 

and plated into methylcellulose. No colonies could be identified with a DicerΔ/Δ genotype 

(0/34) (Figure S2A, bottom table). In contrast, the control Dicerlox/wt colonies all showed a 

DicerΔ/wt genotype (38/38). DicerΔ/Δ colonies were also completely absent from BM cells 

of un-manipulated mutant animals following pIpC injections, whereas control Dicerlox/wt 

BM colonies again displayed 100% deletion of the loxed allele (Figure S2B). These data 

support that homozygous Dicer deletion is incompatible with a functional HSC state.   

To evaluate the basis for cell loss, apoptosis was assayed immediately following 

pIpC treatment in otherwise un-manipulated mice. LKS cells, Lin-Kit+Sca- (L-K+S-) cells 

(containing myeloid progenitors) and another heterogeneous population Lin-Kit-Sca+ (L-

K-S+) (22, 23) were examined for caspase-3 activation. Mutant LKS cells displayed a 

consistent and significant increase in apoptosis, whereas the L-K+S- myeloid progenitors 
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and L-K-S+ population were less affected (Figure 1D and S3A). Meanwhile, mutant BM 

demonstrated increased Ki67 staining, suggesting a compensatory response to cell loss 

(Figure S3B, C) following pIpC treatment. Similar results were observed when Dicer 

deletion was induced by IFNβ in FACS purified HSPCs in vitro (Figure S4).  

The notion that Dicer loss causes apoptosis in HSPCs predicts that stem cell niche 

could be vacated to allow engraftment of exogenous stem cells. We tested this 

possibility by transplanting 5x106 wild-type BM (CD45.2+) mononuclear cells into control 

or mutant animals (CD45.1+) following 7 doses of pIpC, but without irradiation (Figure 

S3D). Indeed, minimal engraftment was observed in control mice as would be expected 

from the few available stem cell niches at homeostasis. In contrast, robust CD45.2+ 

donor engraftment was observed in mutant mice, with contribution to both myeloid and 

lymphoid lineages five months post-transplantation (Figure S3D, red gate). These data 

further support HSPC impairment by Dicer loss and suggest HSC death caused by Dicer 

deficiency.  

Taken together, the data above indicate that Dicer is necessary for HSPCs and its 

loss compromises HSPC function in a manner consistent with stem cell death. 

 

A microRNA cluster preferentially expressed in LT-HSCs 

Since microRNAs are major substrates for Dicer and microRNAs specify cellular states, 

we hypothesized that specific microRNAs contribute to the functional maintenance of a 

HSC state, as defined by persistent self-renewal capability coupled with multilineage 

differentiation capacity. To identify such microRNAs, we performed microRNA 

expression profiling in multiple stem cell and progenitor populations with well-defined 

markers using a bead-based expression analysis platform (6, 20) followed by RT-PCR 

validation (Figure 2A and B, Figure S5A). Interestingly, hierarchical clustering indicates 

that microRNA expression profiles reflect self-renewal and multipotency, with the more 
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primitive populations clustered closely (Figure 2A). Specifically, we found multiple 

microRNAs preferentially expressed in populations that self-renew (Table S1). Of 

particular interest, three microRNAs, miR-99b, let-7e and miR-125a, were highly 

expressed in long-term (LT) HSCs compared to other populations (Figure 2B and S5A). 

These three microRNAs display a complete evolutionary conservation among mammals 

and organize in a cluster spanning a ~600 bp region on chromosome 19 in human and 

17 in mice (Figure S5B).   

We tested the function of the miR-99b-let-7e-miR-125a cluster in regulating HSCs 

using retroviral expression (vector also expresses GFP) followed by transplantation (20). 

BM cells expressing the microRNA cluster showed enhanced reconstitution in all major 

blood lineages after long-term transplantation (Figure 2C and D). In contrast, 

reconstitution by control-vector-transduced cells declined over time (Figure 2C). The 

increase in multi-lineage reconstitution by the miR-99b-let-7e-miR-125 cluster persisted 

in secondary transplantation (Figure S6A), consistent with an effect on HSCs. This 

increase in reconstitution was not due to a difference in transduction efficiency of the 

cluster versus control vectors, as both were similar immediately post-transduction 

(Figure 2C). 

