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Abstract

Aims

Multicellular organisms maintain vital functions through intercellular communication. Re-

lease of extracellular vesicles that carry signals to even distant target organs is one way of

accomplishing this communication. MicroRNAs can also be secreted from the cells in exo-

somes and act as paracrine signalling molecules. In addition, microRNAs have been impli-

cated in the pathogenesis of a large number of diseases, including cardiovascular

diseases, and are considered as promising candidate biomarkers due to their relative stabil-

ity and easy quantification from clinical samples. Pericardial fluid contains hormones secret-

ed by the heart and is known to reflect the cardiac function. In this study, we sought to

investigate whether pericardial fluid contains microRNAs and if so, whether they could be

used to distinguish between different cardiovascular pathologies and disease stages.

Methods and Results

Pericardial fluid was collected from heart failure patients during open-heart surgery. Micro-

RNA profiles of altogether 51 patients were measured by quantitative real-time PCR

(qPCR) using Exiqon human panels I and II. On the average, 256 microRNAs were de-

tected per sample, and 70 microRNAs out of 742 profiled microRNAs were detected in

every sample. The five most abundant microRNAs in pericardial fluid were miR-21-5p, miR-

451a, miR-125b-5p, let-7b-5p and miR-16-5p. No specific signatures for cardiovascular pa-

thologies or clinically assessed heart failure stages could be detected from the profiles and,

overall, microRNA profiles of the samples were found to be very similar despite the hetero-

geneity in the study population.

Conclusion

Measured microRNA profiles did not separate the samples according to the clinical features

of the patients. However, several previously identified heart failure marker microRNAs were

PLOSONE | DOI:10.1371/journal.pone.0119646 March 12, 2015 1 / 23

OPEN ACCESS

Citation: Kuosmanen SM, Hartikainen J, Hippeläinen

M, Kokki H, Levonen A-L, Tavi P (2015) MicroRNA

Profiling of Pericardial Fluid Samples from Patients

with Heart Failure. PLoS ONE 10(3): e0119646.

doi:10.1371/journal.pone.0119646

Academic Editor: Tobias Eckle, University of

Colorado Denver, UNITED STATES

Received: December 11, 2014

Accepted: February 1, 2015

Published: March 12, 2015

Copyright: © 2015 Kuosmanen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information files.

Funding: This work was supported by the European

Regional Development Fund of the Finnish Funding

Agency for Technology and Innovation (PT), the

Academy of Finland (ALL, PT), the Sigrid Juselius

Foundation (ALL, PT), and the Instrufoundation

(SMK). The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0119646&domain=pdf
http://creativecommons.org/licenses/by/4.0/


detected. The pericardial fluid microRNA profile appeared to be a result of an active and se-

lective secretory process indicating that microRNAs may act as paracrine signalling factors

by mediating the local crosstalk between cardiac cells.

Introduction

Heart failure (HF) is a condition in which the heart is unable to sustain sufficient blood circula-

tion to meet the needs of the body. Heart failure can result from many cardiovascular condi-

tions, but the most common causes for the development of HF are coronary artery disease,

hypertension, and valvular heart diseases. Several pathogenic mechanisms have been found to

contribute to disease progression (reviewed in ref [1]). As a consequence, substances are re-

leased to the blood stream where they can be detected and used as biomarkers to aid diagnos-

tics and treatment. Of the currently used biomarkers, myocyte stretch-induced natriuretic

peptides, especially B-type natriuretic peptide (BNP) and biologically inert but more stable

N-terminal proBNP (NT-proBNP), are well validated and widely used in clinical diagnostics

[2].

Cardiac tissue produces many physiologically active substances such as cytokines, growth

factors and cardiac hormones. Many of these function locally in either an autocrine or para-

crine manner in the heart and can be found in high concentrations within pericardial fluid,

formed by the active secretion of the pericardial cells and, in part, as a heart tissue filtrate [3].

For example, the concentrations for heart-specific hormones, such as atrial natriuretic peptide

(ANP), BNP and endothelin-1 (ET-1), are considerably higher in pericardial fluid compared to

plasma [4,5]. In addition, pathological conditions influence the cardiac hormone and growth

factor composition of the fluid [6–9]. Pericardial fluid can impact cardiomyocyte growth

[10–12] and it appears to contain unidentified components that stimulate cardiac stem cell dif-

ferentiation into cardiac cells after myocardial infarction [13].

MicroRNAs (miRNAs) are small, non-coding RNAs that control gene expression by inhib-

iting target messenger RNA translation or increasing mRNA decay [14]. MicroRNAs are im-

portant post-transcriptional regulators of most cellular and developmental processes and they

have an emerging important role in cardiovascular pathologies, including HF [15–17]. These

small RNAs can be secreted in either protein-bound or vesicle-enclosed forms from the cells

into the extracellular space or to the systemic circulation where they act as paracrine or endo-

crine signalling molecules. These circulating miRNAs are considered as candidates for use as

biomarkers in molecular diagnostics and therapy [18]. Exosomes are small (30–100 nm) inter-

cellular signalling vesicles that have been shown to carry miRNAs. Cardiac cells release and up-

take exosomes and the signalling rate increases under stressful conditions. Exosome signalling

is involved in the central processes of cardiac remodelling, and recent reports suggest that car-

diac exosomes released after ischemic insult reprogram bone marrow cells to initiate cardiac re-

pair processes [19–24].

Given that cardiomyocytes actively secrete miRNAs and that cardiomyocyte-derived miR-

NAs can be found in circulation, we hypothesized that these could also be detected in the peri-

cardial fluid, where they may serve as paracrine signalling mediators. In the present study we

sought to investigate if pericardial fluid contains miRNAs and whether different cardiac dis-

eases and disease states could be differentiated by the miRNA signatures found in the

pericardial fluid.

