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Abstract

We are using induced pluripotent stem cell (iPSC) technology to study neuropsychiatric dis-

orders associated with 22q11.2 microdeletions (del), the most common known schizophre-

nia (SZ)-associated genetic factor. Several genes in the region have been implicated; a

promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA)

biogenesis. We carried out miRNA expression profiling (miRNA-seq) on neurons generated

from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of

p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially

expressed miRNAs were detected (13 lower in SZ and 32 higher). Of these, 6 were signifi-

cantly down-regulated in patients after correcting for genome wide significance

(FDR<0.05), including 4 miRNAs that map to the 22q11.2 del region. In addition, a nomi-

nally significant increase in the expression of several miRNAs was found in the 22q11.2

neurons that were previously found to be differentially expressed in autopsy samples and

peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-

3p, and miR-23a-5p). Pathway and function analysis of predicted mRNA targets of the

differentially expressed miRNAs showed enrichment for genes involved in neurological dis-

ease and psychological disorders for both up and down regulated miRNAs. Our findings

suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns

expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously iden-

tified using autopsy samples and peripheral cells, both of which have significant methodo-

logical problems, are indeed disrupted in neuropsychiatric disorders and likely have an

underlying genetic basis.
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Introduction

Genome wide association studies (GWAS), copy number variation (CNV) analysis and exome

sequencing show that schizophrenia (SZ) and other neuropsychiatric disorders, including

bipolar disorder (BD) and autism spectrum disorders (ASD), are genetically heterogeneous

complex traits. This presents a potential problem in translating molecular and genetic findings

into novel therapies that would benefit a large number of patients. Consequently, investigators

are applying molecular and genetic data, and bioinformatics to identify common networks

onto which many seemingly disparate candidate genes converge. Identifying downstream tar-

gets of SZ and ASD candidate genes that function as transcription factors, splicing factors or

chromatin remodeling complexes is one potentially useful approach. Another promising area

of investigation in this regard is to characterize the role of microRNAs (miRNAs) in disease

pathogenesis, considering their common mechanism of biogenesis and converging effect on

genes involved in neurogenesis and synaptogenesis [1–9].

MicroRNAs regulate gene expression by inducing double-stranded RNA-mediated decay

and translational arrest through base-pair specific interactions with targeted mRNAs, primarily

at 3’untranslated regions [10–14]. MicroRNAs are expressed as primary molecules (pri-miR-

NAs) that are ~70 nucleotides in length that must be processed to form functional, mature

miRNAs. The first step in their biogenesis is cleavage by a miRNA processing complex consist-

ing of the proteins DGCR8 and DROSHA, which convert pri-miRNAs into precursor RNAs

(pre-miRNAs). These are transported to the cytoplasm where cleavage by DICER occurs, ulti-

mately yielding a single stranded ~22 base mature miRNA that’s incorporated into the RNA-

induced silencing complex (RISC), which targets specific mRNAs through a complimentary

seed region. Most mRNAs are regulated by more than one miRNA, and any single miRNA can

potentially interact with multiple mRNAs [14,15].

Several lines of evidence support a role for miRNAs (actually, their targets) in a subgroup of

SZ patients. Replicated GWAS studies, for example, show a strong association toMIR-137 [16–

19]. This miRNA targets other candidate genes identified by GWAS [20,21]. Molecular studies

also support a role for miRNAs in SZ. Recently, 28 miRNAs were found to be differentially

expressed in the dorsolateral prefrontal cortex (DLPFC) in patients with SZ compared with

controls; the mRNA targets of these miRNAs showed enrichment for genes involved in axon

guidance and long-term potentiation, processes associated with neuropsychiatric disorders

[22,23]. Similarly, an independent study found ~50 miRNAs that were differentially expressed

in the DLPFC and superior temporal gyrus in SZ, which targeted and reciprocally down-regu-

lated the expression of mRNAs coding for proteins involved in neurodevelopmental pathways

and cell-cell signaling [24].

MicroRNAs have also been considered in the pathogenesis of SZ and other neuropsychiatric

disorders that occur in a substantial proportion of patients with velocardiofacial syndrome

(VCFS; DiGeorge Syndrome), which is caused by a 22q11.2 del that typically spans ~3 Mb; the

DGCR8 gene maps to the deleted region [25–31]. In addition to SZ, many patients meet criteria

for schizoaffective disorder (SAD), ASD, obsessive compulsive disorder (OCD), Tourette Syn-

drome, depression, anxiety disorder, and rapid cycling BD [32–40]. Conversely, 22q11.2 del is

found in ~1% of patients with SZ, usually in the absence of the severe core clinical features

characteristic of VCFS, such as cleft palate and congenital heart disease [41]. It is also found in

~4% of patients diagnosed with childhood onset SZ (COS) [42]. The T-box transcription factor

TBX1 is primarily responsible for the major physical manifestations seen in 22q11.2 del [43].

However, the genes underlying the susceptibility to develop neuropsychiatric problems have

not been unequivocally identified, although DGCR8 is a strong candidate [34,44–47]. Mouse

Dgcr8 knockouts show down-regulation of ~25 mature miRNAs in the hippocampus and
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prefrontal cortex, and heterozygotes have deficits in prepulse inhibition and a spatial working

memory–dependent learning task [31]. In addition, Dgcr8 knockout mice have deficits in the

development of excitatory synapses and a reduction of parvalbumin interneurons in the pre-

frontal cortex [2,48].

In addition to viewing the role of miRNAs in 22q11.2 del from the perspective of the down-

stream effects of DGCR8, haploinsufficiency for individual miRNA genes that map to the

deleted region have also been considered in disease pathogenesis. The most well-studied in this

regard isMIR-185, which has been found to target other SZ candidate genes and influence den-

dritic spine density in the hippocampus [49,50]. MicroRNA-185 and its targets are also

enriched in synapses [7,49,51]. MicroRNA-185 also affects immune developmental pathways,

which might contribute to the immunological deficits found in a subset of patients with

22q11.2 del [52,53]. Considering the replicated genetic findings that point to the HLA locus in

SZ, and the large body of epidemiological and animal studies suggesting that infectious diseases

and/or autoimmune phenomena play roles in disease pathogenesis in subgroups of patients

with SZ and ASD, an effect of miRNAs on immune function could potentially be of interest in

neuropsychiatric disorders [54,55].

