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Abstract

Introduction Breast cancer is a heterogeneous disease
encompassing a number of phenotypically diverse tumours.
Expression levels of the oestrogen, progesterone and HER2/
neu receptors which characterize clinically distinct breast
tumours have been shown to change during disease
progression and in response to systemic therapies.
Mi(cro)RNAs play critical roles in diverse biological processes
and are aberrantly expressed in several human neoplasms
including breast cancer, where they function as regulators of
tumour behaviour and progression. The aims of this study were
to identify miRNA signatures that accurately predict the
oestrogen receptor (ER), progesterone receptor (PR) and
HER2/neu receptor status of breast cancer patients to provide
insight into the regulation of breast cancer phenotypes and
progression.

Methods Expression profiling of 453 miRNAs was performed in
29 early-stage breast cancer specimens. miRNA signatures
associated with ER, PR and HER2/neu status were generated
using artificial neural networks (ANN), and expression of specific
miRNAs was validated using RQ-PCR.

Results Stepwise ANN analysis identified predictive miRNA
signatures corresponding with oestrogen (miR-342, miR-299,
miR-217, miR-190, miR-135b, miR-218), progesterone (miR-
520g, miR-377, miR-527-518a, miR-520f-520c) and HER2/
neu (miR-520d, miR-181c, miR-302c, miR-376b, miR-30e)
receptor status. MiR-342 and miR-520g expression was further
analysed in 95 breast tumours. MiR-342 expression was highest
in ER and HER2/neu-positive luminal B tumours and lowest in
triple-negative tumours. MiR-520g expression was elevated in
ER and PR-negative tumours.
Conclusions This study demonstrates that ANN analysis
reliably identifies biologically relevant miRNAs associated with
specific breast cancer phenotypes. The association of specific
miRNAs with ER, PR and HER2/neu status indicates a role for
these miRNAs in disease classification of breast cancer.
Decreased expression of miR-342 in the therapeutically
challenging triple-negative breast tumours, increased miR-342
expression in the luminal B tumours, and downregulated miR-
520g in ER and PR-positive tumours indicates that not only is
dysregulated miRNA expression a marker for poorer prognosis
breast cancer, but that it could also present an attractive target
for therapeutic intervention.

Introduction
Breast cancer is a heterogeneous disease that encompasses

a range of phenotypically distinct tumour types. Underlying this

heterogeneity is a spectrum of molecular alterations and initi-

ating events that manifest clinically through a diversity of dis-

ease presentations and outcomes. Novel therapeutic

strategies are increasingly being investigated and imple-

mented, but unpredictable response and the development of
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resistance to adjuvant therapy remain major challenges in the

clinical management of breast cancer patients.

The key to optimizing and targeting therapy lies in a more com-

plete understanding of the complex molecular interactions that

underlie breast cancer and contribute to its heterogeneous

nature. Breast-cancer-related genes have been extensively

investigated, largely through the development of high-through-

put array-based gene expression profiling platforms. The sub-

stantial datasets that have ensued have enabled us to

decipher in depth some of the molecular intricacies associated

with breast cancer, and have expanded our knowledge of the

genetic pathways associated with breast carcinogenesis,

resulting in classification systems predictive of outcome [1,2].

Breast tumours can now be classified into major subtypes on

the basis of gene expression – luminal, v-erb-b2 erythroblastic

leukaemia viral oncogene homolog 2 receptors (HER2/neu)

overexpressing and basal like – and further analysis has iden-

tified additional subtypes within the original subgroups [3].

The expression of specific genes such as the oestrogen

receptors (ERs) and HER2/neu are indicative of outcome in

breast cancer patients, and the clinically relevant subgroup-

ings are based broadly on ER/progesterone receptor (PR)/

HER2/neu status. The ability to classify breast cancers in this

manner has obvious beneficial implications for the develop-

ment of targeted therapies; multigene prognostic and predic-

tive tests have been developed, have been commercialized

and have become established as tools in breast cancer diag-

nostics [4], although as yet there is little knowledge regarding

the precise regulation of these genes and receptors.