Pericardial Fluid MicroRNA Profiling
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Methods

Ethics statement

The study was approved by the Research Ethics Committee of the Hospital District of Northern

Savo, Kuopio, Finland (Permit: 30/2012) and written informed consent was obtained from

each participant.

Study population

All patients were enrolled at Kuopio University Hospital between October 10, 2012 and No-

vember 15, 2013. The study included 51 HF patients who were classified into groups according

to clinical evaluation. Clinical data for the study population is summarized in Table 1. Patients

with coronary artery disease were enrolled in group 1 (n = 18), patients with mitral valve insuf-

ficiency in group 2 (n = 13), patients with aortic stenosis in group 3 (n = 4), patients with aortic

valve insufficiency in group 4 (n = 1), and patients with other cardiovascular disease (CVD) in

group 5 (n = 5). Patients belonging to more than one of the groups were enrolled in groups 6 to

11 according to their clinical status (6 = Coronary artery disease, mitral insufficiency and other

CVD, n = 1; 7 = Coronary artery disease and aortic stenosis, n = 5; 8 = Mitral insufficiency and

aortic stenosis, n = 1; 9 = mitral insufficiency, aortic insufficiency and other CVD, n = 1; 10 =

Mitral insufficiency and other CVD, n = 1; 11 = Aortic stenosis and aortic insufficiency, n = 1).

Patients groups are summarized in Table 2. Patients were also grouped according to the NYHA

classification (New York Heart Association functional classification) for the extent of HF: pa-

tients without clinical HF belong to group 0 (n = 3), patients with cardiac disease but no symp-

toms and no limitations in ordinary physical activity in group I (n = 4), patients with mild

symptoms in group II (n = 19), patients with marked limitation in activity due to symptoms in

Table 1. Clinical characteristics.

Variable Patients (n = 51)

Gender (male) 37 (73%)

Age (years)* 63.8 ± 9.3

Smoking 8 (16%)

Body mass index* 27.6 ± 4.2

Diabetes mellitus 8 (16%)

Hypertension 29 (57%)

Coronary artery disease 24 (47%)

Mitral insufficiency 17 (33%)

Aortic insufficiency 3 (6%)

Aortic stenosis 11 (22%)

Other cardiovascular disease 8 (16%)

NYHA class grade

Class 0 3 (6%)

Class I 4 (8%)

Class II 19 (37%)

Class III 13 (25%)

Class IV 12 (24%)

NYHA class = New York Heart Association class

* Mean ± SD.

doi:10.1371/journal.pone.0119646.t001
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group III (n = 13), and patients with severe limitations and having symptoms even while at rest

in group IV (n = 12).

Sample collection and preparation

Pericardial fluid samples (2–27 ml) were collected during open-heart surgery. Samples were

processed directly after sample collection using three-step centrifugation, except those with vis-

ible blood contamination that were discarded. Samples were first centrifuged at 300 g for 10

min at RT to remove cells. Subsequently the supernatants were collected and then centrifuged

again at 16 500 g for 20 min at 4°C to remove cell debris. The collected liquid fractions were

centrifuged a final time at 20 000 g for 15 min at 4°C to remove other microparticles, leaving

exosomes and protein-bound miRNAs to the supernatants. The supernatants were transferred

to RNase-free tubes, snap-frozen with liquid nitrogen and stored at -80°C.

Extended qPCR quality control analysis

RNA isolations and real-time qPCR experiments were performed at Exiqon Services, Vedbaek,

Denmark. Total RNA was extracted from 200 μl of triple centrifuged pericardial fluid superna-

tant using the Qiagen miRNeasy Mini Kit with 1.25 μg/mL of MS2 bacteriophage RNA as a

carrier and RNA spike-in controls. RNA was eluted with 50 μL of RNase-free water. 1, 2 and 4

μL RNA was reverse transcribed (RT) in 10 μL reactions using the miRCURY LNA Universal

RT microRNA PCR, Polyadenylation and cDNA synthesis kit (Exiqon). Each RT was per-

formed in duplicates, including an artificial RNA spike-in (UniSp6). cDNA was diluted 50 x

and assayed in 10 μL PCR reactions according to the protocol for miRCURY LNA Universal

RT microRNA PCR; each microRNA was assayed once by qPCR using assays for miR-103,

miR-191, miR-23a, miR-30c, miR-451 and RNA spike-ins. Negative controls excluding tem-

plate from the reverse transcription reaction were performed and profiled like the samples. The

amplification was performed in a LightCycler 480 Real-Time PCR System (Roche, Basel, Swit-

zerland) in 384 well plates. The amplification curves were analysed using the Roche LC soft-

ware, both for determination of Cp (by the second derivative method) and for melting curve

analysis. An average Cp was calculated for the duplicate RT’s and evaluation of expression lev-

els was performed based on raw Cp-values.

Table 2. Cardiovascular disease groups.

Group Disease n

1 Coronary artery disease 18

2 Mitral valve insufficiency 13

3 Aortic stenosis 4

4 Aortic valve insufficiency 1

5 Other cardiovascular disease (CVD) 5

6 Coronary artery disease, mitral insufficiency and other CVD 1

7 Coronary artery disease and aortic stenosis 5

8 Mitral insufficiency and aortic stenosis 1

9 Mitral insufficiency, aortic insufficiency and other CVD 1

10 Mitral insufficiency and other CVD 1

11 Aortic stenosis and aortic insufficiency 1

doi:10.1371/journal.pone.0119646.t002
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RNA extraction, reverse transcription and microRNA real-time qPCR

Total RNA was extracted from triple centrifuged pericardial fluid samples (200 μL) using the

miRCURY RNA isolation kit for biofluids (Exiqon). Captured RNA was eluted in 50 μL of

RNase free H2O. 15 μL of this RNA was reverse transcribed in 75 μL reactions using the miR-

CURY LNA Universal RT microRNA PCR, Polyadenylation and cDNA synthesis kit (Exiqon).

