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About 30% stage I non-small cell lung cancer (NSCLC) patients
undergoing resection will recur. Robust prognostic markers are
required to better manage therapy options. MicroRNAs (miR-
NAs) are a class of small non-coding RNAs of 19–25 nt and play
important roles in gene regulation in human cancers. The purpose
of this study is to identify miRNA expression profiles that would
better predict prognosis of stage I NSCLC. MiRNAs extracted
from 527 stage I NSCLC patients were profiled on the human
miRNA expression profiling v2 panel (Illumina). The expression
profiles were analyzed for their association with cancer subtypes,
lung cancer brain metastasis and recurrence/relapse free survival
(RFS). MiRNA expression patterns between lung adenocarcinoma
and squamous cell carcinoma differed significantly with 171 miR-
NAs, including Let-7 family members and miR-205. Ten miRNAs
associated with brain metastasis were identified including miR-145�,
which inhibit cell invasion and metastasis. Two miRNA signatures
that are highly predictive of RFS were identified. The first contained
34 miRNAs derived from 357 stage I NSCLC patients independent
of cancer subtype, whereas the second containing 27 miRNAs
was adenocarcinoma specific. Both signatures were validated
using formalin-fixed paraffin embedded and/or fresh frozen
tissues in independent data set with 170 stage I patients. Our
findings have important prognostic or therapeutic implications
for the management of stage I lung cancer patients. The identi-
fied miRNAs hold great potential as targets for histology-specific
treatment or prevention and treatment of recurrent disease.

Introduction

Stage I non-small cell lung cancer (NSCLC) patients are usually treated
with surgical resection and �30% will eventually have a recurrence (1).
It’s necessary to develop biomarkers that would reliably identify those
at high risk of relapse after surgery for modified adjuvant therapy to
potentially improve survival. Global transcriptome analysis has been
used extensively in identifying gene expression-based prognostic sig-
natures, but none of them have been proven robust enough for clinical
application (2). MicroRNAs (miRNAs) are small non-coding RNA
molecules �19–30 nt that regulate �60% human genes. Mammalian

miRNAs are generally encoded in introns in pre-messenger RNA
(mRNA) or the 3#untranslated region of mRNA. They reduce gene
expression by binding to complementary regions of mRNA and either
blocking translation or degrading mRNA through the argonaut com-
plex. The alteration of miRNA regulation has been implicated in car-
cinogenesis and disease progression (3,4). Generally, one miRNA is
predicted to regulate several hundred genes. As a result, miRNA pro-
filing could serve as a better classifier than gene expression profiling.

Several recent studies were published that correlated miRNA expres-
sion with outcomes in lung cancer using microarray (5–8). Yanaihara
et al. indicated that high hsa-miR-155 expression was a significantly
unfavorable prognostic factor in lung cancer. Raponi et al. (6) showed
MiR-146b alone had the strongest prediction accuracy at 78% for strat-
ifying prognostic groups of squamous cell carcinoma (SCC). Landi
et al. (7) observed markedly different miRNA expression profiles be-
tween adenocarcinoma (ADC) and SCC. In their study, no miRNAs
were associated with survival in ADC, whereas miR-25, miR-34c-5p,
miR-191, let-7e and miR-34a strongly predicted survival in SCC.
Patnaik et al. (8) demonstrated six miRNA classifiers (miR-200b,
miR-30c-1, miR-510, miR-630, miR-124 and miR-585) for recurrence.
These studies collectively showed the possibility of using miRNA
expression profiles to predict outcomes in lung cancer patients.

Compared with mRNA expression studies, it’s easier to study miR-
NA expression in archived formalin-fixed paraffin embedded (FFPE)
specimens using microarray. Small miRNAs are not affected by for-
malin fixation-induced cross-linking, and this may result in FFPE
miRNA expression levels similar to those found in fresh-frozen tissue
(9). Archived human tissues in paraffin blocks are a rich research
resource for miRNA as tissues found in most pathology departments
are available only in FFPE states. If validated in appropriately con-
ducted prospective studies, miRNA expression assays would be read-
ily applicable and useful in clinical laboratories where FFPE tissue
blocks are widely available but prospectively collected frozen tissues
for mRNA analysis are not. Here, we conducted a miRNA profiling
study on a cohort of 357 stage I NSCLC using FFPE specimens from
Washington University School of Medicine (WUSM) in St Louis. We
identified three miRNA signatures for recurrence/relapse-free survival
(RFS) prediction in all subtypes of stage I NSCLC or in ADC or SCC
specifically. An independent cohort of 170 stage I patients from
Mayo Clinic was used to validate the effectiveness of these signatures.
In addition, 10 miRNAs were identified to associate with brain
metastasis.

Materials and methods

Patients and tissue samples

The testing group included FFPE tumor tissues from 357 patients, which were
diagnosed with stage I NSCLC and underwent surgical resection between 1990
and 2005 in WUSM. The cancer subtypes include ADC, SCC, large cell carci-
noma, bronchioloalveolar carcinoma, adenosquamous carcinoma and large cell
neuroendocrine carcinoma (Table I). Follow-up ended on December 2009 or at
death. FFPE samples are made available from these patients. Tumor tissue
blocks were sectioned, stained with routine hematoxylin and eosin and reviewed
to identify areas of .70% tumor cellularity. Details regarding treatment and
follow-up procedures were published previously (1). The validation group
included 85 FFPE and 85 fresh-frozen tumor tissues from 170 stage I NSCLC
in Mayo Clinic. Nearly, two-third of patients were ADCs (Table I). All patients
had surgery between 1997 and 2008. All tumor blocks were reviewed and
confirmed by a Mayo pathologist before RNA extraction. None of patients
received any postoperative therapy in this study. The study was approved by
the WUSM Human Studies Committee and Mayo Clinic Institute Review Board.

miRNA expression microarray experiments

For each case, hematoxylin and eosin-stained slides were used to identify areas
containing at least 70% tumor nuclei with minimal necrosis. For FFPE tissues,

