
Abstract. Although the functions of most of the identified
microRNAs (miRNAs) have yet to be determined, their use
as potential biomarkers has been considered in several human
diseases and cancers. In order to understand their role in renal
tumorigenesis, we screened the expression levels of miRNAs in
four subtypes of human renal neoplasms: clear cell, papillary,
and chromophobe renal cell carcinomas (RCC) as well as
benign renal oncocytomas. We found a unique miRNA
signature for each subtype of renal tumor. Furthermore, we
identified unique patterns of miRNA expression distinguishing
clear cell RCC cases with favorable vs. unfavorable outcome.
Specifically, we documented the overexpression of miRs 424
and 203 in clear cell RCC relative to papillary RCC, as well
as the inversion of expression of miR-203 in the benign
oncocytomas (where it is underexpressed relative to normal
kidney) as compared to the malignant chromophobe RCC
(where it is overexpressed relative to normal kidney). Our
results further suggest that overexpression of S-has-miR-32
is associated with poor outcome. While previous studies have
identified unique miRNA expression pattern distinguishing
tumors from different anatomical locations, here we extend
this principle to demonstrate the utility of miRNA expression
profiling to identify a signature unique to various tumor sub-
types at a single anatomic locus.

Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs
which have recently received intense interest for their ability

to regulate gene expression in a variety of cellular processes,
including developmental timing (1), cell differentiation (2),
cell death (3), cancer development (4), and viral regulation
(5). The seed region (bases 2-8, numbered from the 5'-end) of
mature miRNAs binds to sequences in the 3'-untranslated
regions of specific messenger RNAs (mRNAs), causing their
cleavage or, more commonly, repressing protein translation
(6). The expression levels of miRNAs in human cancers have
recently been described for several tumors, including renal
cell carcinoma (RCC) (7,8). In the case of poorly differentiated
tumors, miRNA profiling has been shown to be more robust
with regard to classification than mRNA expression profiling
(8-10). We extend this work by reporting for the first time
miRNA expression profiles of several common renal tumor
subtypes.

In order to understand the role of miRNA in renal tumori-
genesis, we studied the most common human renal neoplasms
which are clear cell RCC (ccRCC), papillary RCC, chromo-
phobe RCC and the closely related benign tumor oncocytoma.
In addition, we investigated miRNA expression patterns that
distinguish ccRCC cases with poor vs. good prognosis, as
this kidney cancer occurs most frequently (75%) among all
subtypes and has the highest rate of local invasion, metastasis,
and mortality of the adult renal tumors. These histological
subtypes and the prognostic subgroups (i.e., poor and good
prognosis) of ccRCC subgroups exhibit distinct histopatho-
logical characteristics, clinical behavior, and underlying genetic
alterations (11).

Materials and methods

We selected kidney tumor tissues from 20 patients, four cases
from each of the following histological subtypes: oncocytoma,
chromophobe, papillary, poor-prognosis clear cell, and good-
prognosis clear cell. The prognostic classification of the clear
cell samples was based on cancer-specific post-nephrectomy
survival of less than 5 years (poor prognosis) or 5 years or
more (good prognosis). Total RNA was extracted from these
samples and from their corresponding matched normal kidney
tissues, with the mirVana™ miRNA Isolation kit (Ambion,
Inc., Austin, TX). All 20 corresponding matched normal
tissues were pooled equally, based on total RNA
concentration. Samples were obtained from the Spectrum
Health Hospital of Grand Rapids, MI and the Cooperative
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Human Tissue Network (CHTN) of the National Cancer
Institute. Informed written consent of each patient was
obtained, and this study was approved by the Institutional
Review Boards of the Van Andel Research Institute and
Spectrum Health Hospital.

Microarray. Microarray assay was performed using a service
provider (LC Sciences, Houston, TX). The assay started from
a 25-μg total RNA sample, which was size-fractionated using
a YM-100 Microcon centrifugal filter (from Millipore Corp.,
Billerica, MA), and the small RNAs (less than 300 nt) isolated
were 3'-extended with a poly(A) tail using poly(A) polymerase.
An oligonucleotide tag was then ligated to the poly(A) tail
for later fluorescent dye staining; two different tags were
used for the two RNA samples in dual-sample experiments.
Hybridization was performed overnight on a μParaflo micro-
fluidic chip using a microcirculation pump (Atactic Techno-
logies, Houston, TX) (12,13). On the microfluidic chip, each
detection probe consisted of a chemically modified nucleotide
coding segment complementary to the target miRNA (from
miRBase, http://microrna.sanger.ac.uk/sequences/) and a
spacer segment of polyethylene glycol to extend the coding
segment away from the substrate. The detection probes were
made by in situ synthesis using photogenerated reagent (PGR)
chemistry.