The resulting cDNA was diluted 50 fold in RNase free water and assayed in 10 μL PCR reac-

tions according to the protocol for miRCURY LNA Universal RT microRNA PCR. Each of the

742 microRNAs was assayed once by qPCR on the microRNA Ready-to-Use PCR, Human

panel I and panel II using ExiLENT SYBR Green mastermix. Negative controls excluding tem-

plate from the reverse transcription reaction were performed and profiled like the samples. The

amplification was performed in a LightCycler 480 Real-Time PCR System (Roche) in 384 well

plates. The amplification curves were analysed using the Roche LC software, both for determi-

nation of Cp (by the second derivative method) and for melting curve analysis. The amplifica-

tion efficiency was calculated using algorithms similar to the LinReg software. All assays were

inspected for distinct melting curves and the Tm was checked to be within known specifica-

tions for the assay. Furthermore, assays had to be detected with 5 Cp’s less than the negative

control and with Cp<37 to be included in the data analysis. Data that did not pass these criteria

was omitted from any further analysis. Using NormFinder the best normalizer was found to be

the average of assays detected in all samples. All data was normalized to the average of assays

detected in all samples (average Cp—assay Cp).

MicroRNA profiling

Pericardial fluid samples were profiled in two separate projects. First profiling included the

pericardial fluid samples from 15 patients and included an extended qPCR quality control

Table 3. MicroRNAs found in all pericardial fluid samples.

hsa-miR-141–
3p

hsa-miR-199a-
3p

hsa-miR-143–
3p

hsa-miR-26b-
5p

hsa-let-7f-5p hsa-miR-488–
3p

hsa-miR-331–
3p

hsa-miR-374b-
5p

hsa-miR-424–
5p

hsa-miR-32–
5p

hsa-miR-21–5p hsa-miR-103a-
3p

hsa-miR-30e-
5p

hsa-miR-497–
5p

hsa-miR-335–
5p

hsa-miR-452–
5p

hsa-miR-130a-
3p

hsa-miR-342–
3p

hsa-miR-132–
3p

hsa-miR-30c-
5p

hsa-miR-10a-
5p

hsa-miR-128 hsa-miR-551a hsa-miR-532–
3p

hsa-miR-107 hsa-miR-210 hsa-miR-16–5p hsa-miR-30a-
5p

hsa-miR-29c-
5p

hsa-miR-34a-
5p

hsa-miR-185–
5p

hsa-miR-502–
3p

hsa-let-7g-5p hsa-miR-660–
5p

hsa-miR-200a-
3p

hsa-miR-532–
5p

hsa-miR-22–
5p

hsa-miR-29b-
3p

hsa-miR-20a-
5p

hsa-miR-218–
5p

hsa-miR-19b-
3p

hsa-miR-30d-
5p

hsa-miR-99b-
5p

hsa-miR-92a-
3p

hsa-let-7i-5p hsa-miR-590–
5p

hsa-miR-23b-
3p

hsa-miR-221–
3p

hsa-miR-23a-
3p

hsa-miR-101–
3p

hsa-miR-378a-
3p

hsa-miR-423–
3p

hsa-miR-140–
5p

hsa-miR-15a-
5p

hsa-miR-320a hsa-miR-24–3p hsa-miR-151a-
3p

hsa-miR-186–
5p

hsa-miR-144–
3p

hsa-miR-126–
3p

hsa-miR-30b-
5p

hsa-miR-193b-
3p

hsa-miR-99a-
3p

hsa-miR-484 hsa-miR-25–3p hsa-miR-425–
5p

hsa-miR-505–
3p

hsa-miR-31–3p hsa-miR-423–
5p

hsa-miR-99a-
5p

doi:10.1371/journal.pone.0119646.t003
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analysis of microRNAs. All samples passed the quality control analysis and no signs of PCR re-

action inhibition or haemolysis were observed. The expression levels were comparable for all

samples included in the analysis, and within the detection limit of the system. The second pro-

filing included samples from 36 patients. Both sets of samples were profiled for microRNAs

using Exiqon miRNA PCR Human panels I and II (v2). Sampling, RNA extraction and profil-

ing were performed reproducibly in the two sets and no batch effect was seen from the two

rounds of profiling. Therefore, the two data sets were combined and analysed as one.

Data analyses

The data was analysed using the GenEx software 6.0 (MultiD Analyses AB, Göteborg, Sweden)

and GraphPad Prism Software. Statistical significance between different disease or NYHA

groups was evaluated with ANOVA using Benjamini-Hochberg correction for multiple testing.

Results were considered significant for p<0.05. Heatmaps were generated by using heatmap.2

in the R package gplots and principal component analysis by using GenEx software.

Results

MicroRNAs in pericardial fluid

In order to investigate whether pericardial fluid contains microRNAs, 742 miRNAs were mea-

sured from the pericardial fluid samples. On the average, 256 miRNAs were detected per sam-

ple, the number ranging between 154 and 346 miRNAs per sample. 70 miRNAs were detected

in all samples (Table 3) and 17 of them were among the 50 most abundant miRNAs in pericar-

dial fluid (Table 4). The five most abundant microRNAs in pericardial fluid were miR-21–5p,

miR-451a, miR-125b-5p, let-7b-5p and miR-16–5p (present in 98–100% of the samples).

MicroRNAs have been detected from all body fluids profiled so far. Therefore, we sought to

investigate if any of the most detected miRNAs were specific for the pericardial fluid and, thus,

Table 4. MicroRNAs found in all samples among the 50 most abundant microRNAs.