Abbreviations: ADC, adenocarcinoma; AUC, area under the curve; cDNA,
complementary DNA; FDR, False discovery rates; FFPE, formalin-fixed
paraffin embedded; miRNA, microRNA; mRNA, messenger RNA; NSCLC,
non-small cell lung cancer; RFS, recurrence/relapse-free survival; ROC,
received operating characteristic; SCC, squamous cell carcinoma; WUSM,
Washington University School of Medicine.
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the slides and blocks were aligned and the neoplastic areas were punched with
sterile, single-use 1 mm punches (Miltex, Tuttlingen, Germany). RNAwas then
extracted from the tissue cores using standard techniques detailed in the Supple-
mentary material, available at Carcinogenesis Online. For fresh-frozen tissues,
samples were pulverized at �80�C and total cellular RNA was collected using
TRIzol RNA isolation reagent (Invitrogen, Carlsbad, CA) and purified using the
miRNeasy Mini Kit and RNase-free DNase Set (Qiagen, Valencia, CA) according
to the manufacturer’s protocols. Illumina human miRNA expression profiling v2
panel on the 12-sample beadchip was used for this study. The human v2 miRNA
panel contains 1146 assays, for detecting .97% of the miRNAs described in the
miRBase database (miRBase Release 12.05). Total RNA was polyadenylated
using Poly(A) polymerase. Biotinylated oligo-deoxythymidine primer with a uni-
versal PCR sequence at its 5# end was used to make labeled complementary DNA
(cDNA). The biotinylated cDNA was hybridized to miRNA-specific oligos and
the mixture was bound to streptavidin-conjugated paramagnetic particles to select
the cDNA/oligo complexes. After the oligo annealing, miss-hybridized and non-
hybridized oligos were washed away. DNA polymerase was used to extend the
specific primer. The extended products were eluted and after PCR amplification,
the labeled single-stranded products were hybridized to the beadchip overnight at
45�C. Fluorescence intensity was measured by the Illumina BeadArray Reader.
The Gene Expression Omnibus accession number for microarray data of this
study is GSE29135.

Quantitative real-time PCR for miRNA expression

Quantitative real-time PCR analysis of HS_142.1, hsa-miR-512-5p, hsa-miR-
425, hsa-miR-615-5p, hsa-miR-668, has-miR-888, hsa-miR-34b, hsa-miR-34b�,
hsa-miR-34c-3p and hsa-miR-34c-5p was done by using an miRNA-specific
TaqMan MicroRNA Assay Kit (Applied Biosystems, Foster City, CA) and an
Applied Biosystems 7500 Fast thermocycler system. One hundred nanograms of
RNA was converted to cDNA using the ABI miRNA reverse transcription kits
and miRNA-specific primers (Applied Biosystems). After reverse transcription,
cDNA of patient and 10 ll of Universal PCR Master Mix without AmpErase
Uracil N-glycosylase (Applied Biosystems) was added to commercially avail-
able PCR primers and 6-carboxyfluorescein-labeled TaqMan probes (Applied
Biosystems). RNU44 and RNU6B small nuclear RNAs were used for normal-
ization of input RNA/cDNA levels. Each measurement was done in duplicate
and no-template controls were included for each assay. The variation of DCT

(CT,target � CT,control, where CT is cycle number at which the fluorescence signal
exceeds background) with template dilution was evaluated. The larger DCT, the
lower miRNA expression level is. T-test was performed to determine differences
between the group with recurrence in 2 years and the group without recurrence in
.7 years. The association of DCT with RFS was assessed using Cox regression
models and log-rank tests. A P-value of ,0.05 was considered to indicate
statistical significance.

Statistical and bioinformatics analysis

Data preprocessing. Principal component analysis was used to diagnose the
batch effects and the efficacy of the procession of removing them. All the
miRNA data were characterized by data source (WUSM and Mayo), sample
beadchips (usually 12 samples per beadchip) and tissue types (FFPE and fresh-

frozen tissues) (Plot A–C of Supplementary Figure S1, available at Carcino-
genesis Online), suggesting large batch effects among microarrays. The source
of the data is the major components contributing to batch effects; data points
are largely clustered into two groups. There are also large system difference
between some beadchips and tissue types. To reduce these potential batch
effects, analysis of variance was used to remove the system bias from different
institutes, sample beadchips and tissue types. These analyses were performed
by the Partek Genomics SuiteTM software package (www.partek.com). After
data transformation, data points from different institutes, plates and tissue
types were mixed uniformly (Plot D–F of Supplementary Figure S1, available
at Carcinogenesis Online). It implies that the systematic biases were largely
removed after adjustment and enhances confidence in the results. MiRNAs
with low variance across samples (i.e. coefficient of variation ,1% on the
log scale) were filtered out to alleviate multiple test problems in the following
data analyses.

Comparison of ADC with SCC. The miRNA expression differences between
stage I lung ADC and squamous cell lung cancer were tested for each individ-
ual miRNAs using two-sided t-test.

Identification of miRNAs related to lung cancer brain metastasis. To identify
miRNAs related to lung cancer brain metastasis, the expression was compared
between lung cancer samples with brain metastasis samples and lung cancer
samples with metastasis at other sites. Also, the comparison was performed
between recurrence-free lung cancer for .5 years and lung cancer relapsed
within 5 years. The differentially expressed miRNAs in the former, but not in
the later comparison, were defined as miRNAs related to lung cancer brain
metastasis (P , 0.01).

Identification of miRNAs associated with survival outcome. The outcome vari-
able is RFS (the time from diagnosis to the first evidence of locoregional or
distant recurrence). Patients were censored at the earliest of the following time-
points: death, development of second primary NSCLC, locoregional or distant
recurrence or last medical contact. Univariate or multivariate Cox proportional
hazards regression analyses adjusted for cancer stages (IA and IB) were per-
formed for each miRNA using all 357 FFPE samples from WUSM. Similar
analyses were also performed for each cancer subtype (ADC or SCC) sepa-
rately. The proportional hazards assumption for stage was investigated by
examining the scaled Schoenfeld residuals. Cancer stage displayed significant
deviation from the proportional hazards assumption; therefore, it was taken as
strata in the Cox proportional hazards model. False discovery rates (FDR) were
estimated (10), which was implemented in R library code file (robust-fdr.R,
downloaded from www.stjuderesearch.org/depts/biostats). miRNAs with FDR
,0.05 for their expression in regression models were defined as RFS-related
miRNAs.