Although the 22q11.2 del mouse models have been extremely valuable, it is important to

understand the molecular and genetic underpinnings in human neurons for translational

research purposes. This is now possible with induced pluripotent stem cell (iPSC) technology,

which we and others have been using to model neuropsychiatric disorders in vitro [56–68].

Our focus has been on 22q11.2 del syndrome because it is the most common known genetic

risk factor in SZ, and one of the most penetrant as well. In order to determine if human neu-

rons derived from patient-specific iPSCs are suitable for modeling the role of miRNAs in

22q11.2 del-associated disorders, and to identify differentially expressed miRNAs, we per-

formed whole transcriptome miRNA sequencing and characterized the potential targets of dys-

regulated miRNAs.

Materials and Methods

Subjects

Controls and patients with 22q11.2 del diagnosed with a psychotic disorder (schizophrenia

[SZ], childhood onset schizophrenia [COS], SAD) were recruited from two settings; the Albert

Einstein College of Medicine (AECOM) and the National Institutes of Mental Health (NIMH),

Child Psychiatry Branch. The study and the consent forms were approved by the AECOM

Institution Review Board (IRB) and the NIMH IRB. Consents at AECOM were signed by the

subjects at a time when psychotic symptoms were well-controlled with medications. For the

NIMH subjects, all participants provided written assent/consent with written informed consent

from a parent or legal guardian for minors. Subjects were not disadvantaged in any way if they

refused to participate in the study. Consent was obtained by skilled members of the research

teams who had received prior human subjects training. The procedure for obtaining informed

consent was approved by the AECOM and NIMH IRBs.

The AECOM subjects were diagnosed with VCFS based on typical physical manifestations;

the diagnosis was confirmed by FISH. Psychiatric diagnoses were established many years prior

to recruitment by the patient’s psychiatrists using non-structured clinical interviews. Upon

recruitment, a history of psychosis was confirmed by non-structured clinical interview with the

patients and a parent. A more detailed clinical description for the AECOM cohort is provided

in S1 Text.

Patients with childhood onset schizophrenia (COS), recruited as part of an NIMH initiative

under the leadership of Dr. Judy Rapoport, met DSM-IIIR/DSM-IV criteria for SZ with
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documented onset of psychosis before age 13 [42]. They were subsequently interviewed for life-

time and current psychiatric disorders using structured psychiatric interviews, with diagnosis

confirmed by inpatient, medication-free observation [42].

Controls in both cohorts were assessed by non-structured clinical interviews. There was no

personal history of an Axis I diagnosis, and they have never been treated for a psychiatric disor-

der. It should be noted that we opted not to ascertain controls with 22q11.2 del who have not

had psychotic episodes. This was decision was made because of the concern that a subject with

22q11.2 del who never experienced a psychotic episode could be recruited into the study as a

young adult as a “control” could potentially onset later in life. Indeed, one of the subjects in

this study, SZ_22q11-30, had her first psychotic episode at age 37. Consequently, controls were

drawn from the general population.

A summary of the patients and controls used in this study is shown in Table 1.

Development of iPSCs from skin fibroblasts; generating iPSC lines

iPSC lines were generated from fibroblasts obtained from skin biopsies performed by board-

certified physicians. The procedure for growing fibroblasts in preparation for reprogramming

into iPSCs is detailed in S1 Text. Briefly, iPSC reprogramming was carried out by nucleofec-

tion. One vial of cells was thawed out and placed in a T75 flask in DMEM/F12 supplemented

with 10% FBS and fed every 2 days. Cells were grown to ~50% confluence (~4–5 days), after

which they were trypsinized and subjected to nucleofection (~6 x105 cells). Reprogramming

was carried out using an Amaxa 4D-Nucleofector (P2 Primary Cell Kit from Lonza catalog#

V4XP-2012, Program FF-135) with non-integrating plasmids containing OCT4, SOX2, KLF4,

L-MYC, LIN28, and a p53 shRNA vector (Addgene Cat. # 27077, 27078, 27080), according to

Okita et al., with some modifications [63,64,69]. iPSCs were maintained on Matrigel plates in

mTeSR1 medium (Stem Cell Technologies) with daily feeding in 37°C/5% CO2/85% humidity.

Pluripotency for all iPSC lines was confirmed by immunocytochemistry using antibodies

(Ab) against Tra-1-60, Tra-1-81, SSEA3 and SSEA4, which are expressed in pluripotent stem

cells. In addition, the capacity to differentiate into all 3 germ layers was established by in vitro

assays, as previously described [63,64]. The markers desmin (mesoderm), α-fetoprotein

Table 1. Demographics of subjects used for generating iPSCs.

ID age/sex diagnosis

ctrl_iPSC1 29/F control

ctrl_iPSC2 58/M control

ctrl_iPSC5 32/M control

ctrl_iPSC6 46/M control

ctrl_553 31/M control

ctrl_690 27/M control

SZ_iPSC15 31/M SAD/VCFS

SZ_22q11-30 41/F SZ/VCFS

SZ_1804 25/F COS

SZ_1220 31/F COS

SZ_22q11-10 37/M SAD/VCFS

SZ_22q11-60 25/M SAD/VCFS

Age refers to the age at time study was carried out. Abbreviations are Schizophrenia (SZ), Schizoaffective

Disorder (SAD), Childhood Onset Schizophrenia (COS), velocardiofacial syndrome (VCFS). See S1 Text

for clinical details.

doi:10.1371/journal.pone.0132387.t001
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(endoderm), and βIII-tubulin (ectoderm) were used [70–73]. A list of the antibodies used to

evaluate the iPSCs can be found in S1 Text. Karyotyping was carried out by Cell Line Genetics

(Madison WI). Each iPSC line used in this study had a normal G-banded karyotype, which

was used to screen for gross chromosomal changes that can occur during iPSC development.

The 3 Mb deletion on 22q11.2 in the patient samples was identified by FISH using a TUPLE

probe or microarray. Subjects were matched for age (control mean +/- standard deviation =

37.2+/-12.2; patients; 31.7+/-6.4, p = 0.35, Student’s t-test, two tailed). Due to technical issues

there was only one female subject in the control group and three in the patient group. However,

to compensate for this discrepancy, three different clones were analyzed in the control female.