MicroRNAs (miRNAs) are short (~22 bp), single-stranded,

noncoding RNAs that have recently been recognized as a

highly abundant class of regulatory molecules. They are

thought to regulate up to one-third of the human genome via

sequence-specific regulation of post-transcriptional gene

expression by targeting mRNAs for cleavage or translational

repression [5]. miRNAs have recently been identified as key

players in cellular processes including self-renewal, differenti-

ation, growth and death [6], all of which are dysregulated in

carcinogenesis. There is increasing evidence to suggest that

miRNAs may be responsible for a large proportion of breast

cancer heterogeneity. A number of miRNAs have been shown

to be dysregulated in breast cancer [7-10], and specific miR-

NAs functioning as regulators of tumorigenicity, invasion and

metastasis have been identified [11-14]. Furthermore, miRNA

regulation of ER and HER2/neu, known to be of prognostic

significance in breast cancer, has been demonstrated [15,16].

As each miRNA can target up to 200 mRNA sequences, and

mRNAs can have multiple miRNA target sites [5], it is probable

that further miRNA regulators of these genes remain to be

determined.

Expression profiling of miRNA to classify breast tumours

according to clinicopathological variables currently used to

predict disease progression is of particular interest. Firstly,

profiling highlights the potential to identify novel prognostic

indicators, which may contribute to improved selection of

patients for adjuvant therapy. This approach has already

shown promise with genomic signatures [2], and miRNA pro-

files appear to have superior accuracy to mRNA profiling [17].

Furthermore, the identification of miRNAs with regulatory roles

in clinically distinct breast tumour samples could identify novel

targets for therapeutic manipulation.

Despite its apparent clinical application, microarray technol-

ogy remains deficient with regard to its translation into routine

clinical practice. There has been little overlap between the

breast cancer gene sets, leading to questions regarding their

biological significance and reproducibility [18]. Array technol-

ogy is highly dependent on bioinformatics, mathematics and

statistics to produce biologically relevant results. The genera-

tion of high-complexity microarray data has necessitated the

development of novel data analysis methodologies that can

cope with data of this nonlinear and highly dimensional nature.

Current conventional methods such as hierarchical clustering

have shown limitations for the modelling and analysis of high-

dimensionality data [19].

Artificial neural networks (ANNs) are a form of artificial intelli-

gence that can learn to predict, through modelling, answers to

particular questions in complex data. The models produced by

ANNs have been shown to have the ability to predict well for

unseen data and have the ability to cope with complexity and

nonlinearity within the dataset [20,21]; these features of ANNs

means they have the potential to identify and model patterns in

this type of data to address a particular question. ANNs are

therefore able to determine patterns or features (for example,

in genes or proteins) within a dataset that can discriminate

between subgroups of a clinical population (for example, dis-

ease and control), or disease grades [22]. Indeed, this discrim-

ination has been previously demonstrated in different tumour

types [22,23]. These patterns can combine into a fingerprint

that can accurately predict the subgroups.

Our aims in the present study were to identify miRNA signa-

tures using ANNs that accurately predict the ER, PR and

HER2/neu status of breast cancer patients, thus identifying

potential biologically relevant miRNAs and providing further

insight into breast cancer aetiology and regulation.

Materials and methods
Patients and samples

Breast tumour specimens were obtained from patients during

primary curative resection at Galway University Hospital, Gal-

way, Ireland. Matched tumour-associated normal breast tissue

was also obtained from a subset of these patients where pos-

sible. Following excision, tissue samples were immediately
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snap-frozen in liquid nitrogen and stored at -80°C until RNA

extraction. Prior written and informed consent was obtained

from each patient and the study was approved by the ethics

review board of Galway University Hospital. The initial cohort

for microarray analysis consisted of 29 early-stage, invasive

ductal carcinoma breast tumour specimens. A larger cohort of

fresh-frozen breast tumour (n = 95) and tumour-associated

normal breast tissue (n = 17) specimens was used for valida-

tion and further analysis of selected miRNAs. Clinical and

pathological data relating to the clinical samples are presented

in Tables 1 and 2.