 

A single microRNA, miR-125a, augmented HSC activity 

Individual microRNAs in the cluster were then analyzed. MiR-125a alone, but not miR-

99b or let-7e, provided comparable increase in long-term multi-lineage reconstitution 

(Figure 3A, B, C and D). Remarkably, this enhancement appears to occur in the 

absence of a specialized BM microenvironment or niche, as 18-day ex vivo culture in the 

presence of miR-125a preserved robust stem cell activity, which was completely lost in 

the control cultures (Figure 3E and S6B).  
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We next sought to determine if endogenous miR-125a regulates primitive 

hematopoietic cell function. To this end, we used antagomir against miR-125a, a 

chemically synthesized cell-permeable microRNA inhibitor (24). This sequence-specific 

inhibitor of miR-125a did not affect methylcellulose colony morphology or numbers in 

primary cultures, but drastically reduced colony formation in subsequent serial replating 

cultures (Figure 3F). Since this assay is an in vitro surrogate for self-renewal, these data 

are consistent with miR-125a regulation of HSPC self-renewal. 

 

MiR-125a amplifies the HSC pool size 

To more precisely quantify the effect of miR-125a on stem cells, we performed the 

competitive limiting dilution assay (LDA). The need for this functional assay was 

substantiated by the observation that conventional stem cell surface markers were 

markedly changed with miR-125a ectopic expression, precluding accurate immuno-

phenotypic enumeration. LDA analysis was performed using total GFP+ BM cells from 

recipients after 4-5 months in primary transplantation (Table 1). The number of myeloid 

cells predominated with a reduced proportion of lymphoid cells (Table S2 and Figure 

3D). We scored both myeloid (Mac1+) and lymphoid lineages (B220+ or CD3+) in our 

LDA with ≥1% as cutoff. Although the apparent frequency of reconstituting HSCs varied 

between experiments (presumably due to different extent of HSC exhaustion under this 

experimental setting), we could consistently detect >8 fold expansion of the 

reconstituting HSC pool (Table 1).  

 

MiR-125a-induced stem cell amplification is cell-stage-specific   

We next sought to determine if miR-125a expression confers self-renewal capacity 

regardless of the ground cell state. Purified common lymphoid progenitors (CLP), 

common myeloid progenitors (CMP), granulocyte and macrophage progenitors (GMP) 
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and megakaryocyte and erythrocyte progenitors (MEP), as well as the LKS cells were 

tested for their ability to gain or maintain the stem cell property of self-renewal with 

forced expression of miR-125a (Figure 3G). The production of mature cells in the PB 

from CLP, CMP, GMP and MEP was minimal and disappeared completely in the early 

weeks (3-6 weeks) post-transplantation. In contrast, LKS cells transduced with miR-125a 

reconstituted >70% of PB starting from 3 weeks post-transplantation and lasted 5 

months (Figure 3G) and through secondary transplantation (see limiting dilution assays 

Table 1 and S2). Similar results were obtained with further purified HSCs (LKSCD48-

CD150+) as the starting population (Figure 3H). These results indicate that miR-125a 

was insufficient to induce self-renewal in committed progenitors; its effect depends upon 

the underlying cell state.   

 

MiR-125a protected primitive hematopoietic cells from apoptosis 

Lastly, since Dicer loss induced apoptosis in HSPCs, we asked whether expression of 

miR-125a may protect primitive cells from apoptosis. BM from mice transplanted with 

control- or miR-125a-transduced cells were analyzed for apoptosis after re-

establishment of homeostasis. We consistently observed decreased apoptosis in miR-

125a-tranduced cells in the lineage-negative population, but not in the more mature 

lineage-positive cells (Figure 4A-B), indicating a cell-type-specific effect of miR-125a. 

These data are consistent with the anti-apoptotic effect being at least partially 

responsible for the increase in the reconstituting cell pool.  

 

MiR-125a regulates the pro-apoptotic protein Bak1 

Given the reduced apoptosis in primitive cells and the greatly expanded HSC pool size, 

we reasoned that miR-125a could target pro-apoptotic proteins to tilt the cellular balance 

of pro- and anti-apoptotic signals. miR-125a is predicted to target over 500 evolutionarily 
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conserved targets (25), a number of which have been reported with roles in apoptosis 

either directly or indirectly. We examined the pro-apoptotic protein, Bak1 (Bcl-2 

antagonist/killer1). HL-60 or BaF3 cells were transduced with miR-125a or the control 

vector. In both cases, miR-125a expression reduced endogenous Bak1 protein by ~40-

50% (Figure 4C and S7A). Scanning the 3’ untranslated region (UTR) of Bak1 revealed 

one conserved miR-125a targeting site (Figure S5C). To ascertain whether the inhibitory 

effect of miR-125a was mediated through the specific target site in its 3’UTR, we fused 

the UTR sequence to a luciferase reporter. MiR-125a caused ~50% inhibition of the 

luciferase activity. In addition, mutation of the conserved targeting site alleviated most of 

the inhibition by miR-125a (Figure 4D). Consistent with the observation that miR-125a is 

the single microRNA within the miR-99b-let-7e-miR-125a cluster that mediates HSC 

expansion, miR-125a inhibited the Bak1 3’UTR construct (Figure S7B), whereas miR-

99b and let-7e had minimal effect.  