Neuronal Differentiation

Neurons were generated from iPSC-derived neural progenitor cells (NPCs) as described by

Marchetto et al. with slight modifications [63,65]. A detailed description of the protocol can be

found S1 Text. Essentially, the protocol leads to a mixed population of glutamatergic and

GABAergic neurons, from which RNA was extracted and sent for sequencing.

miRNA sequencing and data analysis

Briefly, small RNAs were extracted from day 14 neurons using miRNeasy. Libraries were con-

structed using NEBNext Multiplex Small RNA Library Prep Kit (Set1 for Illumina) and size

selection of the Small RNA library (147 bp) was performed using Pippin Prep instrument

using 3% Agarose, dye free gel with internal standards (Sage Science # CDF3010) according to

the manufacturer’s instructions. MicroRNA sequencing was carried out using the Illumina

HiSeq2500 Massively Parallel Sequencing platform as single end 50 bp read length.

For data analysis, 3’ adaptor sequences (TGGAATTCTCGGGTGCCAAGG) were removed

from the raw miRNA-seq reads using a java script “AdRec.jar” from seqbuster [74]. Out of the

total, ~7% of reads were without adaptors. 92% of processed reads after adaptor trimming were

15-35bp in length. The trimmed reads were then mapped to known pre-miRNA sequences

deposited in miRBase (hsa database from miRBASE20) (http://www.mirbase.org/), allowing

for one mismatch at most using bowtie ([75]. For any read to be considered as from a known

mature miRNA, its 5’ and 3’ ends needed to be within 1–3 bp from the 5’ and 3’ ends of the

mature miRNAs annotated in miRBase, respectively. To avoid mis-mapping, all trimmed reads

were also mapped to the human genome reference sequences (hg19). Any reads initially

assigned to a mature miRNA was re-assigned as non-miRNA in origin if it had a superior

match outside the miRNA locus. Reads not mapped to miRNAs were also annotated and cate-

gorized based on their overlap with known gene annotations in the GENCODE (V18) (S1 Fig)

[76].

To identify differentially expressed (DE) miRNAs, we applied DESeq2 to analyze the read

counts of all microRNAs [77]. Specifically, DESeq2 normalized read counts across samples

using size factors, estimated as the median of the ratio of a sample’s observed counts to the geo-

metric mean of counts across samples. It then modeled the variance in miRNA read counts

across replicates using the negative binomial distribution and then tested whether, for a given

miRNA, the change in counts between the control and SZ/SAD samples was significantly larger

as compared to the variation within each replicate group. A nominally significant p-value

of< 0.01 and fold change>1.5-fold were chosen as the cutoffs for identifying differentially

expressed miRNAs between SZ and controls, but a multiple comparison correction was also

applied to adjust the p-values for genome-wide significance [78,79]. The total number of

miRNA-seq reads for each sample is shown in S1 Table. The miRNA-seq data have been

deposited in Gene Expression Omnibus (GEO; accession number GSE65367).
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miRNA target gene prediction

The target genes for DE miRNAs were predicted using the Ingenuity Pathway Analysis (IPA)

MicroRNA Target Filter, which combines experimentally validated targets from TarBase and

miRecords, predicted targets from TargetScan, and manually collected miRNA-mRNA interac-

tions from the peer-reviewed literature [80–83]. To reduce false positive targets, we only took

into consideration the targets that were experimentally validated or predicted with high confi-

dence. Then, IPA Core Analysis and the software DAVID were used for function analysis of

the target genes [84,85]. A right-tailed Fisher’s exact test was run through IPA software and

functions with p-value< 0.05 were considered significant. A modified Fisher’s exact test was

run through DAVID and functional categories with p-value< 0.05 were considered significant

[84,85].

Visualization of functional connections of predicted miRNA targets

To better understand how the significantly altered miRNAs could impact neural and brain

function and development, we first used the DAVID analysis to detect biological process GO

terms enriched (p-value< 0.05) in the targets of each differentially expressed miRNA. The

neuron/brain-related GO terms were selected and the miRNA targets in these terms were then

used to determine pairwise overlap coefficients [86]. A coefficient> 0.5 was used to connect

two GO terms, resulting in a network. To illustrate the relationship between miRNAs and the

GO term network, an edge was subsequently added between a specific miRNA and a GO term

enriched among the predicted target of this miRNA. We further organized the GO terms into

functional groups with reference to QuickGO [87] (http://www.ebi.ac.uk/QuickGO/). The final

network was generated in Cytoscape 3.2.0 and exported for further editing of colors and labels

in Adobe Illustrator [88].

Validation of mature miRNAs and DGCR8 by real time quantitative PCR
(qPCR)

Expression levels of selected miRNAs were validated using Mercury LNA Universal RT micro-

RNAs (Exiqon, Woburn, MA). PCR was carried out using an ABI-7900 HT Thermocycler in

the presence of ROX (300 nM), which was used as a passive reference. Samples were analyzed

in triplicate using the 2-ΔΔCt relative expression method normalized with two small RNAs;

SNORD48 and U6. The mean expression values from 4–6 patient and control samples each

were determined using both controls as normalizers. To measure the relative expression of

DGCR8, standard qPCR was carried using beta-2 microglobulin as the normalizing control, as

we have previously described [64,84]. For the statistical analysis, the control and SZ relative

expression levels were pooled and the mean fold difference (controls vs SZ) was determined. A

Student’s t-test was used to determine statistical significance.

Results

microRNA sequencing

MicroRNA-seq was carried out on day 14 neurons obtained from iPSCs derived from six con-

trols and six patients with SZ or SAD. For one control sample (ctrl_iPSC1), three independent

clones were analyzed, and for another control (ctrl_iPSC2), two different clones were analyzed,

resulting in a total of 9 control samples. Among the 22q11.2 del samples, two different clones

for SZ_iPSC15 were analyzed resulting in a total of 7 samples. After the miRNA-seq reads were

analyzed and annotated, we found that the percentages of small RNA reads originating from

miRNAs were, overall, similar among samples, but the SZ samples showed slightly reduced
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percentages (S1 Fig). The Spearman correlation coefficient was high (>0.8) across the patient

samples and controls (S2 Fig).