The ER, PR and HER2/neu status of the patients was deter-

mined by immunohistochemistry on formalin-fixed, paraffin-

embedded sections of clinical specimens as part of routine

pathology to guide clinical decision-making regarding adjuvant

therapy. Immunohistochemistry was performed using a rabbit

monoclonal antihuman ER antibody (clone SP1; Dako, Cam-

Table 1

Clinical and pathological data for breast tumours analysed by microarray

Number ID Age (years) Tsize (mm) Lymph node status Grade UICC stage ER PR HER2/neu Subtype

1 52 49 23 Negative 1 2A P P N Luminal A

2 53 52 30 Negative 3 2A N N P Her2 overexpressing

3 54 57 45 Negative 3 2A N N P Her2 overexpressing

4 56 51 21 Negative 3 2A P P N Luminal A

5 58 68 15 Negative 3 1 P N N Luminal A

6 59 42 22 Negative 3 2A N N N Triple negative

7 60 54 26 Negative 3 2A N P N Luminal A

8 61 35 22 Negative 3 2A P P N Luminal A

9 62 50 16 Negative 3 1 N N N Triple negative

10 63 49 25 Negative 2 2A N N N Triple negative

11 64 59 20 Negative 3 1 N P N Luminal A

12 65 58 22 Negative 3 2A P P N Luminal A

13 66 58 18 Negative 1 1 N P P Her2 overexpressing

14 67 66 22 Negative 3 2A P P N Luminal A

15 94 56 17 Negative 1 1 N N N Triple negative

16 95 48 30 Negative 3 2A N N P Her2 overexpressing

17 96 60 26 Negative 3 2A P P N Luminal A

18 97 56 29 Negative 2 2A P P N Luminal A

19 98 50 3 Negative 2 1 P P N Luminal A

20 99 40 7 Negative 1 1 P P N Luminal A

21 100 40 6 Negative 2 1 P P N Luminal A

22 101 58 35 Negative 2 2A P P N Luminal A

23 102 64 34 Negative 3 2A P P N Luminal A

24 103 66 26 Negative 1 2A P P N Luminal A

25 104 84 16 Negative 2 1 N P N Luminal A

26 105 57 7 Negative 3 1 N P N Luminal A

27 106 68 35 Negative 3 2A P P N Luminal A

28 107 40 20 Negative 2 1 P P P Luminal B

29 108 49 35 Negative 3 2A N N N Triple negative

ER, oestrogen receptor; HER2/neu, v-erb-b2 erythroblastic leukaemia viral oncogene homolog 2 receptors; ID, identification; N, negative 
confirmed; PR, progesterone receptor; P, positive confirmed; Tsize, Tumour size in mm; UICC, stage of breast tumour according to the 
international union against cancer staging criteria.
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Table 2

Clinical and pathological data for breast tumours in the independent validation cohort

Breast cancer clinicopathological characteristic Number of patients (n = 95)

Median (interquartile range) tumour size (mm) 23.5 (17.75 to 35.0)

Histologic subtype

Invasive ductal 80

Invasive lobular 13

Colloid/mucinous 1

Tubular 1

Tumour-associated normal 17

Intrinsic subtype

Luminal A (ER/PR+, HER2/neu-) 47

Luminal B (ER/PR+, HER2/neu+) 21

Her2 overexpressing (ER-, PR-, HER2/neu+) 11

Triple-negative (ER-, PR-, HER2/neu-) 11

Missing data 5

Grade

1 14

2 26

3 53

Missing data 2

Nodal status

Node-negative 50

N1 17

N2 17

N3 11

Oestrogen receptor status

Positive 62

Negative 32

Missing data 1

Progesterone receptor status

Positive 58

Negative 33

Missing data 4

Her2/neu status

Positive 32

Negative 59

Missing data 4

UICC stage

Stage 1 23

Stage 2a 29

Stage 2b 8

Stage 3a 14

Stage 3b 4

Stage 3c 8

Stage 4 9

ER, oestrogen receptor; HER2/neu, v-erb-b2 erythroblastic leukaemia viral oncogene homolog 2 receptors; PR, progesterone receptor; UICC, 
stage of breast tumour according to the international union against cancer staging criteria.
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bridgeshire, UK) and a polyclonal rabbit antihuman PR anti-

body (Dako). The Allred scoring method was used for

expression scoring of ER and PR based on proportion and

intensity. In brief, the proportion score represented the esti-

mated percentage of tumour cells staining positive (0 = 0%; 1

= 1%; 2 = 1 to 10%; 3 = 10 to 33%; 4 = 33 to 66%; 5 = >

67%), and the intensity of staining was scored as follows: 1 =

weakly positive; 2 = moderately positive; 3 = strongly positive.