Construction of predictor signatures based on miRNA expression. To develop
cancer subtype non-specific or cancer subtype-specific miRNA signatures pre-
dictive of RFS respectively, survival analyses were performed based on all
FFPE samples and only ADC or SCC patients from WUSM, respectively, using
the RFS-related miRNAs. Partial Cox regression method was performed to
construct predictive components (11). Then, these components were used in
the Cox model for building predictive models for cancer patient survival. The
principle components were chosen in the model to maximize discrimination

ability in the model. The risk scores were calculated by f ðxÞ5
PG

j51

b
�

j ðXj � �xjÞ,
where G represents the number of miRNAs, b

�

j represents the estimated co-
efficient of the jth miRNA, Xj represents expression levels of the jth miRNA in
all the samples and �xj51=n

Pn
i51 xij, where n is sample size and xij is the

expression level of miRNA j from sample i. All the samples were classified
into high-and low-risk groups according to the risk scores. Patients with risk
scores less than zero potentially have long-term RFS and those larger than zero
have short-term RFS after surgical resection. To choose an appropriate subset
of genes for signature, we carried out a forward selection and backward elim-
ination procedure. The forward selection procedure includes (i) increase one
gene each time and perform the partial Cox regression analysis as described
above to obtain the prediction accuracy using the chosen subset of genes;
(ii) add the gene which has the maximum prediction accuracy to gene set
and (iii) repeat steps 1 and 2 until the prediction accuracy is maximized. These
three steps were performed for each gene as the beginning, and then a series of
gene sets were obtained. The frequencies of genes in these gene sets were
ranked and the top 30% of genes were selected into backward elimination
procedure. The backward elimination procedure includes (i) remove one gene
each time and perform the partial Cox regression analysis to obtain the pre-
diction accuracy using the chosen subset of genes; (ii) remove the gene which
has the maximum prediction accuracy if removed in gene set and (iii) repeat
steps 1 and 2 until the prediction accuracy is maximized. The prediction accu-
racy (discrimination ability) was assessed by Somers’ Dxy rank correlation of

Table I. Clinical characteristics of subjects with stage I NSCLC in the
analyzed datasets

Washington University,
dataset 2

Mayo Clinic, dataset 4

FFPE FFPE Frozen

Total number of samples 357 85 85
Mean age (range) 66 (34–88) 64 (41–85) 64 (27–89)
Sex

Male 175 16 29
Female 182 69 56

Mean follow-up (years)
Total RFS 4.36 4.43 4.53

Alive 5.79 4.71 4.84
Dead 1.70 3.30 3.65

Stage
IA 174 60 46
IB 163 25 39

Histological type
ADC 189 50 60
SCC 106 5 1
Others 62 30 24

MicroRNA -expression profiles predict survival of lung cancer
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estimated risk score and real survival time. Somers’ Dxy is related to the C-index
by Dxy 5 2(C�0.5). C is the corresponding received operating characteristic
(ROC) curve area, which is a graphical representation of the pairs of false-
positive test results (specificity) and true-positive test results (sensitivity) for
the realizations of a quantitative test.

Comparison of miRNA predictors with stage information. Kaplan–Meier sur-
vival analyses were implemented to estimate the survival functions after the
samples were classified into two risk groups according to their risk scores.
Differences of the survival risk between the two risk groups were assessed
using the Mantel–Haenszel log-rank test. The similar analyses were done using
stage information (IA and IB). The larger area between the two risk groups and
its associated smaller P value from the Mantel–Haenszel log-rank test implicate
a better classification model.

To evaluate the predictive performance of the proposed survival signatures,
time-dependent ROC analysis for censored data was performed and area under
the curve (AUC) was employed as our criteria to assess survival predictions.
The larger the AUC, the better the prediction model is. AUC 5 0.5 indicates no
predictive power, whereas AUC 5 1 represents perfect predictive performance.

Confirmation of miRNA signatures in independent patient population. The
miRNA signatures were tested in FFPE samples and fresh-frozen tissues from
Mayo Clinic, separately. Kaplan–Meier survival analysis, Mantel-Haenszel log-
rank test and time-dependent ROC analysis were performed using the risk scores
which were calculated by a linear combination of the expression values for the
miRNAs in the signature weighted by their estimated regression coefficients.

All these statistical analyses were implemented using the R statistical package
(http://www.r-project.org/).

Bioinformatics analysis. DAVID bioinformatics resource was used to conduct
Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway
analysis on predicted targets of the miRNAs from the predictive signature. Most
frequently represented pathways are assigned a P value calculated with a mod-
ified version of Fisher exact test (P value cutoff of ,0.1), showing significance
of the association as compared with a random list using the human genome as
a background. TargetScanHuman v5.1 (http://www.targetscan.org/vert_50/) was
used for predicting targets of known miRNAs in miRBase. Targets for novel
miRNAs were predicted from the microT v3.0 (http://diana.cslab.ece.ntua.gr/
microT/).

Results

miRNA differentially expressed between ADC and SCC

Overall, miRNA expression profiles strongly differentiated ADC from
SCC in stage I patients. These include 145 miRNAs differentially
expressed between the two subtypes (P ,0.0001 and fold change
.1.2); 53 overexpressed in SCC and 92 ovrexpressed in ADC
(Table II). Twenty-three of 92 miRNAs ovrexpressed in ADC were
also observed in the study of Landi et al. (7), including multiple
members of the let-7 family. Hsa-miR-205 was significantly over-
expressed in SCC when compared with ADC (P 5 1.35 � 10�26,
3.4-fold higher in SCC), which is consistent with that observed in
previous studies (12,13).

miRNAs associated with survival outcome

The unadjusted survival analyses and the analyses adjusted by cancer
stage (IA and IB) produced 369 and 338 significant miRNAs (FDR
,0.01), respectively, for all cancer subtype combined, including 299
overlapped in both analyses (Supplementary Table S1 is available at
Carcinogenesis Online). Due to the observed significant differences in
miRNA expression between ADC and SCC, survival analyses were
also conducted separately for ADC and SCC patients. The unadjusted
survival analyses identified 263 miRNAs associated with RFS in ADC
(FDR ,0.05). One hundred and eighty-four miRNAs were associated
with RFS in the adjusted analyses with P ,0.05 but not significant in
global tests (FDR . 0.05). Comparing the sets of 263 and 184 miRNAs,
158 of them found overlapped (Supplementary Table S2 is available at
Carcinogenesis Online). The unadjusted survival analyses identified
114 miRNAs associated with RFS in SCC patients (P , 0.01) with
43 of them significant at the global level (FDR , 0.05). One hundred
and eighty-one miRNAs were associated with RFS in SCC patients by
the adjusted survival analyses (FDR , 0.05). One hundred and thirteen
of them were common in SCC (Supplementary Table S3 is available at
Carcinogenesis Online).