MicroRNA Amount* (Average Cp- Assay Cp) Presence (n = 51)

miR-21–5p 6.4 51 (100%)

obsolete_ miR-720 5.3 51 (100%)

miR-320a 3.8 51 (100%)

miR-24–3p 3.6 51 (100%)

miR-16–5p 3.5 51 (100%)

miR-19b-3p 3.4 51 (100%)

miR-15a-5p 3.3 51 (100%)

miR-23a-3p 3.3 51 (100%)

miR-99a-5p 2.9 51 (100%)

miR-101–3p 2.7 51 (100%)

miR-34a-5p 2.3 51 (100%)

miR-92a-3p 2.2 51 (100%)

miR-23b-3p 2.2 51 (100%)

miR-378a-3p 1.6 51 (100%)

miR-221–3p 1.5 51 (100%)

miR-20a-5p 1.2 51 (100%)

miR-423–3p 1.2 51 (100%)

*Average on all samples

doi:10.1371/journal.pone.0119646.t004
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could reflect the miRNA expression of the surrounding tissues. When comparing the miRNAs

detected from the pericardial fluid samples over the global mean (i.e. Cp< 30) with the 12

body fluid types profiled previously by Weber and others [25], six of the miRNAs (miR-

125b-5p, miR-320b, miR-34a-5p, miR-497–5p, miR-99b-5p and let-7d-3p) were found to be

specific for pericardial fluid (Table 5). Seven miRNAs (miR-21–5p, miR-148a-3p, miR-152,

miR-93–5p, miR-29b-3p, miR-184 and miR-218–5p) were present in all body fluids.

MicroRNA clusters and families

MicroRNAs arising from the same genomic loci (<10 kb) are defined as miRNA clusters,

whereas miRNA family members share 5’ seed sequences, which establish target specificity

[26]. When analysing miRNAs detected in at least 80% of the samples, several miRNA clusters

were found to be present and several of the detected miRNAs belonged to the same miRNA

family (S1 and S2 Tables). The expression levels for the mir-30 family are shown in Fig. 1. The

family members arise from several different genomic loci, both from miRNA clusters and dis-

tinct miRNA genes.

Cardiac microRNAs in pericardial fluid

MiRNAs derived from myocin heavy chain (MHC) genes, which are highly enriched in cardiac

and/or skeletal muscle, are called myomiRs. They include miR-1, miR-133, miR-206 (skeletal

muscle only), miR-208, miR-486 and miR-499 [27]. MicroRNA-1 (miR-1) is described as

being the most abundant miRNA in heart tissue. Pericardial fluid contained only low concen-

trations of miR-1 and it could be detected in 55% of samples (Table 6). Also miR-133a and

miR-133b were measured at low concentrations and only in 45% and 63% of samples, respec-

tively. MiR-208a and miR-208 were recorded in 6% and 4% of samples, respectively. MiR-

486–5p was present in 92% of samples despite its complementary strand sequence being unde-

tected. MiR-499a-5p was present in 33% of samples, whereas miR-499a-3p was present in only

2% of samples.

Cardiac fibrosis disrupts normal myocardial structures and increases mechanical stiffness

that in turn leads to contractile dysfunction of the heart. Fibroblasts synthesize the components

of extracellular matrix required for fibrosis in both healthy and pathological hearts. MiR-21–5p

is expressed in all cardiovascular cell types, but most prominently in cardiac fibroblasts which

are the main source of miR-21–5p in failing hearts [28]. In addition to miR-21, members of the

miR-29 family (miR-29a/b/c-3p) and miR-30 family (miR-30a/b/c/d/e-5p) are also highly ex-

pressed in fibroblasts. In the present data, miR-21–5p was detected in high levels in all the mea-

sured samples. The levels of the miRNAs in pericardial fluid are shown in Table 6.

In addition to cardiomyocytes and fibroblasts, the myocardium consists of a large number

of endothelial cells that secrete bioactive substances that influence cardiac growth and contrac-

tile function [29]. Endothelial cells also contain specific miRNAs that not only regulate impor-

tant processes such as angiogenesis, but are also involved in intercellular communication

affecting adjacent cells [30–32]. Endothelial cell enriched miRNAs include miR-126–3p, miR-

17~92 cluster (miR-17–5p/-3p, miR-18a-5p, miR-19a/b-3p, miR-20a-5p, miR-92a-3p), miR-

23~27~24 clusters (miR-23a/b-3p, miR-24–3p, miR-27a/b-3p), miR-221–3p and miR-222–3p

[28]. In pericardial fluid, miR-126–3p, miR-23~27~24 cluster miRNAs, miR-221–3p and miR-

222–3p were present in relatively high amounts, whereas miR-17~92 cluster miRNAs were de-

tected sporadically (Table 6).

Pericardial Fluid MicroRNA Profiling
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Cardiac exosomal microRNAs

Human cardiovascular cells have been shown to secrete exosomes that transfer information to

recipient cells [20–24,33,34]. The most highly enriched miRNAs, found in extracellular vesi-

cles, secreted by cardiac progenitor cells, cardiomyocytes, cardiac fibroblasts and endothelial

cells and their amounts in pericardial fluid are listed in Table 7. Most of the known cardiac

Table 5. MicroRNAs in body fluids.