The hybridization melting temperatures were balanced by
chemical modifications of the detection probes. Hybridization
used 100 μl of 6X SSPE buffer (0.90 mM NaCl, 60 mM
Na2HPO4, 6 mM EDTA, pH 6.8) containing 25% formamide
at 34˚C. After hybridization detection, we used fluorescence
labeling using tag-specific Cy3 and Cy5 dyes. Hybridization
images were collected using a laser scanner (GenePix 4000B,
Molecular Devices, Sunnyvale, CA) and digitized using Array-
Pro image analysis software (Media Cybernetics, Bethesda,
MD). Data were analyzed by first subtracting the background
and then normalizing the signals using a LOWESS filter
(Locally-weighted Regression) (14). For two-color
experiments, the ratio of the two sets of detected signals
(log2 transformed, balanced) and p-values of the t-test were
calculated; differentially detected signals were those with
p-values of <0.01.

Statistical analyses. Prior to clustering, the data were filtered
such that miRNAs for which data were missing in more than
50% of the cases were excluded. Unsupervised average linkage
hierarchical clustering was then performed based on the
Pearson correlation of the cases.

For discriminant analysis, genes that were differentially
expressed between the subtypes were identified using linear
modeling as implemented in the Limma package (15) for the
R statistical analysis framework (16). This package is designed
to discriminate between samples of only two classes; however,
we observed that effective discrimination of all 4 subtypes
was achieved when the model was set up to discriminate gene
expression of ccRCC vs. all of the other subtypes combined.
P-values were adjusted to control the false discovery rate
at 5% (17). For visualization, average linkage hierarchical
clustering of the Pearson correlation of the cases was again
performed using just these genes. Genes discriminating
between favorable and unfavorable ccRCC cases were

similarly identified; however, the false discovery rate thres-
hold was increased to 30% due to the small sample size.

Reverse transcription-PCR analysis. Real-time PCR of
miRNAs reverse-transcribed to cDNA was chosen to validate
the relative expressions of the following five miRNAs: hsa-
miR-21, hsa-miR-187, hsa-miR-203, hsa-miR-215, and hsa-
miR-424. A positive, miR-16, and negative non-human control,
ath-miR-156a, were also chosen. Assays were run according
to the manufacturer's protocol on a 7700 RT-PCR Sequence
Detector (Applied Biosystems, Inc., Foster, CA, USA).

Results

Unsupervised comparison of multiple kidney cancer subtypes.
We first performed an unsupervised hierarchical clustering
analysis for all 20 kidney cancer tissues (4 samples per sub-
type including both good and poor prognosis ccRCC). We
selected those miRNAs for which microarray data were
measurable in at least 50% of the samples. The results of this
analysis indicate that each class of renal tumors exhibits
distinct global miRNA expression patterns (Fig. 1). One
exception was a chromophobe sample that clustered among
the papillary samples. We reviewed histology reports and found
that this chromophobe case had sarcomatoid differentiation,
which may account for its atypical miRNA expression
signature.

Supervised analysis of multiple kidney cancer subtypes. We
next performed discriminant analysis to identify miRNAs
that were differentially expressed among the various tumor
subtypes. Previous analysis of mRNA expression data has
indicated that the greatest genomic similarity exists between
chromophobe RCC and oncocytomas, and between papillary
RCC and ccRCC. Therefore, we focused on these two
comparisons to identify miRNA that could distinguish these
pairs of tumor subtypes.

After adjustment of p-values to control false discovery at
5%, five miRNA were identified that significantly differed
in expression between chromophobe RCC and oncocytoma
samples (Table I and Fig. 2A). The expression levels of the
miRNA most overexpressed in chromophobe RCC relative to
the oncocytoma tumor samples, miR-203, was confirmed by
quantitative RT-PCR (Fig. 2B).

Similarly, 27 miRNAs were identified which exhibited
significantly differential expression between ccRCC and
papillary RCC samples (Table II and Fig. 3A). Once again,
miR-203 exhibited the largest fold change between these two
groups of samples (Fig. 2A). We also confirmed the expression
levels of the second most overexpressed miRNA in ccRCC
relative to papillary RCC, miR-424, by quantitative RT-PCR
(Fig. 3B).

Favorable and unfavorable prognostic groups of clear cell
carcinoma. We explored miRNAs in clear cell renal carcinoma
with respect to their ability to distinguish favorable and un-
favorable prognostic groups. Four individual samples were
analyzed for each group. Matched normal tissues for all
patients in this study (20) were pooled to determine relative
expression levels. Only one miRNA, the primary transcript
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for miR-32, was identified by this analysis with a predicted
false discovery rate less than 5%. However, 20 miRNAs

exhibited differential expression with unadjusted p≤0.05
(Fig. 4 and Table III). Observed changes in poor prognosis
cases relative to good prognosis cases included relative
overexpression of S-hsa-miR-32 and S-hsa-miR-342, as well
as, relative underexpression of hsa-miR-130a and S-hsa-
miR-30c-2.