Fig. 1. Kaplan–Meier survival curves of RFS for stage I NSCLC. (A) All
NSCLC patients; (B) ADC patients; (C) SCC patients. The P-values were
calculated by log-rank test.

Y.Lu et al.
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Signatures to predict survival using miRNA expression profile

To determine whether a subset of the RFS-related miRNAs can be used
to predict survival of stage I NSCLC, risk scores were derived from
survival analyses using the partial Cox regression method. Kaplan–
Meier survival analyses were performed after the samples were classi-
fied into high-and low-risk groups according to the risk scores. Using
all 357 FFPE tissues from WUSM as training samples, we identified a
miRNA signature including 34 miRNAs (Signature I) to predict 5 years
RFS in stage I NSCLC. We also identified a 27-miRNA signature
(Signature II) from stage I lung ADC patients and a 17-miRNA signa-
ture (Signature III) from stage I SCC patients, respectively. Signature I
was identified from the miRNA list of adjusted survival analyses by
forward and backward algorithm; Signature II was identified from the
miRNA list of unadjusted survival analyses by forward and backward
algorithm and Signature III was identified from miRNA list of adjusted

survival analyses by forward algorithm. The associations of expression
levels with survival for each miRNAs in the signatures are shown in
Table II and Table III. Four miRNAs overlapped in Signature I and II,
including HS_142.1, hsa-miR-425, hsa-miR-615-5p and hsa-miR-512-
5p and another five miRNAs overlapped in Signature I and III, includ-
ing HS_215, HS_188, hsa-miR-892b, hsa-34a� and hsa-miR-888.

Kaplan–Meier survival curves could distinguish RFS among stage IB
from stage IA NSCLC to some extent (Figure 1A–C). However, the
high- and low-risk groups are more significantly different in their RFS
when using miRNA expression profiles (P � 1.53 � 10�8), which
showed larger area between two groups and smaller P-value from the
Mantel–Haenszel log-rank test (Figure 2A–C). To estimate the predic-
tive power of survival analysis using expression profiles, time-dependent
ROC analyses for 5 years RFS were performed for these signatures. Cox
model with risk scores estimated by miRNA expression gave the better