The total score was derived from the following equation, a

score of 0 being negative and a score of 2 to 8 being positive:

Membranous staining was scored for HER2/neu according to

the HercepTest (Dako) as follows: 0 = negative; 1 = weak

incomplete membranous staining of > 10% cells (negative); 2

= weak – moderate complete membranous staining of > 10%

of cells (equivocal-fluorescence in situ hybridization was used

to assess amplification in these cases); 3 = strong complete

membranous staining of > 30% of cells (positive).

miRNA microarray

RNA extraction
Depending on whether samples were destined for microarray

or RQ-PCR analysis, slightly modified RNA extraction meth-

ods were employed. For the microarray experiment, total RNA

was required. Breast tumour tissue (50 to 100 mg) was

homogenized using a bench-top homogenizer (Polytron®

PT1600E; Kinematica AG, Littau-Luzem, Switzerland) in 1 ml

QIAzol lysis reagent (Qiagen, Crawley, UK). Total RNA was

isolated from homogenized breast tissue using the RNeasy®

Tissue Mini Kit (Qiagen) according to the manufacturer's

instructions. For RQ-PCR, miRNA was selectively isolated

from approximately 100 mg tissue.

Large RNA fractions (> 200 nucleotides) and small RNA frac-

tions (< 200 nucleotides) were isolated separately using the

RNeasy Plus Mini Kit and RNeasy MinElute® Cleanup Kit (Qia-

gen) according to the supplementary protocol: purification of

miRNA from animal cells. The concentration and purity of total

RNA were assessed using a NanoDrop™ 1000 spectropho-

tometer (Nanodrop Technologies, Wilmington, DE, USA).

RNA integrity was assessed using the RNA 6000 Nano

LabChip Series II Assay with the 2100 Bioanalyzer System

(Agilent Technologies, Palo Alto, CA, USA). Electrophero-

grams and gel-like images were evaluated using the Agilent

2100 Expert software (version B.02.03; Agilent Technologies,

Palo Alto, CA, USA), which generated the RNA integrity

number to ensure that only RNA of good integrity was used in

these experiments (RNA integrity number range, 7.6 to 9.5).

The miRNA concentration and purity were also assessed by

NanoDrop™ 1000 spectrophotometry. Small miRNA-enriched

fractions were analysed using the Small RNA Assay on the

Agilent 2100 Bioanalyzer.

RNA labelling and microarray hybridization
Total RNA was Cy-dye labelled and hybridized on miRNA

microarray chips as previously described [24]. Briefly, 5.5 μg

total RNA was 3' ligated to Cy dye-linked 2'-deoxyuridine-5'-

triphosphate using T4 RNA ligase (catalogue number 2141;

Ambion, Woodward, Austin, TX, USA), in the presence of

RNase inhibitor (catalogue number 2682; Ambion, Wood-

ward, Austin, TX, USA), ATP (Grade I, catalogue number

A2383-1G; Sigma-Aldrich Corp. St. Louis, MO, USA), and

polyethylene glycol 50% aqueous solution (PEG 6000, cata-

logue number 81304; Fluka, Sigma-Aldrich Corp, St. Louis,

MO, USA). Following a 12-hour to 16-hour incubation,

labelled RNA was washed in ethanol, and precipitated in

sodium acetate (3 M) using linear acrylamide. Labelled RNA

was hybridized to LNA™ miChip array platforms (Exiqon ver-

sion 7, containing 453 miRNA sequences) over 16 hours at

54°C using a rotational hybridization chamber. Arrays were

subsequently washed in varying stringency washes, rinsed,

drained and scanned using a GenePix 4000AL laser scanner

(Axon Instruments, Foster City, CA, USA).

Data processing

Images generated by the GenePix 4200AL scanner were

imported to GenePix 6 microarray analysis software (Axon

Instruments, Foster City, CA, USA). Artefact-associated spots

were removed by both software-guided and visual-guided

flags. Empty and control data were filtered out. Signal intensi-

ties were measured according to the local background sub-

traction method as a function of the median of foreground

pixels minus the median of background pixels. The median

spot intensities were then normalized to the median intensity

per chip using custom R scripts. All microarray data were sub-

mitted to the Gene Expression Omnibus [GEO:GSE15885].

Artificial neural network algorithms and architecture

Within the present study, a three-layer multilayer perceptron

modified with a feedforward back-propagation algorithm and a

sigmoidal transfer function [25] was employed (Figure 1). The

learning rate and momentum were respectively set at 0.1 and

0.5. Automatic pre-processing normalized the data between 0

and 1 for each variable. The intensity values for the miRNA for

each individual were represented in the input layer, the hidden

layer contained two hidden nodes, and the class (related to

ER, PR or HER2/neu) was represented in the output layer

coded as 0 for negative and 1 for positive.