MicroRNAs specific to PF Amount* (Average Cp- Assay Cp) Presence (n = 51)

miR-125b-5p 5.1 50 (98%)

miR-320b 3.5 49 (96%)

miR-34a-5p 2.3 51 (100%)

miR-497–5p 0.8 51 (100%)

miR-99b-5p 0.8 51 (100%)

let-7d-3p 0.8 50 (98%)

MicroRNAs present in all fluids Amount* (Average Cp- Assay Cp) Presence (n = 51)

miR-21–5p 6.4 51 (100%)

miR-148a-3p 2.1 46 (90%)

miR-152 0.8 50 (98%)

miR-93–5p 0.7 50 (98%)

miR-29b-3p 0.4 51 (100%)

miR-184 0.2 1 (2%)

miR-218–5p 0.007 51 (100%)

PF = pericardial fluid

*Average on all samples

doi:10.1371/journal.pone.0119646.t005

Fig 1. MicroRNA gene family miR-30. The presence of all mir-30 family members in pericardial fluid was
investigated using qPCR. Results are depicted as individual points for each measured sample (n = 51) lines
indicating the mean expression for each miRNA.

doi:10.1371/journal.pone.0119646.g001
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Table 6. Cardiac microRNAs in pericardial fluid.

MyomiRs Amount* (Average Cp- Assay Cp) Presence (n = 51)

miR-1 -6.2 28 (55%)

miR-133a -6.6 23 (45%)

miR-133b -5.7 32 (63%)

miR-208a -7.6 3 (6%)

miR-208b -6.7 2 (4%)

miR-486–5p -1.7 47 (92%)

miR-486–3p 0 (0%)

miR-499a-5p -7.3 17 (33%)

miR-499a-3p -4.4 1 (2%)

Fibroblast microRNAs Amount* (Average Cp- Assay Cp) Presence (n = 51)

miR-21–5p 6.4 51 (100%)

miR-29a-3p 2.8 50 (98%)

miR-29b-3p 0.4 51 (100%)

miR-29c-3p 3.4 50 (98%)

miR-30a-5p -0.7 51 (100%)

miR-30b-5p 0.8 51 (100%)

miR-30c-5p 0.7 51 (100%)

miR-30d-5p -1.7 51 (100%)

miR-30e-5p -1.7 51 (100%)

Endothelial cell microRNAs Amount*(Average Cp- Assay Cp) Presence (n = 51)

miR-126–3p 1.4 51 (100%)

miR-17–5p -4.2 47 (92%)

miR-17–3p -3.7 50 (98%)

miR-18a-5p -6.5 23 (45%)

miR-19a-3p -1.8 37 (73%)

miR-19b-3p 3.4 51 (100%)

miR-20a-5p 1.2 51 (100%)

miR-92a-3p 2.2 51 (100%)

miR-23a-3p 3.3 51 (100%)

miR-23b-3p 2.2 51 (100%)

miR-24–3p 3.6 51 (100%)

miR-27a-3p 3.1 50 (98%)

miR-27b-3p 3.5 50 (98%)

miR-221–3p 1.5 51 (100%)

miR-222–3p 2.2 50 (98%)

*Average on all samples

doi:10.1371/journal.pone.0119646.t006
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Table 7. Cardiac exosomal microRNAs in pericardial fluid.

MicroRNAs Amount* (Average Cp- Assay Cp) Presence (n = 51) Fibroblast-derived exosomes

miR-210 -0.2 51 (100%)

let-7b-3p -2.5 47 (92%) Yes

let-7d-3p 0.8 50 (98%) Yes

miR-1 -6.1 28 (55%)

miR-125a-5p 2.0 41 (80%) Yes

miR-126–3p -1.0 51 (100%)

miR-129–5p -8.8 1 (2%) Yes

miR-132–3p -1.5 51 (100%) Yes

miR-133a -6.6 23 (45%) Yes

miR-135a-5p -4.5 47 (92%) Yes

miR-135b-5p -2.9 22 (43%) Yes

miR-138–5p -4.9 26 (51%) Yes

miR-139–5p -2.2 47 (92%) Yes

miR-140–5p -0.6 51 (100%) Yes

miR-143–3p -1.5 51 (100%)

miR-145–5p -2.9 50 (98%)

miR-146a-3p -7.5 3 (6%)

miR-146a-5p -1.2 46 (90%)

miR-17–5p -4.2 47 (92%) Yes

miR-181a-5p -1.2 50 (98%) Yes

miR-181b-5p -4.5 47 (92%) Yes

miR-181c-5p -3.6 50 (98%) Yes

miR-208a -7.6 3 (6%)

miR-20a-5p 1.2 51 (100%) Yes

miR-21–3p -5.5 38 (75%) Yes

miR-214–3p -4.8 29 (57%) Yes

miR-23a-3p 3.3 51 (100%) Yes

miR-23b-3p 2.2 51 (100%) Yes

miR-25–3p -1.1 51 (100%) Yes

miR-30a-3p -3.1 49 (96%) Yes

miR-30c-5p 0.7 51 (100%) Yes

miR-30e-3p -2.5 50 (98%) Yes

miR-320a 3.8 51 (100%) Yes

miR-330–5p -7.4 8 (16%) Yes

miR-339–3p -4.1 46 (90%) Yes

miR-346 -5.2 19 (37%) Yes

miR-34c-3p -7 7 (14%) Yes

miR-365a-3p 1.3 50 (98%) Yes

miR-375 -7.5 6 (12%) Yes

miR-499a-5p -7.3 17 (33%)

miR-505–3p -2.1 51 (100%) Yes

miR-532–3p -0.2 51 (100%) Yes

miR-671–5p -5.7 2 (4%) Yes

miR-92b-3p -3.4 50 (98%) Yes

miR-9–3p -7.9 1 (2%) Yes

*Average on all samples

doi:10.1371/journal.pone.0119646.t007
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exosomal miRNAs were present in pericardial fluid and vast majority of them have been re-

ported of being enriched in fibroblast-derived exosomes.

Blood cell derived microRNAs

Although frank haemolysis was excluded from the samples by assessing the miR-23a-3p/miR-

451a ratio (S1 Fig.), the blood cell origin of the pericardial fluid miRNAs cannot be excluded,

especially as pericardial fluid has been reported to contain high number of lymphocytes and

monocytes [35]. The inspection of the levels of 40 miRNAs highly expressed in blood cells [36]

(Table 8) revealed that although several of the blood cell miRNAs were present in almost all

samples, the overall levels of the miRNAs were not strikingly high.