We next asked whether forced expression of Bak1 could block miR-125a-mediated 

hematopoietic expansion. We co-expressed miR-125a with either control or Bak1 in 

donor marrow (Figure 4E-F and S8). Co-expression events were marked with DsRed-

Express and GFP double positive cells as miR-125a and Bak1 are expressed from 

vectors that also carry these two fluorescent proteins respectively. The percentages of 

all three populations increased during 6 days of in vitro culture. Although the increase for 

cells expressing Bak1 was always slower, Bak1 expressing cells were clearly detectable 

at all times and therefore the levels of Bak1 were not simply eliminating transduced cells 

(Figure 4E and S8). Upon transplantation, miR-125a and control vector co-transduced 

marrow expanded as expected (Figure 4F). In contrast, donor marrow co-expressing 

miR-125a and Bak1 failed to contribute to PB at detectable levels, despite similar 

percentages of double positive cells 2 days after infection (1.12% and 1.02% for control 

and Bak1, respectively. Figure 4E). This data demonstrate that sustained Bak1 
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expression blocks miR-125a-induced hematopoietic expansion. To evaluate whether 

blocking Bak1 mimics the effect of miR-125a, we examined HSCs in mice engineered to 

be deficient in Bak1 (26, 27). We did not observe significant alteration in phenotypic and 

functional HSCs from Bak1-/- marrows, suggesting either that miR-125a achieves 

hematopoietic expansion through targeting additional targets simultaneously (see 

discussion) or that the compensatory expression of Bak1 family members in the 

constitutive knock-out may obscure a more potent effect of Bak1.  

Taken together, out data indicate that miR-125a protects HSPCs from apoptosis and 

promote extensive expansion of the hematopoietic stem cell pool.  

 

DISCUSSION 

We report an essential role of Dicer for HSPC maintenance and the identification of a 

single microRNA, miR-125a, capable of positively regulating HSC regeneration of 

hematopoiesis at least in part by reducing apoptosis. We provided multiple lines of 

evidence indicating HSPC impairment and increased apoptosis induced by Dicer 

deficiency, but our data do not exclude that Dicer loss may also impair more 

differentiated cells or the differentiation process itself (12, 15, 28, 29). Further, they 

cannot exclude that some of the impact of Dicer deletion may be augmented by the 

conditions under which we deleted that gene. The use of pIpC intentionally induces 

interferons and recent findings indicate that interferon signaling modulates HSCs (30, 

31), it is thus possible that pIpC-activated HSPCs are more susceptible to the 

deleterious effect of Dicer loss.  

The basis for the Dicer effect on HSPC is thought to be its role in microRNA 

processing. To that end, we identified miR-125a to amplify HSC number and protect 

primitive cells against apoptosis. Apoptosis modulation has been shown to alter HSCs  

in vivo with either forced Bcl-2 expression (32, 33) or MCL-1 deletion (34). We show that 
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miR-125a has a differentiation stage specific effect increasing the relative abundance of 

cells in the stem cell state by preventing their apoptosis. The anti-apoptotic effect of miR-

125a is associated with its ability to down-regulate a pro-apoptotic protein Bak1. Bak1 is 

a direct target of miR-125a. We did not observe altered HSC number/activity in Bak1-/- 

mice. These data could be due to compensation by other Bak1 relatives in the 

constitutive knock-out or that additional direct or indirect pro-apoptotic protein targets are 

required for the phenotype induced by miR-125a. Given that miRNAs generally have 

multiple targets (25), it is certainly possible that their effect depends upon the 

combinatorial action of several molecules. Our data merely support that Bak1 is likely to 

be one of those molecules. This notion is supported by the fact that Bak1-/-Bax-/- mice 

displayed increases in both myeloid and lymphoid lineages (27). Indeed, we observed 

Puma (Bbc3) protein down-regulation by miR-125a in BaF3 cells, whereas BMF is a 

target for a miR-125a family member (35). While it is technically difficult to mimic the 

down-regulation of multiple anti-apoptotic proteins in HSCs simultaneously, we 

demonstrate that sustained Bak1 expression ablates the ability of miR-125a to induce 

hematopoietic expansion, supporting a role of the apoptotic pathway in mediating the 

effect of miR-125a. Recently, human p53 has been reported to be targeted by miR-125b 

(36), a homolog of miR-125a. However, the targeting site identified in this study is not 

conserved in mouse, consistent with our observation of a lack of significant effect of 

miR-125a on mouse p53 3’UTR reporter. Hence p53 is an unlikely candidate that 

accounts for the superior HSC expansion seen with miR-125a. 