After normalizing the counts, each sample showed high levels of expression of miRNAs

associated with neurogenesis (miR-9, miR-124, miR-125a, miR-125b, miR-181a, miR-219, and

let-7; for example), validating the neuronal nature of our samples. More modest levels of

expression for other miRNAs involved in neurogenesis were detected, including miR-17, miR-

184, miR-132, miR-324-5p, miR-326, and the SZ candidate miR-137. However, there were no

significant differences in expression between patients and controls for these particular miRNAs

(S2 Table).

Using a p-value<0.01 and>1.5-fold differences in expression as limits, there were 45 dif-

ferentially expressed miRNAs (13 lower in SZ; 32 higher; Fig 1, Table 2). Of these, 6 were sig-

nificantly down-regulated in the 22q11.2 del neurons after correcting for genome wide

significance (FDR<0.05), including 4 miRNAs that map to the 22q11.2 del region (miR-1306-

3p, miR-1286, miR-1306-5p and miR-185-5p), and two that do not (miR-3175, miR-3158-3p).

Two of the down-regulated miRNAs (miR-185 and miR-491) overlapped with the 25 that were

found to be similarly down-regulated in the hippocampus and prefrontal cortex in Dgcr8

knockout mice [31,50].

A total of 7 known miRNA genes map to the large 22q11.2 del region, producing 10 differ-

ent mature miRNAs, 5 of which are expressed at relatively high levels in our differentiating

neurons (miR-1306-3p, miR-1286-3p, and miR-1306-5p, miR-185-5p and miR-185-3p) (S2

Table). Three other mature miRNAs are expressed at relatively low levels (normalized RPM

<1; miR-6816-3p, miR-4761-3p and miR-4761-5p), and two are not expressed at all in our

neurons: miR-649 and miR-3168, the latter of which is involved in cardiovascular develop-

ment. Of the 5 mature, highly expressed miRNAs, all showed a significant ~50% decrease in

the 22q11.2 del samples compared with controls (miR-1306-3p, miR-1286, miR-1306-5p, miR-

185-5p and miR-185-3p; miR-185-5p); four miRNAs were differentially expressed at the

genome-wide significance including, miR-185, as noted above (Table 1). By contrast, 41 mature

miRNAs that map to chromosome 22 outside of the deleted region are expressed in the neu-

rons (out of total of 67 miRNA genes on chromosome 22). Of these, only one (miR-1249)

showed a nominally significant difference compared to control neurons. The difference in dif-

ferentially expressed mature miRNAs in the 22q11.2 del region that showed nominally signifi-

cant differences in expression compared with mature miRNAs generated from the remainder

of miRNA genes on chromosome 22 is highly significant (Fisher exact test, p = 2E-06). This

shows that neurons derived from iPSCs that carry the 22q11.2 del recapitulate the miRNA

expression patterns expected of 22q11.2 haploinsufficiency.

There were no differentially expressed up-regulated miRNAs that achieved genome wide

significance. The most significant were miR-34b-3p and miR-34c-5p, which are members of

the miR‑34 family. These miRNAs regulate the mitotic cell cycle, cell migration and apoptosis,

and one member, miR-34a, has been found to be differentially expressed in patients with SZ

and ASD (see discussion) [89–96]. It should be noted that miR-34a-5p showed a 1.6-fold

increase in the SZ neurons in our study (S2 Table). However the results did not reach our

threshold for nominal significance (p = 0.11).

Other miRNAs that show the largest fold increases in the SZ samples were miR-4449, miR-

146b-3p, and miR-23a-5p. These are all of interest in neuropsychiatric disorders as described

in greater detail in the Discussion section [97–102]. MicroRNA-146 also affects IL-6 expression

and regulates inflammatory responses and innate immunity, factors associated with SZ and

ASD risk [98,103–108]. These findings show that in addition to down-regulated miRNAs

caused by haploinsufficiency for DGCR8 and the miRNA genes that map to the 22q11.2 del
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region, increased expression of some miRNAs may also play a role in the pathogenesis of neu-

ropsychiatric disorders associated with 22q11.2 del.

Validation

The expression of four miRNAs that showed either increased or decreased levels, or no change,

in the SZ samples relative to controls was validated by qPCR, as described in the methods sec-

tion. As shown in Fig 2, fold differences in expression were similar to that seen in the miRNA-

seq experiments. In addition, we used qPCR to evaluate the expression of DGCR8mRNA in

our patient vs control samples. As seen in the figure, the qPCR results support the miRNA-seq

findings; a significant decrease in DGCR8 expression is seen in the patient samples, as expected

Fig 1. Volcano plot showing statistical significance (-log10 of the p-values) on the y-axis vs fold change of all expressedmiRNAs. The 13 miRNAs
that were significantly down-regulated in SZ are shown at the left (red squares), while the 32 that were significantly up-regulated in SZ are shown at the right
(p < 0.05 and FC > 1.5).

doi:10.1371/journal.pone.0132387.g001
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Table 2. Differentially expressedmiRNAs.

Down regulated coordinates log2 FC p-value p-adjusted

miR-1306-3p chr22:20073635_20073652 1.05 7.52E-16 1.34E-12

miR-1286 chr22:20236668_20236688 1.79 2.89E-06 1.84E-03

miR-1306-5p chr22:20073595_20073616 0.85 3.09E-06 1.84E-03

miR-185-5p* chr22:20020676_20020697 1.04 1.37E-05 6.11E-03

miR-3175 chr15:93447638_93447659 1.30 3.12E-05 1.12E-02

miR-3158-3p chr10:103361184_103361205,chr10:103361223_103361244 0.80 9.97E-05 2.97E-02