Discussion

Recently published work has demonstrated that, similar to
messenger RNA, tumors from different anatomical sites have
unique patterns of microRNA expression. Furthermore, for
some poorly differentiated tumors, miRNA expression
profiling may be more robust than mRNA expression
profiling with respect to classification of these tumors (8)
although verification of this finding is necessary.

Renal neoplasms are a group of heterogeneous tumors
with distinct histological, biochemical and molecular genetic
characteristics, which not only display different prognosis but
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Figure 1. Unsupervised clustering based on miRNA probes present in more than 50% of cases. Blue areas represent miRNA levels underexpressed relative to the
pooled normal renal tissues (derived from matched, individual samples, n=20); red areas represent miRNA levels that are overexpressed.

Table I. miRNAs discriminating chromophobe RCC and
oncocytomas (false discovery <5%).a

–––––––––––––––––––––––––––––––––––––––––––––––––
microRNA Chr: Onc ratio (log) p-value
–––––––––––––––––––––––––––––––––––––––––––––––––
hsa-miR-203 4.49 0.00080

S-hsa-mir-200b 2.89 0.00046

S-hsa-mir-197 1.99 0.00041

hsa-miR-320 1.50 0.00058

hsa-miR-186 -2.88 0.00078
–––––––––––––––––––––––––––––––––––––––––––––––––
aAverage-fold change (chromophobe vs. oncocytoma) and unadjusted
p-value for 5 miRNAs. 
–––––––––––––––––––––––––––––––––––––––––––––––––
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also require different clinical management (18-20). Therefore,
it is important to study the miRNA expression patterns of
different subtypes of renal cell neoplasms. Gottardo and
associates previously examined miRNA expression in renal
tumors and bladder tumors and showed that these tumors had
distinctive expression profiles as well (7). They hypothesized
that this relates to distinct paths to malignancy in these tumors.
This is further born out in our study. We observed a number
of miRNA expression shifts which may be associated with
development of specific tumor subtypes, progression from
benign to malignant phenotype, or tumor progression.
Examples documented here include the overexpression of
miR-424 and miR-203 in ccRCC relative to papillary, as well
as the inversion of expression of miR-203 in the benign

oncocytoma (where it is underexpressed relative to normal
kidney) as compared to the malignant chromophobe RCC
(where it is overexpressed relative to normal kidney). 

This is the first report we are aware of in the literature
of a link between miR-424 and cancer. Previous reports
of miR-203 expression in the context of cancer suggest its
expression is tissue-type specific. This microRNA has been
shown to be underexpressed in esophageal tumors (21),
whereas it is overexpressed in both bladder and ovarian tumors
(7,22), consistent with our finding that its expression is
increased in malignant chromophobe RCC samples, but
decreased in the benign oncoytoma samples. An unproven
hypothesis exists that oncocytomas can progress into malignant
chromophobe RCC. If this proves to be the case, it may be
that miR-203 is one of the factors either driving or resulting
from this progression by an epigenetic mechanism or by
other biological processes.
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Figure 2. Expression levels of miRNAs discriminating between oncocytoma
and chromophobe RCC. (A), Heatmap of expression levels relative to pooled
normal kidney. Blue areas represent miRNAs that are underexpressed
compared to the pooled normal renal tissues (derived from matched, individual
samples, n=20); red areas represent miRNAs that are overexpressed. (B),
Expression levels of miR-203 as measured by quantitative RT-PCR (4 samples
analyzed in triplicate for each group). Values represent Ct values converted
to fold change relative to the mean across all groups for visualization. *p<0.05
for ccRCC vs. papillary RCC. **p<0.05 for chromophobe RCC vs. oncocytoma.