In addition to the effect on stem cells and the amplification of all major lineages, we 

also noticed that sustained expression of miR-125a skewed lineage distribution, favoring 

the myeloid fate and compromising the B lymphoid fate (Figure 3D and Table S2). 

Although the endogenous level of miR-125a is high in LT HSCs and much lower in 

progenitors, we do not exclude a role for miR-125a in committed hematopoietic 
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progenitors, during lineage commitment or in more mature blood cells. Since HSCs are 

heterogeneous, it is also possible that miR-125a may have selectively expanded a more 

myelogenic subtype (designated α type HSC by Dykstra et al. (37)) or influenced other 

subtypes to be more α-like. We also note that miR-125b has been reported to be 

involved in leukemic translocation suggesting the possibility that this microRNA can 

participate in malignant hematopoiesis (38), although the mechanism and cell of origin 

remain to be investigated.  

In summary, we report that microRNAs are actively participating in regulating the 

HSC state with sensitivity of HSPCs to the loss of the microRNA processing enzyme 

Dicer and with the unique capability to have HSC number increased by a single 

microRNA, miR-125a. The ground state of the cell affects its response to microRNAs 

and suggest that microRNA-based cell modification may be a means to achieve stem 

cell specific therapeutics.  

 

MATERIALS AND METHODS 

The Subcommittee on Research Animal Care of the Massachusetts General Hospital 

approved all animal work. The Dicerlox/lox mice were described before (28). All other mice 

were purchased from the Jackson Laboratory. Methylcellulose M3434 (StemCell 

Technologies) were used for colony forming assays. Luciferase reporter assay was 

preformed as described (20). MicroRNA expression constructs were cloned into 

pMIRWAY-GFP as described (20). Alternatively, GFP was replaced with DsRed-Express 

(Clonetech). For protein expression, the Bak1 open reading frame (ORF) was purchased 

from Invitrogen and subcloned into the pMIRWAY-GFP vector. Viral production, infection 

and bone marrow transplantation were performed as described (20). Except where 

specified, all data are mean ± SD. p values were calculated using 2 tailed, unequal 
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variance Student t test. More details for materials and methods are included in the 

Supporting Information.  

 

Supporting Information 

The Supporting Information includes eight figures and two tables. MicroRNA expression 

data have been deposited to GEO database.  
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FIGURE LEGENDS  

Figure 1. Dicer Deletion Abolishes Functional and Immuno-phenotypic HSPCs.  

(A) Peripheral blood chimerism by control and mutant BM in a 1:1 competitive 

transplantation assay. The 7 arrows indicate pIpC injections. Each dot on the line 

indicates the average donor-type cell percentage (%CD45.2+) at the indicated time 

points (d: days; w: weeks after pIpC injection). n = 15. (B) Lineage contribution by donor-

type cells 20 weeks after pIpC injections. Lineages analyzed include myeloid (Mac-1+), 

B (B220+) and T cells (CD3+). Error bars indicate standard deviation. * p < 0.05. (C) 

Representative FACS plot showing donor-type LKS cells in recipient BM 6 months post 

pIpC injections. (D) Intra-cellular flow cytometry for activated caspase-3 in three BM 

populations including the Lin-c-Kit+Sca+ (LKS), Lin-c-Kit+Sca- (L-K+S-) and Lin-c-Kit-

Sca+ (L-K-S+) cells.  

 

Figure 2. MiR-99b-let-7e-miR-125a Cluster Expression Enhances Long-term Multi-

lineage Reconstitution.  

(A) Heatmap of microRNA expression profiles of hematopoietic cells. Population 

designation: Sca+ = Lin-c-Kit-Sca+, BM = whole BM, K = Lin-c-Kit+Sca-, LKS = Lin-c-

Kit+Sca+, LT = Lin-c-Kit+Sca+CD34-Flk2-, MPP = Lin-c-Kit+Sca+CD34+Flk2+ and ST = 

Lin-c-Kit+Sca+CD34-Flk2+. Each column represents an independent sample. 

Populations were sorted from pooled BM cells from multiple animals on multiple days. 