A randomly selected subset of the cases devolved for training

purpose is presented to the network to train it (training data)

while it is constantly monitored with a randomly select subset

of unseen cases (test data). These test data are used to stop

the training process once the model has reached predeter-

mined conditions such as an optimal error value preventing

overtraining. Once training is stopped, the efficiency of the

model is further assessed by presenting a third, randomly

selected, blind subset to the model to determine performance

Percentage of positive cells intensity of staining total s+ = ccore
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for unseen cases not involved in the training process. This sub-

set selection process was repeated up to 50 times for ran-

domly selected subsets, a process known as Monte – Carlo

cross-validation. The suite of 50 models produced was ana-

lysed and screened for model optimization purposes.

Model optimization

An additive stepwise approach was employed (as described

previously [21]) to identify an optimal set of markers explaining

variation in the population of each of the questions explored:

ER, PR and HER2/neu status, for miRNA microarrays. In brief,

the stepwise approach consists of taking each single variable

as an input to the ANN, and training 50 submodels with

Monte–Carlo cross-validation. Each single input model subset

is then analysed and the median classification performance

(based on the predictive error for the blind test set) is deter-

mined. The median performance for all single inputs is then

analysed and the inputs ranked accordingly. The best predic-

tor input (with the lowest error) is then selected and a second

single variable added, creating a two-input model. This was

repeated for all of the variables in the dataset, and the best pair

was determined again based on the classification error. Fur-

ther inputs are then added in stepwise fashion (generating

three-input models, four-input models, and so on) until no fur-

ther improvement is obtained and an optimal model with the

best predictive performance is generated.

cDNA synthesis and RQ-PCR

RQ-PCR quantification of miRNA expression was performed

using TaqMan MicroRNA® Assays (Applied Biosystems, Fos-

ter City, CA, USA) according to the manufacturer's protocol.

Small RNA (5 ng) was reverse-transcribed using the Multi-

Scribe™-based High-Capacity cDNA Archive kit (Applied Bio-

systems). RT-negative controls were included in each batch of

reactions. PCR reactions were carried out in final volumes of

20 μl using an ABI Prism 7000 Sequence Detection System

(Applied Biosystems). Briefly, reactions consisted of 1.33 μl

cDNA, 1× TaqMan® Universal PCR Master Mix, 0.2 μM Taq-

Man® primer–probe mix (Applied Biosystems). Reactions

were initiated with a 10-minute incubation at 95°C followed by

40 cycles of 95°C for 15 seconds and 60°C for 60 seconds.

miRNA-16 and let-7a were used as endogenous controls to

standardize miRNA expression [26]. An interassay control

derived from a breast cancer cell line (ZR-75-1) was included

on each plate. All reactions were performed in triplicate. The

threshold standard deviation for intra-assay and inter-assay

replicates was 0.3. The percentage PCR amplification efficien-

cies (E) for each assay were calculated, using the slope of the

semi-log regression plot of cycle threshold versus log input of

cDNA (10-fold dilution series of five points), with the following

equation:

A threshold of 10% above or below 100% efficiency was

applied.

Relative quantification

The relative quantity of miRNA expression was calculated

using the comparative cycle threshold (ΔΔCt) method [27].

The geometric mean of the cycle threshold value of the endog-

enous control genes was used to normalize the data, and the

lowest expressed sample was used as a calibrator.

Statistical analysis of RQ-PCR miRNA expression data

The Kolmogorov–Smirnov normality test was applied; as the

values of miRNA expression displayed a non-normal distribu-

tion, data were standardized by log10 transformation. Associa-

tions between miRNA expression and standard prognostic

factors (patient age, tumour size, tumour grade, axillary nodal

status, hormonal status and HER2/neu status) were examined

using t tests, analysis of variance and Pearson correlations.

The above tests were performed in SPSS® (version 14.0;

SPSS Inc., Chicago, IL, USA). P < 0.05 was considered sta-

tistically significant.