miR-185-3p* chr22:20020711_20020732 1.06 1.49E-03 1.69E-01

miR-486-3p* chr8:41517961_41517981,chr8:41518004_41518024 1.24 1.51E-03 1.69E-01

miR-1249 chr22:45596839_45596860 0.86 2.96E-03 2.44E-01

miR-6840-5p chr7:99954279_99954302 1.41 3.00E-03 2.44E-01

miR-491-5p* chr9:20716119_20716140 0.85 4.63E-03 2.67E-01

miR-4804-5p chr5:72174427_72174447 1.20 5.88E-03 2.93E-01

miR-767-3p chrX:151561919_151561941 1.08 6.32E-03 2.93E-01

Up regulated coordinates

miR-34b-3p* chr11:111383712_111383733 -1.52 5.81E-04 1.21E-01

miR-34c-5p* chr11:111384176_111384198 -1.33 6.29E-04 1.21E-01

miR-26b-5p* chr2:219267380_219267400 -0.74 6.75E-04 1.21E-01

miR-146b-3p* chr10:104196313_104196334 -1.28 8.59E-04 1.40E-01

miR-23a-5p* chr19:13947444_13947465 -1.38 9.86E-04 1.47E-01

miR-296-3p* chr20:57392681_57392702 -0.64 1.44E-03 1.69E-01

miR-4449* chr4:53578887_53578908 -1.46 2.14E-03 2.09E-01

miR-4792 chr3:24562903_24562920 -1.22 2.21E-03 2.09E-01

miR-148a-3p chr7:25989542_25989563 -1.17 2.22E-03 2.09E-01

miR-320b chr1:117214409_117214430,chr1:224444751_224444772 -0.63 2.90E-03 2.44E-01

miR-3609 chr7:98479323_98479346 -1.27 3.26E-03 2.54E-01

miR-320c chr18:19263520_19263539,chr18:21901680_21901699 -0.86 3.52E-03 2.61E-01

miR-126-3p* chr9:139565105_139565126 -1.13 3.87E-03 2.61E-01

miR-320e chr19:47212551_47212568 -1.05 3.94E-03 2.61E-01

miR-7704 chr2:177053571_177053589 -1.12 3.94E-03 2.61E-01

miR-181b-5p* chr1:198828054_198828076,chr9:127456004_127456026 -0.65 4.08E-03 2.61E-01

miR-146a-5p* chr5:159912379_159912400 -1.10 4.37E-03 2.66E-01

miR-6757-5p chr12:53450733_53450754 -1.30 5.12E-03 2.86E-01

miR-4682 chr10:121718034_121718056 -1.32 5.59E-03 2.93E-01

miR-26a-5p* chr12:58218441_58218462,chr3:38010904_38010925 -0.81 6.08E-03 2.93E-01

miR-3195 chr20:60639868_60639884 -1.18 6.16E-03 2.93E-01

miR-126-5p* chr9:139565068_139565088 -0.94 6.31E-03 2.93E-01

miR-125a-5p chr19:52196521_52196544 -0.91 6.39E-03 2.93E-01

miR-548q chr10:12767324_12767345 -0.98 6.66E-03 2.98E-01

miR-320d chr13:41301964_41301982,chrX:140008337_140008355 -0.94 7.37E-03 3.10E-01

miR-4497 chr12:110271155_110271171 -1.15 7.47E-03 3.10E-01

miR-27a-3p* chr19:13947261_13947281 -0.84 8.11E-03 3.17E-01

miR-455-5p chr9:116971729_116971750 -0.70 8.25E-03 3.17E-01

miR-7113-5p chr11:67800332_67800352 -0.81 8.33E-03 3.17E-01

miR-6842-5p chr8:27290892_27290913 -1.25 8.64E-03 3.18E-01

miR-146b-5p chr10:104196277_104196298 -1.07 8.70E-03 3.18E-01

(Continued)
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of a 22q11.2 del disorder. A significant decrease in the expression of HIRA, which also maps to

the 22q11.2 del region was detected as well.

Predicted mRNA targets of differentially expressed miRNAs

In order to determine the potential impact of differentially expressed miRNAs on neuronal

function, putative gene targets were predicted and functionally characterized as described in

the Methods section. A total of 5,413 predicted targets were found with the high confidence set-

ting in IPA among the up-regulated miRNAs, and 2,274 predicted targets were found for the

down-regulated miRNAs (S3 Table). These high confidence targets were used in subsequent

analyses because the number of experimentally validated targets was too small (240 targets for

up-regulated miRNAs; 10 for the down-regulated miRNAs) for pathway analyses. According

to IPA, the top two diseases/functions enriched within the predicted targets of both up and

down-regulated miRNAs were neurological and psychological disorders (S4 Table; Table 3).

Among the predicted targets of up-regulated miRNAs were a number of well-established SZ,

ASD and BD candidates, including DISC1, GSK3β,MYT1L, TCF7L2, CNTNAP1, NRXN1,

genes involved in glutamatergic transmission (GRM3, GRIN2A, GRIN2B, GRIN2D, GRIK2,

Table 2. (Continued)

Down regulated coordinates log2 FC p-value p-adjusted

miR-6852-5p chr9:35710713_35710733 -0.88 9.21E-03 3.29E-01

Asterisk (*) shows miRNAs that have also been found to be differentially expressed in autopsy samples or peripheral cells in neuropsychiatric disorders

(see text for references). Abbreviation: FC (fold change)

doi:10.1371/journal.pone.0132387.t002

Fig 2. A. miRNA-seq reads (y-axis) for controls (ctrl) and patients with 22q11.2 del (SZ) showing two, nominally significant up-regulated genes (miR-23a-5p
and miR-146b-3p), a miRNA that showed a genome wide significant decrease in expression (miR-185-5p), and a miRNA that showed no difference in
expression (miR-767-5p). B. SamemiRNAs in 2A showing qPCR analysis using Mercury LNA Universal RT microRNAs assays, as described in methods.
The relative expression of two coding genes that map to the 22q11.2 del region (DGCR andHIRA) was analyzed by routine qPCR. A Student’s t-test was
used for statistical analysis. Error bars show standard deviation; p<0.05, one-tailed*; p<0.05, two-tailed.**

doi:10.1371/journal.pone.0132387.g002
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GRIK3), and genes involved in GABAergic transmission (CCK, GABRA1 GRIN2B,GABBR2,

GABRB2). Among the down-regulated miRNA gene targets were the candidate genes GSK3B,

CNTNAP1, DAO, GRIA1, GRIN1, GRIK3, and SLC17A7 (VGLUT1).

Similarly, using the DAVID functional annotation tool, SZ was the top disease category

(Table 4) for up-regulated miRNA target genes, when the predicted targets were analyzed for

enrichment of genes associated with genetic disorders. In addition, other neuropsychiatric dis-

orders previously reported in patients with 22q11.2 del were also among the top diseases,

including BD, Tourette Syndrome and SAD, as well as cleft palate, one of the most common

physical anomalies associated with VCFS [32–34,36,109,110]. Interestingly, target genes

involved in type 2 diabetes were also somewhat enriched. This suggests that there may be some

common genetic factors involved in the development of type 2 diabetes, which is seen as part

of the “metabolic syndrome” that occurs in a substantial subgroup of SZ patients treated with

anti-psychotic medications, consistent with some published reports [111,112].