Red color indicates higher expression; blue for lower. (B) Bar graph of data in (A) for 

miR-125a, miR-99b and let-7e. (C) 5FU primed wild type donor marrow was transduced 

with retrovirus expressing either control vector or miR-99b-let-7e-miR-125a (cluster) in 

addition to GFP. Contribution to PB by control or cluster-transduced BM cells (GFP+) at 

indicated time is shown. The first time point indicates GFP+% in the culture 2 days post-

transduction. wks:  weeks; mths: months. * p < 0.05. (D) Multi-lineage differentiation into 
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myeloid (Mac-1+), B (B220+) and T lineages (CD3+) among GFP+ cells 5 months post-

transplantation. C-D: n = 4-7 each.  Error bars indicate standard deviation.  

 

Figure 3. MiR-125a Enhances Hematopoietic Stem Cell Function.   

The miR-99b-let-7e-miR-125a cluster or individual miRNA was transduced and 

transplanted as in Figure 2C. PB contribution by transduced BM cells was analyzed 4 

months post-transplantation. (A) Representative FACS plots. (B) Quantification of data 

shown in (A). (C) Comparison of contribution to blood formation by control or miR-125a 

alone (125a). The first time point (3 days) indicates GFP+% in the culture post-

transduction. (D) Multi-lineage differentiation by transduced BM cells. For B-D: n = 1-5 

per group per time point shown. (E) Contribution to blood formation by transduced BM 

cells that were cultured ex vivo for 18 days. n = 4 for control (Ctrl) and n =5 for miR-125a 

(125a). (F) Serial methylcellulose colony formation in the presence of a control or miR-

125a-specific antagomir. Representative fields from primary (10) and secondary (20) 

cultures. (G-H) Purified HSPCs were transduced with control or miR-125a and 

transplanted. PB contribution in recipients was quantified. See Supporting Information 

for population definition. Each animal received either (H) 100 SLAM, (G) 1,000 LKS or 

10,000 progenitors together with 2.5 x 105 supporting BM cells. n = 5 except for miR-

125a-transduced CMP (n = 4). Error bars reflect standard deviation. 

 

Figure 4. MiR-125a Inhibits Immature Hematopoietic Cell Apoptosis and Targets 

Bak1 

(A) Selective protection against apoptosis by miR-125a in lineage negative cells. BM 

cells were analyzed for lineage markers (Lin), AnnexinV and 7-AAD with flow cytometry. 

AnnexinV histograms show Lin- and Lin+ populations after gating for 7-AAD negative 

cells. Lin- population is defined as the lowest 3% cells expressing lineage markers. n=5. 
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(B) Quantification of data in (A). Percentage of AnnexinV+ (AV+) cells present in 7AAD-

Lin-GFP+ cells are shown. n = 5.  * p < 0.05. (C) HL-60 cells were transduced with miR-

125a or a control vector (Ctrl). Western blot was probed for Bak1 and β-actin. (D) 

Luciferase reporters of WT (wide-type) or Mut (mutant for miR-125a site) Bak1 3’UTR 

was analyzed in the presence of miR-125a or a control vector in 293T cells. Normalized 

luciferase activities are shown. Error bars represent standard deviation. (E-F) 5FU 

primed wild type donor marrow was co-transduced with miR-125a (DsRedExpress+) and 

a virus for either control or Bak1 (GFP+). Cells were (E) cultured in vitro for 6 days or (F) 

transplanted (n=4) and analyzed 4 weeks afterwards. The percentage of co-transduced 

cells (GFP+DsRedExpress+) in culture or in PB is shown.   

 

TABLE LEGENDS  

Total GFP+ bone marrow cells were FACS-sorted from primary recipients 4-5 months 

post-transplantation and transplanted into secondary recipients together with 200,000 

un-fractionated wild-type bone marrow cells at indicated cell doses. The number of 

GFP+ HSCs per two legs in each donor animal was calculated by multiplying GFP+ HSC 

frequency, donor GFP+% and donor BM cellularity.   

* Positive responder called if ≥1% GFP+ cells present in myeloid (Mac1+) and lymphoid 

(B220+ or CD3+) lineages 16 weeks post transplantation.   

† Bone marrows from 3 control mice were pooled to yield enough donor cells.  

‡ Calculated with L-Calc.  

§ p = 0.02. 

¶ p = 0.0001. 

║Certain animals were lost due to accidental dehydration. Initially 10 animals in group. 
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Table 1. Experimental scheme and positive responders in two independent limiting dilution assay 
experiments.    
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