Results
miRNA signatures predictive of ER, PR and HER2/neu 

status

Using the ANN to analyse miRNA array expression data, we

identified distinct miRNA expression signatures predictive of

ER, PR, and HER2/neu status in breast tumour samples. The

ER signature consisted of six miRNA transcripts (miR-342,

miR-299, miR-217, miR-190, miR-135b, miR-218), and dis-

criminated cases correctly with a median accuracy of 100%

when classifying between ER-positive and ER-negative phe-

notypes. Similarly, four miRNA transcripts (miR-520g, miR-
377, miR-527-518a, miR-520f-520c) were identified that pre-

E = − −( ) ×10 1 1 100/slope

Figure 1

Multilayer perceptron with sigmoidal activation functionMultilayer perceptron with sigmoidal activation function. Weights are 
adjusted at the end of each epoch by the back-propagation algorithm.
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dicted tumour PR status with 100% accuracy, and HER2/neu
status was predicted with 100% accuracy by a signature of

five miRNAs (miR-520d, miR-181c, miR-302c, miR-376b,

miR-30e) (Table 3).

These reported accuracies are from separate validation data

splits where the samples were treated as blind data over 50

models with extensive Monte–Carlo cross-validation. At each

step of the model, additional miRNA transcripts were

selected; the addition of key miRNA transcripts improved the

predictive capabilities of the signature. When there was no fur-

ther improvement in performance with regards to predictive

error, no additional miRNA transcripts were added as the sig-

natures were now considered to contain the optimum miRNAs

to most accurately model the data. Figure 2 shows the per-

formance of the models at each step of the analyses, and it is

evident that the selection and addition of key transcripts led to

an overall improvement in the error associated with predictive

capabilities of the model for blind data. After step 6, step 4 and

step 5 for the ER, PR and HER2/neu data, respectively, no fur-

ther steps were conducted as no significant improvement in

performance with regards to predictive error could be

achieved. At this point the models were considered to contain

the miRNAs that most accurately predicted receptor status.

A detailed examination of the ranked model performance for

the most predictive individual miRNA transcripts in step 1 of

the analysis is presented in Table 4. There are a number of

miRNA transcripts capable of classifying samples effectively,

independently of the miRNA ranked highest in terms of predic-

tive ability. All of these miRNAs are considered important in

step 1 of the analysis; however, they are not independent of

each other and may all explain the same variation in the data.

These miRNAs are not subsequently identified as important in

the following steps of the analysis, and as a result are not all

present in the final signatures. The miRNA signatures that are

included in the final model each explain additional variation in

the patient data, and the combination of these transcripts con-

tributes to the final predictive power of the model. Table 3

summarizes the performances of the network models at each

step of the analysis; the transcripts in this table composed the

final miRNA signatures for ER, PR and HER2/neu status,

respectively.

Table 3

Summary microRNAs used in the expression signature at each step of model development

Rank miRNA Chromosomal location Validated mRNA targets Mean squared error Median accuracy (%) Responsea

ER status

1 miR-342 14q32.2, intronic - 0.132 83.3 (+)

2 miR-299-3p 14q32.31, intergenic - 0.087 100 (-)

3 miR-217 2p16.1, intergenic - 0.07 100 (+)

4 miR-190 15q22.2, intronic - 0.06 100 (-)

5 miR-135b 1q32.1, intronic - 0.057 100 (-)

6 miR-218 4p15.31, intronic LAMB3 0.047 100 (+)

PR status

1 miR-520g 19q13.42, intergenic - 0.186 83.3 (-)

2 miR-377 14q32.31, intergenic - 0.129 83.3 (+)

3 miR-527-518a 19q13.42, intergenic - 0.086 100 (-)

4 miR-520f-520c 19q13.42, intergenic - 0.07 100 (+)

HER2/neu status

1 miR-520d 19q13.42, intergenic - 0.109 100 (+)

2 miR-181c 19q13.12, intergenic Tcl1 0.086 100 (-)

3 miR-302c 4q25, intronic Cyclin D1 0.062 100 (*)

4 miR-376b 14q32.31, intergenic - 0.050 100 (+)

5 miR-30e-3p 1p34.2, intronic Ubc9 0.047 100 (*)

Summary microRNAs (miRNAs) used in the expression signature at each step of model development for oestrogen receptor (ER) status, 
progesterone receptor (PR) status and v-erb-b2 erythroblastic leukaemia viral oncogene homolog 2 receptors (HER2/neu) status. a(+), increased 
miRNA expression leads to increased probability of receptor positive status; (-), increased miRNA expression leads to increased probability of 
receptor negative status; (*), weak response, possibly interacting to modify the response of other miRNAs.
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Figure 2