Genes involved in SZ and BD were also found among the predicted targets of down-regu-

lated miRNAs, although the p-values were modest (p = 0.06 and 0.07, respectively, Table 4). A

number of infectious and autoimmune disorders were among the top diseases in this category

as well, consistent with the immune problems found in patients with 22q11.2 del. Whether this

also influences the underlying autoimmune and/or infectious disease etiology believed to play a

role in the pathogenesis of SZ and ASD in a subgroup of patients remains to be determined

[54,55,113–116].

The predicted target genes were also characterized by Gene Ontology (GO). As seen in

Table 5, the most enriched GO terms in the cellular component (CC) assessment were synapse

and neuron projection for predicted targets of up-regulated miRNAs; these were also among

the top hits for predicted targets of down-regulated miRNAs (see S5 Table and S6 Table for

Table 3. Ingenuity Pathway Analysis (IPA): Diseases/Functions of mRNA targets of differentially
expressedmiRNAs.

Diseases/Functions: targets of up-regulated miRNAs p-value

Neurological Disease 6.74E-04-4.49E-02

Psychological Disorders 6.74E-04-4.49E-02

Metabolic Disease 7.39E-04-4.49E-02

Cell Death and Survival 2.18E-03-4.76E-02

Cellular Growth and Proliferation 2.26E-03-3.42E-02

Cellular Development 3.38E-03-4.49E-02

Nervous System Development and Function 3.38E-03-4.49E-02

Tissue Development 3.38E-03-4.49E-02

Tissue Morphology 6.1E-03-4.49E-02

Cellular Assembly and Organization 1.49E-02-3.42E-02

Disease/Functions: targets of down-regulated miRNAs p-value

Neurological Disease 1.42E-02-2.95E-02

Psychological Disorders 1.42E-02-2.95E-02

Metabolic Disease 1.66E-02-1.96E-02

Cell Morphology 1.89E-02-1.89E-02

Cellular Function and Maintenance 1.89E-02-1.89E-02

Nervous System Development and Function 1.89E-02-1.89E-02

Ingenuity Pathway Analysis (IPA), Diseases/Functions category of mRNA targets of differentially expressed

miRNAs. Table shows top IPA diseases and functions for predicted gene targets.

doi:10.1371/journal.pone.0132387.t003
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details). Abnormal synaptogenesis and neuron projection are primary pathogenic features of

both SZ and ASD [117–125].

Network analysis

To better illustrate how the differentially expressed miRNAs may independently or coopera-

tively affect brain development and function, we constructed a network of differentially

expressed miRNAs and the enriched neural GO terms of their putative targets, as described in

the Methods section [86,87] (Fig 3). The data show that 11 up-regulated and 5 down-regulated

miRNAs can regulate a broad range of brain related genes, with miR-181b-5p, miR148a-3p,

miR-27a-3p, and miR-3175 potentially having the largest impact. The result also indicates that

genes involved in neurotransmitter function, synaptogenesis, and neuronal differentiation will

likely be affected most by the disruption of the miRNAs found in our 22q11.2 del neurons.

Also, while forebrain development can be affected by both up- and down-regulated miRNAs in

SZ, hindbrain development seems be affected more by the up-regulated miRNAs. The figure

reinforces our finding that in differentiating neurons, up-regulated, as well as down-regulated

Table 4. DAVID functional annotation; Top Diseases for predicted targets of differentially expressed
miRNAs.

Top Diseases for predicted targets of up-regulated miRNAs

Term Count % P-Value

schizophrenia 116 2.29 3.30E-
04

Alzheimer's Disease 91 1.79 0.01

colon cancer rectal cancer 6 0.12 0.01

schizophrenia; schizoaffective disorder; bipolar disorder 10 0.20 0.02

prostate cancer 66 1.30 0.02

bipolar affective disorder 8 0.16 0.02

sleep disorders 8 0.16 0.02

cleft lip with cleft palate cleft lip without cleft palate cleft palate 16 0.32 0.03

colorectal cancer; Tourette syndrome; bone density; pregnancy loss, recurrent;
cleft lip without cleft palate; juvenile polyposis; cleft palate

6 0.12 0.03

diabetes, type 2 triglycerides 6 0.12 0.03

Top Diseases for predicted targets of down-regulated miRNAs

Term Count % P-Value

myelopathy, HTLV-1 associated 5 0.24 0.003

narcolepsy 7 0.33 0.004

diabetes, type 1 38 1.80 0.004

pulmonary hypertension 4 0.19 0.02

sclerosis, systemic 10 0.47 0.03

HTLV-1 infection 5 0.24 0.04

malaria; schistosomiasis 3 0.14 0.04

migraine; migraine with aura 4 0.19 0.05

normal variation 7 0.33 0.05

diabetes mellitus 5 0.24 0.05

Graves' disease 9 0.43 0.06

bipolar disorder 20 0.95 0.06

schizophrenia 45 2.13 0.07

DAVID functional annotation; Top Diseases for predicted targets of differentially expressed miRNAs.

doi:10.1371/journal.pone.0132387.t004
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miRNAs and their targets are affected by 22q11.2 del, and consequently can affect multiple

processes in brain development and function.

Discussion

Research on the potential role of miRNAs in 22q11.2 del-associated neuropsychiatric disorders

has primarily focused on analyzing the effects of DGCR8 on miRNA expression and behavior,

which stands to reason considering the effect it has on miRNA biogenesis [31,48,117]. More

recently, there have been studies showing the effects of specific miRNAs that map to the

deleted region, most notablyMIR-185, which may influence neuronal function and synapto-

genesis independently of DGCR8-mediated biogenesis [7,49,51,117]. Overall, the bioinformat-

ics analysis of predicted targets of miRNAs that were found to be down-regulated in our

22q11.2 del samples, which included miR-185, is consistent with the mouse studies in that

there was enrichment for genes involved in neuropsychiatric disorders, synaptogenesis and

neuron projection. However, without direct functional studies, the relative contribution of

DGCR8, miR-185 and other down-regulated miRNAs, some of which are affected by reduced

levels of DGCR8, remains uncertain.