MicroRNA expression signatures

The overall pericardial fluid miRNA profiles of the cardiac patients were similar despite the dif-

ferent disease aetiologies and stages of cardiac dysfunction (S2 Fig.) and no naturally arising

sample classes were found using principal component analysis (S3 Fig.). Disease-specific signa-

tures could not be detected from the heatmap even when the analysis was performed on the

top 50 miRNAs with highest standard deviation between groups, and unsupervised hierarchi-

cal clustering showed that the samples did not cluster according to their clinical groups

(Fig. 2). When comparing the groups using ANOVA, 12 miRNAs (miR-106b-3p, let-7c, miR-

21–5p, miR-378a-3p, miR-92a-3p, miR-146b-5p, let-7a-3p, miR-92b-3p, miR-342–5p, let-

7f-1–3p, miR-185–5p and miR-423–5p) were found to be differentially detected (p<0.05)

(Figs. 3A and 3C). However, none of these miRs passed the Benjamini-Hochberg correction

for multiple testing, failing to reach significance.

The data was also analysed based on the assessed stage of HF according to the NYHA class.

Patients with no symptoms of HF were categorized to class 0, whereas the most severe clinically

assessed HF cases went to class IV. Again, the signatures for the HF stages could not be con-

cluded from the heatmap when using top 50 miRNAs with the highest standard deviation be-

tween the groups for the analysis and unsupervised hierarchical clustering failed to cluster the

samples according to the stage of the HF (Fig. 4). Eight miRNAs (miR-215, miR-30d-5p, miR-

218–5p, miR-146–5p, miR-21–5p, miR-30e-3p, miR-23a-3p and miR-181a-5p) were found to

be differentially detected between the NYHA classes (ANOVA, p<0.05), but they failed to pass

Benjamini-Hochberg correction for false positivity in multiple testing (Figs. 3B and 3D).

Heart failure markers in pericardial fluid

One of the most frequently identified circulating miRNAs in HF is miR-423–5p [37–41]. Both

miR-423–5p and its counter miRNA, miR-423–3p, were detected in pericardial fluid of the HF

patients. MiR-423–3p was detected in all samples and miR-423–5p was detected in 50 out of 51

samples. When samples were divided into groups according to the disease aetiology or NYHA

classification, there were no statistically significant differences in the levels of miR-423–5p or

miR-423–3p between the groups (Fig. 5). Several other previously suggested HF miRNA mark-

ers [17,38] were also detected, but none of them showed significant variation across disease

stages (S4 Fig.).

Discussion

Extracellular miRNAs are extremely stable as they are protected from RNase degradation either

by being loaded into small spherical vesicles, such as microvesicles, exosomes, and apoptotic

bodies, or by being associated with RNA-binding proteins such as Argonaute2 (Ago2) or
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Table 8. Blood cell microRNAs in pericardial fluid.

MicroRNA Amount* (Average Cp- Assay Cp) Presence (n = 51) Highest Expression

miR-223–3p 0.9 50 (98%) Neutrophils

miR-16–5p 3.5 51 (100%) Red blood cell

miR-126–3p -1.0 51 (100%) Platelets

miR-142–3p -2.1 49 (96%) Neutrophils

miR-21–5p 6.4 51 (100%) Monocytes

miR-24–3p 3.6 51 (100%) Neutrophils

miR-19b-3p 3.4 51 (100%) Neutrophils

miR-103a-3p 0.08 50 (98%) Monocytes

let-7a-5p -2.0 50 (98%) Neutrophils

miR-451a 5.0 50 (98%) Red blood cells

miR-92a-3p 2.2 51 (100%) Red blood cells

miR-106a-5p 0.04 50 (98%) Neutrophils

miR-19a-3p -1.8 37 (73%) Neutrophils

miR-30b-5p 0.8 51 (100%) Neutrophils

miR-17–5p -4.2 47 (92%) Neutrophils

miR-15b-5p 0.6 50 (98%) Neutrophils

miR-107 -0.6 51 (100%) Neutrophils

let-7f-5p -1.7 51 (100%) Monocytes

miR-221–3p 1.5 51 (100%) Platelets

miR-93–5p 0.7 50 (98%) Neutrophils

miR-30c-5p 0.7 51 (100%) Neutrophils

miR-151a-5p -0.1 49 (96%) Platelets

miR-30e-5p -1.7 51 (100%) Monocytes

miR-30d-5p -1.7 51 (100%) Neutrophils

miR-486–5p -1.7 47 (92%) Red blood cells

miR-25–3p -1.1 51 (100%) Neutrophils

miR-181a-5p -1.2 50 (98%) Neutrophils

miR-146a-5p -1.2 46 (90%) Lymphocytes

let-7d-5p -2.5 47 (92%) Neutrophils

miR-197–3p -1.9 49 (96%) Neutrophils

miR-106b-5p -4.2 38 (75%) Neutrophils

miR-148b-3p 0.6 50 (98%) Neutrophils

miR-766–3p -7.0 15 (29%) Neutrophils

miR-20b-5p -6.5 20 (39%) Red blood cells

miR-328 -2.3 50 (98%) Neutrophils

miR-574–3p -0.4 46 (90%) Monocytes

miR-155–5p -5.9 18 (35%) Lymphocytes

miR-140–5p -0.6 51 (100%) Neutrophils

miR-425–3p -3.7 49 (96%) Neutrophils

miR-150–5p -1.2 49 (96%) Lymphocytes

*Average on all samples

doi:10.1371/journal.pone.0119646.t008
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Fig 2. Heat map and unsupervised hierarchical clustering for disease aetiology. The clustering is performed on top 50 miRNAs with highest standard
deviation between groups and groups with three or more members. Samples were grouped according to the disease aetiologies of the patients: Group 1:
Coronary artery disease (red), Group 2: Mitral valve insufficiency (blue), Group 3: Aortic stenosis (darkgreen), Group 5: Other cardiovascular disease
(orange), and Group 7: Coronary artery disease and aortic stenosis (brown). The normalized (dCp) values were used for the analysis. The colour scale
illustrates the relative expression level of miRNAs across all samples: red colour represents an expression level above mean, blue colour lower than the
mean. Missing values are shown in grey.