Table II. miRNAs that significantly differentiate ADC from SCC

miRNAs P-value FC miRNAs P-value FC miRNAs P-value FC

hsa-miR-205 1.35 � 10�26 �3.42 hsa-miR-378 1.04 � 10�7 �1.22 hsa-miR-101� 4.12 � 10�6 1.33
hsa-miR-944 7.51 � 10�29 �3.20 hsa-miR-942 9.64 � 10�6 �1.22 hsa-miR-32 5.47 � 10�5 1.33
hsa-miR-149 1.21 � 10�9 �1.90 hsa-miR-663 5.91 � 10�5 �1.21 hsa-miR-624� 1.22 � 10�7 1.33
hsa-miR-584 4.36 � 10�12 �1.76 hsa-miR-618 1.15 � 10�5 �1.20 hsa-miR-132 2.39 � 10�5 1.33
HS_170 1.61 � 10�07 �1.66 hsa-miR-34a� 9.88 � 10�11 1.90 hsa-miR-642 4.05 � 10�5 1.33
HS_74 7.09 � 10�06 �1.61 hsa-miR-375 2.04 � 10�13 1.82 hsa-miR-146b-5p 1.33 � 10�11 1.32
HS_116 3.56 � 10�10 �1.61 hsa-miR-29b-1� 4.60 � 10�14 1.81 hsa-miR-652 1.50 � 10�06 1.32
hsa-miR-1268 1.71 � 10�6 �1.60 hsa-miR-511 5.96 � 10�9 1.79 hsa-miR-29a 3.60 � 10�13 1.31
hsa-miR-875-5p 1.68 � 10�24 �1.59 hsa-miR-503 1.77 � 10�9 1.75 hsa-miR-193a-3p 2.79 � 10�5 1.31
hsa-miR-769-3p 7.03 � 10�7 �1.58 hsa-miR-29b-2� 8.28 � 10�13 1.74 hsa-miR-155 1.72 � 10�6 1.31
HS_303_b 3.11 � 10�10 �1.57 hsa-miR-497 1.26 � 10�8 1.70 Has-miR-361-5p 4.86 � 10�5 1.31
hsa-miR-124 1.66 � 10�6 �1.57 hsa-miR-542-5p 7.27 � 10�8 1.66 hsa-miR-744 5.26 � 10�5 1.31
hsa-miR-518b 1.65 � 10�10 �1.56 hsa-miR-135a 2.82 � 10�6 1.64 hsa-miR-424� 3.86 � 10�5 1.30
solexa-1460-671 4.31 � 10�8 �1.56 hsa-miR-338-3p 1.61 � 10�7 1.62 hsa-miR-362-3p 1.61 � 10�7 1.30
hsa-miR-1290 8.73 � 10�6 �1.55 hsa-miR-181c 3.02 � 10�10 1.62 hsa-miR-15a 3.53 � 10�6 1.30
hsa-miR-519d 1.34 � 10�8 �1.54 hsa-miR-628-3p 2.43 � 10�9 1.61 hsa-miR-100� 3.62 � 10�6 1.29
HS_287 5.38 � 10�6 �1.51 hsa-miR-1 1.52 � 10�5 1.60 hsa-miR-151-5p 1.07 � 10�6 1.29
HS_56 1.44 � 10�6 �1.51 hsa-let-7e 2.05 � 10�9 1.54 hsa-let-7g� 1.80 � 10�6 1.29
hsa-miR-1269 1.10 � 10�5 �1.50 hsa-miR-135b 3.15 � 10�5 1.53 hsa-miR-29b 1.11 � 10�10 1.29
hsa-miR-1181 3.44 � 10�8 �1.50 hsa-miR-326 2.90 � 10�17 1.52 hsa-miR-450a 6.56 � 10�7 1.29
hsa-miR-196b 8.44 � 10�9 �1.48 hsa-miR-92b 1.33 � 10�11 1.52 hsa-miR-132� 6.21 � 10�6 1.28
hsa-miR-1202 3.27 � 10�16 �1.48 hsa-miR-450b-5p 1.05 � 10�7 1.52 hsa-let-7c 9.12 � 10�5 1.28
hsa-miR-129-3p 2.57 � �06 �1.46 hsa-miR-140-5p 1.07 � 10�6 1.51 hsa-miR-29c 2.44 � 10�9 1.28
HS_17 1.63 � 10�5 �1.46 hsa-miR-148b 4.13 � 10�5 1.50 hsa-miR-339-3p 4.14 � 10�7 1.28
HS_155 1.33 � 10�5 �1.45 hsa-miR-22� 7.34 � 10�6 1.48 hsa-let-7g 6.20 � 10�6 1.28
hsa-miR-128b:9.1 5.29 � 10�8 �1.44 hsa-let-7d 1.53 � 10�5 1.47 hsa-miR-126� 2.43 � 10�5 1.27
HS_284.1 1.67 � 10�8 �1.44 hsa-miR-29a� 2.81 � 10�10 1.44 solexa-3126-285 1.38 � 10�5 1.27
HS_254 6.00 � 10�5 �1.43 hsa-miR-139-5p 1.93 � 10�6 1.43 hsa-miR-502-3p 2.28 � 10�7 1.27
HS_257 9.78 � 10�5 �1.39 hsa-miR-660 6.10 � 10�6 1.43 hsa-miR-181b 3.76 � 10�12 1.27
hsa-miR-1180 6.78 � 10�6 �1.39 hsa-miR-195 4.18 � 10�6 1.41 hsa-miR-181a� 1.00 � 10�8 1.27
hsa-miR-128a:9.1 5.58 � 10�6 �1.38 hsa-let-7f 3.40 � 10�6 1.40 hsa-miR-26b 1.14 � 10�6 1.26
HS_149 4.72 � 10�5 �1.38 hsa-miR-542-3p 9.70 � 10�9 1.40 hsa-miR-361-3p 4.53 � 10�6 1.26
hsa-miR-492 2.11 � 10�5 �1.38 hsa-miR-548b-3p 1.58 � 10�7 1.40 hsa-miR-26a 2.82 � 10�7 1.26
solexa-9081-91 4.48 � 10�6 �1.38 hsa-miR-34a 2.57 � 10�13 1.40 hsa-miR-768-5p:11.0 2.08 � 10�10 1.25
HS_166.1 4.62 � 10�7 �1.38 hsa-miR-508-3p 1.88 � 10�5 1.39 solexa-8211-102 1.24 � 10�5 1.25
hsa-miR-671:9.1 7.98 � 10�5 �1.37 hsa-miR-628-5p 5.33 � 10�8 1.39 solexa-51-13984 7.72 � 10�5 1.25
hsa-miR-378� 5.55 � 10�8 �1.37 hsa-miR-625 1.37 � 10�6 1.39 hsa-miR-532-5p 2.04 � 10�5 1.24
HS_78 3.99 � 10�5 �1.37 hsa-miR-140-3p 2.96 � 10�9 1.38 hsa-let-7a 1.31 � 10�5 1.24
hsa-miR-576-3p 2.48 � 10�5 �1.37 hsa-miR-340 4.29 � 10�6 1.37 hsa-miR-130a 7.06 � 10�6 1.24
HS_120 6.11 � 10�5 �1.36 hsa-miR-212 1.49 � 10�5 1.37 hsa-miR-29c� 1.05 � 10�7 1.24
HS_55.1 1.20 � 10�5 �1.35 hsa-miR-101 3.47 � 10�5 1.36 hsa-miR-30d 1.05 � 10�9 1.21
HS_53 1.42 � 10�5 �1.34 hsa-miR-26b� 3.95 � 10�7 1.36 hsa-miR-30e� 1.03 � 10�5 1.21
hsa-miR-873 8.32 � 10�5 �1.33 hsa-miR-489 1.00 � 10�5 1.35 hsa-miR-664� 2.67 � 10�6 1.21
hsa-miR-1293 1.15 � 10�6 �1.32 hsa-miR-424 1.61 � 10�5 1.35 hsa-miR-30c 5.63 � 10�5 1.21
solexa-9655-85 1.32 � 10�5 �1.31 hsa-miR-664 1.29 � 10�7 1.35 hsa-miR-30b 2.90 � 10�7 1.21
HS_169 3.14 � 10�5 �1.30 hsa-miR-653:9.1 2.75 � 10�8 1.34 hsa-miR-24-2� 3.24 � 10�5 1.20
hsa-miR-1249 1.08 � 10�6 �1.28 hsa-miR-768-3p:11.0 1.49 � 10�7 1.34 hsa-miR-189:9.1 3.42 � 10�7 1.20
HS_188 3.55 � 10�5 �1.24 hsa-miR-532-3p 5.90 � 10�5 1.33 hsa-miR-491-5p 5.82 � 10�5 1.20
hsa-miR-1307 8.98 � 10�6 �1.22

Bold and italic miRNAs were also identified in the study of Landi et al. (2010), Clin Cancer Res. FC was fold changes calculated by dividing average expression
levels of ADC by those of SCC.
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predictive performance with AUCs from 86 to 91%, whereas stage in-
formation results in lower AUCs from 64 to 69% (Figure 2D–F). This
clearly demonstrates that miRNA expression signatures combined with
stage information has higher classification power than the staging
method to predict survival of stage I NSCLC patients.