There were two miRNAs that were significantly down-regulated in our 22q11.2 neurons

that overlapped with the 25 that were found in Dgcr8 knockouts; miR-185 and miR-491[31].

The reason for the small degree of overlap is not clear, but could be due to species differences,

cellular heterogeneity in the neuroanatomical structures analyzed in mice, which could poten-

tially amplify an effect in non-neuronal cells, and the relative immaturity and spatio-temporal

differences of the neurons used in our analysis. Although miR-185 has established effects on

Table 5. DAVID functional annotation; Gene Ontology (GO) categories (CC).

GO categories Count % p-value FE Bonferroni Benjamini FDR

GO:0045202~synapse 172 3.39 1.23E-18 1.81 9.56E-16 9.56E-16 1.88E-15

GO:0043005~neuron projection 167 3.29 1.54E-18 1.82 1.20E-15 6.02E-16 2.36E-15

GO:0005794~Golgi apparatus 332 6.55 4.56E-14 1.42 3.56E-11 1.19E-11 6.98E-11

GO:0042995~cell projection 269 5.30 2.87E-12 1.44 2.24E-09 5.60E-10 4.39E-09

GO:0005626~insoluble fraction 313 6.17 4.99E-12 1.39 3.89E-09 7.79E-10 7.64E-09

GO:0005624~membrane fraction 302 5.95 1.15E-11 1.39 8.95E-09 1.49E-09 1.76E-08

GO:0030424~axon 82 1.62 6.01E-11 1.93 4.69E-08 6.70E-09 9.20E-08

GO:0000267~cell fraction 383 7.55 6.93E-11 1.32 5.40E-08 6.75E-09 1.06E-07

GO:0019898~extrinsic to membrane 197 3.88 1.31E-10 1.49 1.02E-07 1.13E-08 2.00E-07

GO:0044459~plasma membrane part 711 14.02 1.95E-10 1.21 1.52E-07 1.52E-08 2.98E-07

GO categories Count % p-value FE Bonferroni Benjamini FDR

GO:0044459~plasma membrane part 356 16.84 9.98E-13 1.40 5.97E-10 5.97E-10 1.47E-09

GO:0005886~plasma membrane 519 24.55 7.08E-07 1.19 4.23E-04 2.12E-04 1.05E-03

GO:0045202~synapse 73 3.45 1.11E-06 1.78 6.61E-04 2.21E-04 1.63E-03

GO:0042995~cell projection 121 5.72 3.54E-06 1.50 0.00 5.29E-04 0.01

GO:0043005~neuron projection 69 3.26 4.52E-06 1.74 0.00 5.40E-04 0.01

GO:0045121~membrane raft 36 1.70 1.12E-05 2.18 0.01 0.00 0.02

GO:0031226~intrinsic to plasma membrane 184 8.70 6.27E-05 1.31 0.04 0.01 0.09

GO:0005887~integral to plasma membrane 180 8.51 7.38E-05 1.31 0.04 0.01 0.11

GO:0005624~membrane fraction 129 6.10 1.06E-04 1.38 0.06 0.01 0.16

DAVID functional annotation for predicted targets of differentially expressed miRNAs (see S5 Table and S6 Table for details). GO categories CC (cellular

components) based on predicted targets of up and down-regulated miRNAs

doi:10.1371/journal.pone.0132387.t005
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neuronal function, as noted above, less is known about miR-491 in the context of neuronal

function and disease pathogenesis. However, in cancer cells, expression is correlated with an

increase in apoptosis through activation of intrinsic mitochondrial apoptotic pathways, and

cell growth is affected by the inhibitory effect of miR-491 on PI3K/Akt signaling [126]. Abnor-

malities in apoptosis and PI3K/Akt signaling have been described in SZ and ASD [127–131].

As for other down-regulated miRNAs that map to 22q11.2, there are no reported functional

studies, so their potential role in neuropsychiatric disorders is uncertain. The same can be said

for the down-regulated miRNAs detected in our study that map to other chromosomes, with

the exception of miR-486 and miR-491. miR-486 was the top hit in an analysis of differentially

expressed genes carried out in discordant siblings for ASD using lymphoblastoid cell lines

(although expression was higher in the ASD subjects, and lower in our 22q11.2 del neurons)

[132]. MicroRNA-486 is known to regulate Akt signaling by targeting PTEN, the latter of

which is a well-established ASD candidate gene [133–135]. MicroRNA-491 is one of several

miRNAs that may affect impulsivity and co-morbid traits associated with synaptic plasticity in

the mouse amygdala [136]. This could be of translational interest because amygdala size has

been reported to be abnormal in 22q11.2 del [137,138]. Functional abnormalities in the amyg-

dala probably plays some role in the high rate of anxiety disorder seen in patients with 22q11.2

del, as well as their tendency towards impulsivity [39,40,139]. Down-regulation of these miR-

NAs is likely not due to DGCR8 haploinsufficiency, at least not entirely, since they were not

identified as such in Dgcr8 knockout mice [31].

Fig 3. A network view of neurological function of significantly alteredmiRNAs. Red nodes stand for up-regulated miRNAs, blue for down-regulated
miRNAs, and cyan for enriched GO terms (n = 91, with sizes proportional to the numbers of predicted miRNA targets). GO terms were further classified into
broader function groups (yellow circles) by QuickGO. A red or blue edge indicates a GO term was enriched in the predicted targets of up-regulated or down-
regulated miRNAs, respectively. Grey edges link GO terms with overlapped targets (overlap coefficient > 0.5). This network was created by the Cytoscape
3.2.0.

doi:10.1371/journal.pone.0132387.g003
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Thus, in 22q11.2 del, some down-regulated miRNAs that may play a role in disease patho-

genesis are regulated independently of DGCR8, their expression affected perhaps by one or

more of the transcriptional and chromatin regulators that map to this region of the genome.

An effect on miRNA expression in 22q11.2 del that is independent of DGCR8 is supported

by the finding that 32 differentially expressed miRNAs were up-regulated in the 22q11.2 del

samples, rather than down-regulated, a number of which have previously been connected to

neuropsychiatric disorders. The miR-34 family of related miRNAs is an example. A key mem-

ber of the miR-34 family is miR-34a, which plays a role in neural stem cell differentiation [93].