doi:10.1371/journal.pone.0119646.g002
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lipoproteins such as HDL [20]. Several types of cells, including cardiomyocytes, cardiac fibro-

blasts and endothelial cells, are known to secrete microRNAs which are taken up by recipient

cells, although several questions remain regarding the mechanisms of secretion, targeting, up-

take and downstream signalling [21–24]. MiRNAs released from a damaged or diseased organ

could potentially act as intercellular communicators and affect the function of distant organs,

such as bone marrow [21]. In 2008, the existence of microRNAs in plasma and serum was re-

ported for the first time [42,43]. Since then, several studies have shown that, in addition to

Fig 3. Differentially detectedmicroRNAs by ANOVA. The presence of miRNAs with highest standard deviation between a) disease groups (Group 1:
Coronary artery disease, Group 2: Mitral valve insufficiency, Group 3: Aortic stenosis, Group 5: Other cardiovascular disease, and Group 7: Coronary artery
disease and aortic stenosis) and b) NYHA classes were measured using qPCR. Results for c)miR-106b-3p and d)miR-215 are shown by disease groups
and NYHA classes, respectively. Results are depicted as individual points for each measured sample (n = 45 for disease, and n = 51 for NYHA classes) lines
indicating the overall mean for each miRNA. All miRNAs were not detected in every sample. *p<0.05, **p<0.01.

doi:10.1371/journal.pone.0119646.g003
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Fig 4. Heat map and unsupervised hierarchical clustering for heart failure stages. The clustering is performed on top 50 miRNAs with highest standard
deviation between groups. Samples were grouped according to the NYHA grading of the patients: NYHA 0 (dark green), NYHA I (blue), NYHA II (cyan),
NYHA III (orange), NYHA IV (red). Normalized (dCp) values were used for the analysis. The colour scale illustrates the relative expression level of miRNAs
across all samples: red colour represents an expression level above mean, blue colour lower than the mean. Missing values are shown in grey.

doi:10.1371/journal.pone.0119646.g004
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plasma and serum, miRNAs are also present in other types of body fluids, such as saliva, tears,

cerebrospinal fluid, peritoneal fluid and urine [25]. To our knowledge, this is the first study to

explore the pericardial fluid miRNAs.

Pericardial fluid is suggested to form both through active secretion of pericardial cells and

as a heart tissue filtrate [3]. Pericardial fluid contains hormones secreted by the heart and re-

flects the cardiac function more accurately than, for example, plasma obtained from coronary

circulation. Therefore, it would be reasonable to assume that the most abundant cardiac miR-

NAs would be present in the pericardial fluid. MyomiRs (miR-1, miR-133, miR-206, miR-208,

miR-486 and miR-499) are highly enriched in cardiac and skeletal muscle, miR-1 being the

most abundant miRNA in the heart [44]. However, pericardial fluid contained low concentra-

tions of miR-1 and, moreover, it was detected in only 55% of the samples. In addition, other

myomiRs and their complementary strands were detected in low concentrations, if at all, and

only miR-486–5p, which has been associated with impaired systemic right ventricular contrac-

tility after atrial switch operation for complete transposition of the great arteries [45,46], is

Fig 5. Heart failure marker miR-423–5p in pericardial fluid samples. The presence of miRNAs by a) disease groups with three or more members (Group
1: Coronary artery disease, Group 2: Mitral valve insufficiency, Group 3: Aortic stenosis, Group 5: Other cardiovascular disease, and Group 7: Coronary
artery disease and aortic stenosis), and b) NYHA grading for miR-423–5p and by c) disease group and d)NYHA grading for miR-423–3p were measured
using qPCR. Results are depicted as individual points for each measured sample (n = 45 for disease, and n = 51 for NYHA classes) lines indicating the
overall mean for each group.

doi:10.1371/journal.pone.0119646.g005
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measurable in almost all samples (92%). In contrast to myomiRs, pericardial fluid contains sig-

nificant amounts of both fibroblast and endothelium-enriched miRNAs indicating that these

cell types contribute to the composition of the fluid in addition to exosomal miRNAs secreted

by the cardiac cells. Pericardial fluid has been reported to contain high lymphocyte and mono-

cyte counts [35], but the inspection of the levels of 40 miRNAs with high blood cell expression

revealed that, although the blood cell originated miRNAs most likely affect the miRNA content

of the pericardial fluid, they do not predominate the profile. Several of the detected pericardial

fluid miRNAs arise from the same genomic locations (cluster miRNAs), and/or belong to a

miRNA family, the largest miRNA families detected being let-7, mir-10, mir-30, mir-29, mir-

15, mir-17, and mir-181. Taken together, these findings suggest that miRNAs are secreted

from cardiac cells through an active and selective process, and that pericardial miRNome is

likely to reflect cardiac function.