To validate the miRNA expression results from microarray experi-
ments, the relative expression of 10 miRNAs associated with RFS
was determined by quantitative real-time–PCR analysis on 12 sam-
ples with recurrence within 2 years and 12 samples without recur-
rence for .7 years. In these 10 miRNAs, most of them are overlapped
between two signatures and four of them are members in hsa-miR34
family. HS_215 (target mature sequence: ATGTCACTCGGCTC-
GGCCCAC) was replaced by hsa-miR-668 (target mature sequence:
TGTCACTCGGCTCGGCCCAC) because the primer of HS_215
is not available. We confirmed the expression results for all these
miRNAs except hsa-miR-425 (Supplementary Figure S2 is available
at Carcinogenesis Online). The DCT had significant difference between
recurrence and no-recurrence groups for eight miRNAs (P , 0.05).
Hsa-miR-888 is marginally significant (P5 0.055). Samples were also
divided into high and low expression groups according to the DCT of
each miRNA. Kaplan–Meier survival curves showed that the high and
low expression groups are significantly different in their RFS (P value

from 3.99e-5 to 0.048); the high expression groups have low risk of
recurrence, which is consistent with the results from microarray data
that all these miRNAs had negative hazard ratios.

Confirmation of miRNA expression signatures in an independent
dataset

The robustness of these signatures in predicting survival in stage I
lung cancer were further tested using miRNA expression data from
Mayo Clinic, including 85 FFPE and 85 fresh-frozen tissues, in which
110 samples were ADC and 6 were SCC. Due to very limited SCC,
only Signature I from all stage I NSCLC patients and Signature II
from ADC were tested for validation. For this dataset, long- and short-
term survival patients were not well distinguishable by stage infor-
mation for all stage I patients (P 5 0.03) (Figure 3A). Kaplan–Meier
analysis using miRNA Signature I demonstrated that the high- and
low-risk groups are much more significantly different in their RFS
(P5 5.67 � 10�7) (Figure 3B). Cox model with risk scores estimated
by miRNA expression gave the better predictive performance with the
AUCs of 81%, but Cox model with stage information results in AUCs
of 60% only (Figure 3C). Kaplan–Meier analysis using miRNA Sig-
nature II, which was generated from FFPE ADC data, also had better
performance than using stage information only in 110 ADC samples

Table III. miRNAs in the signature predictive of stage I NSCLC

miRNAs P-value FDR Hazard ratio miRNAs P-value FDR Hazard ratio

Signature independent of cancer subtype
HS_215 1.54� 1029 0.000000672 0.61 (0.52-0.72) solexa-3044-295 0.0014 0.0029 0.71 (0.58–0.88)
solexa-826-1288 1.35 � 1027 0.00000611 0.48 (0.37–0.63) HS_188 0.0015 0.0029 0.67 (0.52-0.86)
hsa-miR-888 3.36� 1027 0.00000946 0.36 (0.25-0.54) HS_303_a 0.0017 0.0033 1.82 (1.25–2.65)
HS_142.1 1.16 � 1025 0.0000783 0.49 (0.36–0.68) hsa-miR-519e 0.0017 0.0033 0.46 (0.29–0.75)
hsa-miR-1207-3p 4.54 � 1025 0.000226 0.55 (0.41–0.73) hsa-miR-124 0.002 0.0037 0.77 (0.65–0.91)
hsa-miR-603 0.000057 0.00027 0.68 (0.57–0.82) hsa-miR-941 0.0036 0.0063 1.38 (1.11–1.72)
hsa-miR-769-3p 0.0001 0.0004 0.76 (0.66–0.87) hsa-miR-34a 0.0038 0.0065 1.63(1.17–2.26)
HS_6 0.0004 0.0012 0.72 (0.6–0.86) hsa-miR-494 0.0038 0.0066 0.82 (0.72–0.94)
hsa-miR-31� 0.0004 0.0012 1.21 (1.09–1.35) hsa-miR-222 0.0042 0.0069 1.5 (1.14–1.98)
hsa-miR-892b 0.0004 0.0011 0.52 (0.36-0.74) hsa-miR-34a� 0.0044 0.0072 1.23 (1.07-1.43)
HS_15.1 0.0006 0.0016 0.62 (0.47–0.82) hsa-miR-205 0.0048 0.0077 0.85 (0.77–0.95)
HS_231 0.0006 0.0014 0.55 (0.4–0.78) hsa-miR-151-5p 0.0049 0.0077 1.53 (1.14–2.05)
hsa-miR-185� 0.0008 0.0018 0.67 (0.53–0.85) solexa-9124-90 0.0053 0.008 0.6 (0.42–0.86)
hsa-miR-425 0.0008 0.0018 2.04 (1.35-3.09) hsa-miR-132 0.0054 0.0081 1.38 (1.1–1.72)
hsa-miR-615-5p 0.0008 0.0019 0.5 (0.33-0.75) hsa-miR-192� 0.0055 0.0083 1.32 (1.08–1.6)
hsa-miR-940 0.001 0.0023 0.56 (0.39–0.79) hsa-miR-455-3p 0.0059 0.0086 1.29 (1.08–1.54)
hsa-miR-512-5p 0.0012 0.0025 0.61 (0.46-0.82) HS_122.1 0.0066 0.0094 0.4 (0.2–0.77)

Signature of ADC
hsa-miR-615-5p 0.000024 0.00596 0.30 (0.17–0.52) HS_285 0.005 0.028 0.42 (0.23–0.77)
hsa-miR-34b 0.0000699 0.00683 0.65 (0.52–0.8) hsa-miR-377� 0.005 0.0281 0.53 (0.34–0.83)
has-miR-1248 0.0000875 0.00743 0.65 (0.53–0.81) hsa-miR-588 0.0058 0.0292 0.53 (0.34–0.83)
HS_59 0.0001 0.0078 0.46 (0.31–0.69) hsa-miR-34c-5p 0.0082 0.0349 0.78 (0.64–0.94)
HS_283_a 0.0002 0.0084 0.39 (0.24–0.64) HS_47 0.0092 0.0363 0.41 (0.21–0.8)
hsa-miR-34c-3p 0.0002 0.008 0.66 (0.53–0.82) HS_43.1 0.0106 0.0381 0.58 (0.39–0.88)
hsa-miR-512-3p 0.0005 0.0118 0.41 (0.25–0.68) hsa-miR-512-5p 0.0125 0.0401 0.58 (0.38–0.89)
HS_78 0.0014 0.0176 0.63 (0.47–0.83) HS_74 0.0147 0.0441 0.77 (0.62–0.95)
hsa-miR-34b� 0.0014 0.0177 0.77 (0.66–0.91) hsa-miR-658 0.0163 0.0454 0.60 (0.40–0.91)
hsa-miR-934 0.0022 0.0213 0.41 (0.23–0.72) hsa-miR-548b-3p 0.0174 0.0459 0.66 (0.47–0.93)
HS_60 0.0036 0.0263 0.49 (0.31–0.79) HS_142.1 0.0176 0.046 0.58 (0.36–0.91)
hsa-miR-572 0.0041 0.0267 0.65 (0.48–0.87) hsa-miR-425 0.019 0.0463 2.26 (1.14–4.46)
hsa-miR-662 0.0044 0.0272 0.61 (0.44–0.86) hsa-miR-1255a 0.0209 0.0479 0.58 (0.36–0.92)
HS_187 0.0045 0.0272 0.52 (0.33–0.82)