Most interestingly, miR-34a is expressed at higher levels in the peripheral blood mononuclear

cells and in the prefrontal cortex in SZ patients compared to controls [92,94,95]. Similarly,

miR-34a, 34b, and 34c are upregulated in the hippocampus of Fmr1 KOmice: a CGG trinucle-

otide repeat in the FMR1 gene causes Fragile X syndrome [140]. A number of ASD, SZ and BD

candidate genes are predicted targets of miR-34c, including CNTNAP1, CNTNAP2, GABRA3,

RELN, FOXP2, NRXN2, and ANK3 (S3 Table).

Finally miR-34a was identified as a hub molecule in a bioinformatics analysis of CNVs in

ASD [96].

Another up-regulated miRNA of interest is miR-4449; a significant increase in expression

was detected in Brodmann area 46 in SZ autopsy samples, and a trend towards a significant

increase was found in the hair follicles of living patients [97]. Others are three members of the

miR-146 family and miR-296. MicroRNA-146a and miR-146b were two of the top differen-

tially expressed miRNAs in an animal model of Rett syndrome, although it is lower in the

Mecp2 knockouts, while miR-296 is expressed at significantly higher levels, similar to our SZ

neuronal samples [141]. MicroRNA-146 expression is modulated by neuronal activity, and

affects IL-6 expression, inflammatory responses and innate immunity, factors associated with

SZ and ASD risk [98,103–108]. This is consistent with the finding that predicted targets of

both miR-146a-5p and miR-146b-3p are multiple members of the interleukin signaling cascade

(S3 Table).

Another suggestive up-regulated miRNA is miR-23a, the expression of which is increased in

the cerebellum and transformed lymphoblasts of patients with ASD ([99,100]. Expression is

also increased (as is miR-146a) in the hippocampus of patients with epilepsy [102]. Epilepsy is

found in a subgroup of patients with 22q11.2 del and shares common genetic risk factors with

SZ and ASD at multiple loci [142–147]. Finally, the expression of miR-26a, miR-27a-3p, miR-

181b and miR-26b is higher in the DLPFC in SZ [101]. A number of SZ, ASD and bipolar dis-

order candidates are also high confidence predicted targets of these genes, including JARID2,

RGS4, TCF7L2, GSK3B, GABRB3, FOXP2, CACNA1C, NRXN1, ANK3, CNTNAP2, among oth-

ers (S3 Table).

Identifying differentially expressed miRNAs in our in vitromodel for 22q11.2 del-associated

neuropsychiatric disorders is extremely important from the standpoint of interpreting miRNA

expression data uncovered using autopsy specimens. Although informative findings have

emerged from the analysis of mRNAs and miRNAs using this resource, it is an imperfect sys-

tem from a variety of perspectives. In addition to the technical challenges associated with using

autopsy samples (e.g., brain pH, premorbid medical issues, cause of death, postmortem delay,

cellular heterogeneity), there are pathophysiological considerations as well. Patients with SZ,

for example, are exposed to a number of environmental factors that can each influence gene

expression, such as medications, alcohol and nicotine use, and illicit drugs. The differential

expression of mRNAs and miRNAs found in expression profiling studies could easily be influ-

enced by one or more of these factors. A similar set of circumstances could also influence the

interpretation of gene expression studies in ASD autopsy samples. In addition, the neurodeve-

lopmental underpinnings of both SZ and ASD predate gene expression changes found in
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autopsy samples by decades. The finding that a number of differentially expressed miRNAs we

detected in iPSC-derived neurons grown under controlled conditions overlap with those found

in autopsy samples, supports their involvement in neuropsychiatric disorders. This provides a

strong rationale for their more extensive analysis in animal and in vitromodels.

The same principle applies to the use of peripheral, non-neuronal cells, which are exposed

to the same confounding environmental factors, and suffer from the additional shortcoming of

being a very imperfect proxy for explaining pathophysiological processes involved in neurode-

velopmental disorders. However, peripheral cells are excellent sources of potential molecular

biomarkers, as long as a connection can be established between those biomarkers and neuronal

function and/or behavior. The finding of common differentially expressed miRNAs in periph-

eral cells and our cultured neurons, such as the miR-34 family, miR-4449 and miR-23a, sup-

ports the idea that they should be evaluated as potential biomarkers to assess clinically relevant

phenotypes.

Finally, the finding of common differentially expressed miRNAs in neurons containing a

22q11.2 del and clinical/autopsy samples drawn from the general population of SZ and ASD

patients suggests that there are underlying molecular genetic networks shared by 22q11.2 del

and candidate genes at other loci.

One caveat to our findings that needs to be discussed is that our analysis was carried out

using a mix of phenotypes that included both COS and patients who developed psychotic

symptoms during adolescence and adulthood. In addition, we used independent replicate

clones for two of the controls and one 22q11.2 del subject. Consequently, we repeated the dif-

ferential expression analysis without the COS subjects, and again, without the independent

clones. Using our threshold for nominal significance (p-value of< 0.01 and fold change

>1.5-fold), 26 out of 45 differentially expressed miRNAs fell below the level of significance

when the data were analyzed without the COS samples (S7 Table). Similarly, without the repli-

cate samples, 13 differentially miRNAs fell below the threshold. However, the dropouts are due

to a small increase in p-values. In the COS samples, 23/26 remained below 0.05 (that is,

between 0.01–0.05), and the highest was 0.08. In addition, the fold changes comparing patients

vs controls are largely unaffected. Indeed, 17 of the miRNAs that dropped below the threshold

showed an increase in the fold change—although p-values increased because of higher sample

to sample variability. For the 13 differentially expressed miRNAs that fell below the signifi-

cance threshold when replicates were removed, all but 2 had p-values between 0.01 and 0.05. In

addition, the fold change increased in 10 samples, although, as in the COS samples, the p-val-

ues increased because of sample to sample variability. This reanalysis indicates that omitting

the COS and replicate samples does not significantly change the major conclusions drawn

from our study, and that we need to include all samples to maximize statistical power.

To summarize, we show that iPSCs derived from patients with SZ who have 22q11.2 del is a

good model system to study the neuropsychiatric manifestations of this condition in vitro. Fur-

thermore, expression profiling shows changes in the expression of several miRNAs that are

similar to those found in clinical samples, supporting a role in SZ and ASD pathogenesis and

their utility as peripheral biomarkers.
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