Table II. miRNAs discriminating ccRCC and papillary RCC
(false discovery <5%).a

–––––––––––––––––––––––––––––––––––––––––––––––––
microRNA CC: Pap ratio (log) p-value
–––––––––––––––––––––––––––––––––––––––––––––––––
hsa-miR-203 4.74 0.00001
hsa-miR-424 4.34 0.00081
hsa-miR-450 4.16 0.00161
hsa-miR-139 3.55 0.00317
S-hsa-mir-424 3.03 0.00056
hsa-miR-143 3.00 <0.00001
hsa-miR-503 2.97 0.00255
hsa-miR-224 2.94 0.00246
hsa-miR-145 2.59 0.00004
S-hsa-mir-199b 2.54 0.00075
hsa-miR-199ab 2.48 0.00072
hsa-miR-126 2.27 <0.00001
S-hsa-mir-224 2.17 0.00510
hsa-miR-214 1.96 0.00197
hsa-miR-195 1.30 0.00067
hsa-miR-324-3p -0.93 0.00478
hsa-miR-191 -1.13 0.00012
hsa-miR-423 -1.36 0.00014
hsa-miR-505 -1.43 0.00471
hsa-miR-425 -1.50 0.00005
S-hsa-mir-149 -1.55 0.00328
S-hsa-mir-328 -1.68 0.00585
S-hsa-mir-365-1 -2.48 0.00388
S-hsa-mir-365-2 -2.55 0.00537
S-hsa-mir-371 -2.55 0.00043
S-hsa-mir-504 -2.62 0.00012
hsa-miR-31 -4.91 0.00140
–––––––––––––––––––––––––––––––––––––––––––––––––
aAverage-fold change (ccRCC vs. papillary RCC) and unadjusted
p-value for 27 miRNAs. S-prefix indicates primary transcript (pre-
miRNA) vs. mature transcript. bAntisense strand of the mature
miRNA sequence.
–––––––––––––––––––––––––––––––––––––––––––––––––
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Our results suggest that overexpression of S-hsa-miR-32
(the primary transcript from which miR-32 is formed by the
cleaving action of Dicer) is associated with poor outcome.
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Figure 3. Expression levels of miRNAs discriminating between ccRCC and
papillary RCC. (A), Heatmap of expression levels relative to pooled normal
kidney. Blue areas represent miRNAs that are underexpressed compared to
the pooled normal renal tissues (derived from matched, individual samples,
n=20); red areas represent miRNAs that are overexpressed. (B), Expression
levels of miR-424 as measured by quantitative RT-PCR (4 samples analyzed in
triplicate for each group). Values represent Ct values converted to fold change
relative to the mean across all groups for visualization. *p<0.05 for ccRCC vs.
papillary RCC.

Figure 4. Expression levels of miRNAs discriminating between good and
poor prognostic groups of ccRCC. Heatmap of expression levels relative to
pooled normal kidney. Blue areas represent miRNAs that are underexpressed
compared to the pooled normal renal tissues (derived from matched, individual
samples, n=20); red areas represent miRNAs that are overexpressed.

Table III. miRNAs discriminating prognostic subgroups of
ccRCC (unadjusted p≤0.05).a

–––––––––––––––––––––––––––––––––––––––––––––––––
microRNA Poor: Good ratio (log) p-value
–––––––––––––––––––––––––––––––––––––––––––––––––
S-hsa-mir-32 3.43 0.00
hsa-miR-22 1.53 0.00
S-hsa-mir-30c-2 -1.85 0.01
hsa-miR-182 2.05 0.01
hsa-miR-200ab -1.20 0.01
hsa-miR-328 -0.96 0.02
hsa-miR-130a -1.71 0.02
hsa-miR-30e-3p -1.51 0.02
S-hsa-mir-22 1.25 0.02
hsa-miR-345 -1.03 0.03
hsa-miR-505 -1.11 0.03
hsa-miR-342 1.12 0.03
hsa-miR-183 2.17 0.04
S-hsa-mir-342 1.54 0.04
S-hsa-mir-10a -1.96 0.04
hsa-miR-213 -0.64 0.05
hsa-miR-382 1.68 0.05
S-hsa-mir-10b -1.79 0.05
S-hsa-mir-296 1.70 0.05
S-hsa-mir-23a 1.22 0.05
–––––––––––––––––––––––––––––––––––––––––––––––––
aAverage-fold change (poor prognosis vs. good prognosis) and
unadjusted p-value for 20 miRNAs. S-prefix indicates primary
transcript (pre-miRNA) vs. mature transcript. bAntisense strand of
the mature miRNA sequence.
–––––––––––––––––––––––––––––––––––––––––––––––––
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While this miRNA has been previously shown to be over-
expressed in prostate tumor tissue relative to normal prostate
(16), we are aware of no previous report of the possible
utility of this microRNA as a prognostic marker.

To summarize, this is the first study to report the differential
expression of microRNAs in different subtypes of renal cell
neoplasms. The results from our miRNA profiling of various
subtypes of renal cancer demonstrates that not only do
miRNAs vary in their expression between tumors of different
anatomical location, but also among multiple tumor subtypes
within a single location. Furthermore, we also found distinct
miRNA patterns correlated to good and poor prognosis
ccRCC subtypes. Further studies will clarify the functional
consequences, both in terms of clinical behavior and tumor
biology, of the miRNA expression patterns we have
identified in this study.
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