To highlight the notion that pericardial miRNome reflects the functional state of the myo-

cardium, the five most abundant miRNAs present in pericardial fluid have been associated

with cardiovascular disease. These were miR-21–5p, miR-451a, miR-125b-5p, let-7b-5p and

miR-16–5p (found in 98–100% of the samples). MiR-21 is highly expressed in cardiovascular

system and predominantly expressed in cardiac fibroblasts compared to other cardiac cells

[47,48]. Its expression is deregulated in multitude of cardiovascular disease conditions, includ-

ing HF [49]. In addition, the causal role of miR-21 in fibrosis has been confirmed in heart

[50,51], lung [52], kidney [53,54], and skeletal muscle [55]. MiR-451, on the other hand, has

been shown to be protective against ischemic damage of the myocardium in several previous

studies [56–58] and is upregulated in human hearts after myocardial infarction [59]. Both

miR-21 and miR-451 have been identified as potential biomarkers for vulnerable coronary ar-

tery disease [60]. Interestingly, miR-21–3p, counterpart of miR-21, acts as a paracrine signal-

ling mediator between fibroblasts and cardiomyocytes and is involved in the development of

cardiomyocyte hypertrophy [34]. In addition, the expression level of miR-21–3p was upregu-

lated in pericardial fluid of mice with cardiac hypertrophy compared to sham-operated mice,

suggesting that changes in miRNA expression in pericardial fluid indeed provide information

about the pathological status of the heart [34]. In addition to miR-21 and miR-451a, miR-125b

may also be involved in the pathogenesis of coronary artery disease [61]. Peripheral blood

mononuclear cells of the ischemic HF patients [62] as well as plasma from patients with acute

myocardial infarction have been shown to contain significantly lower levels of miR-125b com-

pared to control groups [61]. MiR-125b is known to be especially enriched in cardiac valve [63]

and has been shown to protect the myocardium from ischemia/reperfusion injury by decreas-

ing infarct size by 60% in addition to preventing decreases in ejection fraction and fractional

shortening [64]. Let-7b-5p belongs to the let-7 family which is highly expressed in the cardio-

vascular system. Aberrant expression of the family members has been shown in several cardio-

vascular conditions, including cardiac hypertrophy, cardiac fibrosis, myocardial infarction and

atherosclerosis [65]. Circulating let-7b levels are lower after acute myocardial infarction in

comparison to controls [66] as well as in patients with large-vessel atherosclerosis compared to

healthy volunteers [67]. In contrast, circulating levels of miR-16 have been shown to be signifi-

cantly increased in response to hypertension-induced HF in rats [39].

Comparison of the pericardial fluid miRNA profile to other biofluids revealed that 7 miR-

NAs (miR-21–5p, miR-148a-3p, miR-152, miR-93–5p, miR-29b-3p, miR-184 and miR-

218–5p) were present in all fluid types and 6 miRNAs (miR-125b-5p, miR-320b, miR-34a-5p,

miR-497–5p, miR-99b-5p and let-7d-3p) were specific to pericardial fluid. All of the pericardial

fluid-specific miRNAs have been previously associated with HF or other cardiovascular condi-

tions. For example, miR-125b, miR-320b, miR34a-5p and miR-497–5p have been associated

with acute myocardial infarction [61,68–70] affecting its occurrence, pathogenesis and
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mortality risk, and miR-125b, miR-320b, miR-497–5p and miR-99b-5p have been associated

with atherosclerosis and coronary artery disease development [61,71,72]. In addition, miR-

34a-5p, which was detected in high amounts in all pericardial fluid samples, has been identified

as a factor contributing to the aging-related decline in cardiac function [73,74]. Whereas miR-

99b-5p and members of the let-7 family have been suggested to play a role in endothelial cell

differentiation [75] and contribute to the diversity of endothelial cells [76], respectively. Taken

together these results suggest that the pericardial miRNA profile is highly cardiac-specific and

changes to it may reflect heart pathophysiology.

Although circulating microRNAs possess several of the essential characteristics of a good

biomarker [77], verified miRNA signatures for different cardiac conditions have not been iden-

tified and consistent miRNA biomarkers for cardiovascular diseases have not been found. In

this study, several previously suggested HF markers, such as miR-423–5p, miR-320a and miR-

21–5p, were also detected from the pericardial fluid samples but none of them showed

significant differences between the different disease aetiologies or stages of the disease. The

pericardial fluid samples were obtained from patients undergoing open-heart surgery and,

thus, no healthy control samples could be obtained. Therefore, it cannot be concluded from the

present data if the miRNA profile resembles normal pericardial fluid or reflects cardiac mal-

function. The overall pericardial fluid miRNA profiles were found to be similar independent of

the disease background (ischemic vs. nonischemic) or the stage of the HF. This notion is in ac-

cordance with a recent publication by Yang and others [78] where they studied myocardial

mRNA, miRNA and long noncoding RNA (lncRNA) expression in failing human hearts before

and after mechanical support with a left ventricular assist device (LVAD) by using sequencing-

based transcriptome profiling. They concluded that the expression profiles of lncRNAs, not

mRNAs or miRNAs, were able to discriminate hearts failing from different pathologies as well

as between different stages of the same disease as the lncRNA profiles were markedly altered in

response to LVAD support.

MicroRNAs are present in body fluids in low amounts and the normalization for miRNA

levels is lacking. In addition, subjectivity in the assessment of NYHA classes and the limited

size of the study population may mask the small differences arising from the different disease

stages and cardiac conditions of the patients. On the other hand, it may be that regardless of

the aetiology of the HF, there is a common mechanism for the failure progression and that the

changes predicting the development of HF are reflected in the pericardial fluid long before the

clinical diagnosis explaining the lack of obvious differences between early and advanced stages

of HF.

In summary, human pericardial fluid contains hundreds of miRNAs including several of

those that have been previously suggested as HF markers. The overall miRNA profiles of the

cardiac patients were similar despite the differences in disease aetiologies and HF stages. Given

that the pericardial fluid miRNA profile appeared to be a result of an active and selective secre-

tory process, we surmise that miRNAs may act as endocrine and paracrine signalling factors by

mediating the local crosstalk between cardiac cells.
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