Signature of SCC
hsa-miR-888 0.0000178 0.00477 0.15 (0.07–0.36) HS_159 0.00431 0.02569 0.39 (0.20–0.74)
hsa-miR-801:9.1 0.000019 0.00564 0.37 (0.24–0.59) HS_188 0.00451 0.0263 0.47 (0.28–0.79)
HS_215 0.00011 0.00756 0.54 (0.39–0.74) hsa-miR-671:9.1 0.00686 0.03481 0.65 (0.47–0.89)
HS_197 0.00031 0.0088 0.18 (0.07–0.46) HS_65 0.00741 0.03612 0.56 (0.37–0.86)
HS_263.1 0.00035 0.00884 0.12 (0.04–0.39) hsa-miR-193a-3p 0.00785 0.03736 1.82 (1.17–2.82)
HS_83.1 0.00036 0.00886 0.23 (0.10–0.52) solexa-499-2217 0.00795 0.03798 0.20 (0.06–0.66)
hsa-miR-892b 0.00091 0.01183 0.30 (0.15–0.61) hsa-miR-595 0.01025 0.04503 0.42 (0.21–0.81)
hsa-miR-939 0.00115 0.01254 0.10 (0.02–0.39) hsa-miR-34a� 0.01032 0.04507 1.52 (1.10–2.11)
hsa-miR-1180 0.00362 0.02325 0.50 (0.32–0.8)

Italic were overlapped miRNAs in the signature of ADC. Bold were also in the signature of SCC.
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(Figure 3D–F). Interestingly, although the signatures were derived
from FFPE tissues, both signatures are highly predictive of survival
of stage I NSCLC patients using either FFPE or fresh-frozen tissues.

miRNAs associated with brain metastasis

In the patients from WUSM, 147 lived for .5 years without recur-
rence, 25 had brain metastasis and 100 had metastasis to other sites.
Sixteen differentially expressed miRNAs were identified comparing
no-recurrence group with brain metastasis group (P, 0.01). Excluding
the miRNAs differentially expressed between no-recurrence group
and other sites metastasis group, 10 miRNAs remained which corre-
late with brain metastasis, including hsa-miR-450b-3p, hsa-miR-29c�,
hsa-miR-145�, hsa-miR-148a�, hsa-miR-1, hsa-miR-30d, hsa-miR-
187, hsa-miR-218, hsa-miR-708� and hsa-miR-375 (Supplementary
Table S4 is available at Carcinogenesis Online).

Discussion

Recently, there were several studies published to correlate miRNA
expression with outcomes in NSCLC using microarray (6–8). For
example, the mirVana Bioarray (version 2; Ambion) that contains
328 human miRNA probes was used to identify lung SCC miRNA
signatures using 61 snap-frozen lung SCC in Raponi et al.’s study (6).
Landi et al. (7) analyzed 440 human miRNAs in 290 FFPE tissues of
NSCLC patients including both ADC and SCC but only 40% samples
from stage I patients. Patnaik et al. (8) applied Exiqon miRCURY
locked nucleic acid microarrays 10.0 including 752 human miRNAs
to obtain expression profiles for 37 cases with recurrence and 40 cases
without recurrence of stage I NSCLC. In our study, we used 357 FFPE
samples to construct miRNA signatures for prognosis in stage I
NSCLC using Illumina human miRNA expression profiling v2 panel.
Comparing with the three published studies, our study is the largest
study of miRNA expression focusing on stage I lung cancer to date.
The platform we used includes 1146 human miRNAs, which con-
tained large majority of human miRNAs. The larger sample size of
ADC and SCC can reduce false positives and increase statistical
power in detecting survival-related miRNAs and cancer-subtype spe-
cific signatures. The most complete set of human miRNAs presenting
on our miRNA platform increased chance to identify a stable signa-
ture for predicting the outcome. As a result, two miRNA expression
signatures were identified that can accurately predict which stage I
lung cancer patients may benefit from more aggressive therapy. The
first signature contains 34 miRNAs derived from 357 stage I NSCLC
without regarding cancer subtypes, whereas the second one is ADC-
specific and contains 27 miRNAs derived from 189 stage I ADCs.
This is highly significant because patients diagnosed with stage I
NSCLC have variable prognoses. The generalization of our miRNA
signatures was demonstrated in an independent dataset from Mayo
Clinic, which consisted of half FFPE and half fresh-frozen tissues, and
most of the samples are ADCs. Although the signatures were derived
from FFPE tissues, they are highly predictive of survival of stage I
NSCLC using either FFPE or fresh-frozen tissues. These results dem-
onstrate the possibility of using miRNA signatures generated from
FFPE samples to predict patient survival in the clinic. The fact that
miRNA expression levels can be determined using FFPE specimens
allows immediate and widespread use in the clinic as these results are
confirmed in large independent population samples. We believe that
this is an important and novel finding that has not been convincingly
reported previously and has important implications for the clinical
management of lung cancer patients. Several miRNA studies have
been performed in lung SCC (6,7); however, we couldn’t use their data
to validate our signature for SCC because very few miRNAs were over-
lapped between miRNA array platforms. In general, fewer miRNAs are
associated with RFS in ADC than SCC in our survival analysis. The
SCC signature tends to have higher AUC than the ADC signature in our
training datasets, which is consistent with a recent study (7).

Our miRNA signatures consisted of several miRNAs whose targets are
involved in multiple important cancer-related pathways (Supplementary

Table S5 is available at Carcinogenesis Online). Engineered knockdown
of miR-31 substantially represses lung cancer cell growth and tumor-
igenicity in a dose-dependent manner (14). More strikingly, several
laboratories have reported that members of miR-34 family are directly
regulated by p53, which induces apoptosis, cell cycle arrest and senes-
cence (15–18). This reinforces the awareness that miR-34 are central
mediators of p53 function. MiR-34 family members may be the key
players in tumor development by being located centrally within the p53
tumor suppressor network, and there is a balanced state between epi-
genetic modification and p53 regulating the expression of miR-34.
Landi et al. (7) reported a 5-miR SCC signature including hsa-miR-
34c-5p and hsa-miR-34a which both associate with poor survival. In
our data, Signature II predictive of stage I ADC suggests that lower
expression of hsa-miR-34b, hsa-miR-34b�, hsa-miR-34c-3p and hsa-
miR-34c-5p are associated with poor survival with hazards ratio ,1
which were confirmed by real-time–PCR. However, hsa-miR-34a and
hsa-miR-34a� did not show the association with poor survival on RFS.
This discrepancy may be attributable to different roles of hsa-miR-34
members in stage I and advanced stages (stages II–IV) of lung cancer.
Fifty-eight percent of samples in the Landi et al.’s study are of advanced
stages (19).

MiRNAs play important roles in gene regulations. We thus sur-
veyed the expressions of predicted miRNA targets (Supplementary
Table S5 is available at Carcinogenesis oOnline) in previous micro-
array studies of lung cancer. E2F3, histone deacetylase-2, CDT1,
RFC2, KIF11 and TBL1X were on the list of signatures of the study
of Director’s Challenge Consortium for the Molecular Classification
of Lung Adenocarcinoma (20), whereas SLIT1 and THBS1 were
specifically associated with overall survival and RFS in stage I pa-
tients of that study (20). NTRK3, PCDHGA12 and PRKACA were on
the list of 64-gene signature for survival of stage I NSCLC in our
meta-analysis (21). Insulin receptor were on the list of 37-gene sur-
vival signature for lung ADC (22). Both of protein and gene expres-
sion level of SOD2 were related to survival of lung ADC (23). Loss of
expression of SDC1 is associated with biologic aggressiveness and
poor outcome for NSCLC patients (24). PCDHGC3 and PTPRC were
on the list of a recurrence signature in lung ADC and SCC, respec-
tively (25,26). CCND2 and FN1 were related to survival of lung SCC
(27,28). It is interesting to follow up the miRNAs whose targets are
also found to correlate to survival in lung cancer.

Interestingly, a large set of miRNAs was observed differentially
expressed between lung ADC and SCC. This may suggest different
miRNA-mediated signaling pathways involved in the pathogenesis of
these two histologies. Multiple members of the Let-7 family were
downregulated in SCC as compared with ADC. Let-7 was shown
previously to regulate the expression of the RAS lung cancer onco-
genes HRAS, KRAS and NRAS (19). The 3#untranslated regions of
the human RAS genes contain multiple let-7 complementary sites,
allowing Let-7 to regulate RAS expression. Let-7 expression is lower
in lung tumors than in normal lungs, whereas RAS protein is signifi-
cantly higher in lung tumors, providing a possible mechanism of Let-7
in lung cancer (19). KRAS accounts for 90% of RAS mutations in lung
ADCs (29) and KRAS mutations are uncommon in lung SCC (30). This
implies that aberrant expression of Let-7 may contribute to lung SCC,
whereas KRAS mutations counteract the suppressing effects of Let-7
on lung ADCs.

More than 50% of brain metastases are associated with NSCLC. In
our study, 10 miRNAs were identified to associate with brain metas-
tasis. Among these, miR-145 has previously been shown to suppress
cell invasion and metastasis by directly targeting the metastasis gene
mucin 1 (MUC1) (31). A MUC1-secreting human breast cancer cell
line MA11 established with cells isolated from a bone marrow sam-
ple using immunomagnetic beads conjugated to the anti-MUC1 an-
tibody BM-2 showed a selective preference for metastasizing to the
brain in athymic nude mice (32). MiR-29c is downregulated so as to
upregulate mRNAs encoding extracellular matrix proteins that are
involved in metastasis in nasopharyngeal carcinomas (33). MiR-218
was found to inhibit invasion and metastasis of gastric cancer by
targeting the Robo1 receptor (34).
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Fig. 2. Survival analyses of stage I NSCLC. (A–C) Kaplan–Meier survival curves of RFS using miRNA signatures: (A) signature from all stage I NSCLC patients
(Signature I); (B) signature from stage I ADC patients (Signature II); (C) signature from stage I SCC patients (Signature III). (D–F) AUC for estimating 5 years
RFS using survival models based on stage information or miRNA expression data respectively: (D) comparison of staging method with risk scores estimated by
Signature I in all stage I NSCLC patients; (E) comparison of staging method with risk scores estimated by Signature II in stage I ADC patients; (F) comparison of
staging method with risk scores estimated by Signature III in stage I SCC patients. FP, false positive; TP, true positive.
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Fig. 3. Validation of the two signatures in an independent testing set from Mayo Clinic. (A), (B) and (C) are validation of the 34-miRNA signature (Signature I) in
170 stage I patients. (D), (E) and (F) are validation of the 27-miRNA ADC-specific signature (Signature II) in 110 stage I ADC patients. A and D are Kaplan–
Meier analyses of RFS using staging method. B and E are Kaplan–Meier analyses of RFS using risk scores estimated by miRNA signature. C and F are ROC
analyses for estimating 5 years RFS based on stage information or miRNA signature.
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In summary, we have identified two miRNA signatures that are
highly predictive of survival of stage I NSCLC patients. This has
important prognostic or therapeutic implications for the future
management of NSCLC patients. We also identified a large set
of miRNAs including Let-7 family members and miR-205 whose
expression profiles strongly differed between ADC and SCC. Fur-
thermore, 10 miRNAs were identified to associate with brain
metastasis. These miRNAs hold great potential as targets for
histology-specific treatment or preventing and treating recurrent
diseases.

Supplementary material

Supplementary Tables S1–S5 and Figures S1–S2 can be found at
http://carcin.oxfordjournals.org/.
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