Performance of the models at each step of the analysesPerformance of the models at each step of the analyses. Model performance with each input addition over the course of the analysis for (a) oestro-
gen receptor (ER) status – 6 optimal transcripts. After the addition of the six optimal microRNA transcripts, the accuracy of the model has reached 
100% and there is no further improvement in the error. At this point the model is considered to contain the transcripts that most accurately model 
the data. Columns represent median model accuracy; lines represent mean squared error for the predictions at each step. (b) progesterone receptor 
(PR) status – four optimal transcripts, and (c) v-erb-b2 erythroblastic leukaemia viral oncogene homolog 2 receptor (HER2/neu) status – five optimal 
transcripts.
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Sample population analysis

Figure 3 shows population structures for ER, PR and HER2/

neu status. The transcript signature determined from the ANN

model was used to position patients into population structures

based upon the ANN predicted probability of the individual

falling into a given receptor status class. By ranking the prob-

abilities for individuals, the population structure is determined.

The developed ANN model may be used to predict probability

of receptor status and thus position new individuals within the

population structure.

miRNA response curve analysis

To determine the effect of each individual miRNA on class pre-

diction, the ANN model was presented with controlled input

values representing discreet intervals across the range of the

miRNA of interest (keeping all others at their mean value). The

predicted probability in the output class of interest (that is, ER,

PR and HER2/neu status) was determined under these input

conditions and response curves were plotted. This enabled an

understanding of how the miRNAs govern the tumour sample

classification by assessing the strength of response. The

response can be discriminatory (crosses the 0.5 class thresh-

old) or co-factorial (does not cross the 0.5 class threshold).

Such analysis identifies whether specific miRNA expression is

Table 4

Summary of step 1 of the stepwise analysis of the ER, PR, and HER2/neu signatures

Rank MicroRNA Chromosomal location Validated mRNA targets Mean squared error Median accuracy (%)

ER status

1 miR-342 14q32.2, intronic - 0.132 84

2 miR-520g 19q13.42, intergenic - 0.198 73

3 miR-107 10q23.31, intronic - 0.200 73

4 miR-149 2q37.3, intronic - 0.201 69

5 miR-520g-h 19q13.42, intergenic - 0.203 73

6 miR-155 21q21.3, exon AGTR1, AID, TP53INPI 0.208 70

7 miR-30c 1p34.2, intronic - 0.210 67

8 miR-382 14q32.31, intergenic - 0.211 67

PR status

1 miR-520g 19q13.42, intergenic - 0.180 83.3

2 miR-520d 19q13.42, intergenic - 0.181 83.3

3 let-7d 9q22.32, intronic SMC1A 0.185 67

4 miR-328 16q22.1, intronic CD44, BCRP 0.189 83.3

5 miR-373 19q13.41intergenic E-Cadherin, lats2 CSDC2, CD44, RAD23B 0.189 83.3

6 miR-217 2p16.1, intergenic 0.196 67

7 miR-504 Xq26.3, intronic 0.198 67

8 miR-485-3p 14q32.31, intergenic 0.201 83.3

HER2/neu status

1 miR-520d 19q13.42, intergenic 0.109 87.5

2 miR-30b 8q24.22intergenic 0.111 83.3

3 miR-217 2p16.1, intergenic 0.114 83.3

4 miR-363 Xq26.2, intergenic 0.115 83.3

5 miR-383 8p22, intronic 0.115 83.3

6 miR-377 14q32.31, intergenic 0.120 87.5

7 miR-130a 11q12.1, intergenic GAX, HOXA5 0.121 83.3

8 miR-422a 15q22.31, intergenic 0.122 83.3

ER, oestrogen receptor; PR, progesterone receptor; HER2/neu, v-erb-b2 erythroblastic leukaemia viral oncogene homolog 2 receptors.



Breast Cancer Research    Vol 11 No 3    Lowery et al.

Page 10 of 18
(page number not for citation purposes)

increased or decreased with respect to the receptor status,

providing an indication of their possible biological role.

The analysis is performed using the trained ANN model and

adjusting an input variable of interest to monitor the affect of

this adjustment on the output variable. The output, with

respect to the changing input value, is plotted to produce a

response graph. The response graphs for miR-342, miR-520g
and miR-520d* in relation to ER, PR and HER2/neu status,

respectively, are shown in Figure 4. Some miRNAs showed

that with increased expression, the probability of receptor pos-

itivity increased; conversely, other miRNAs showed that with

increased expression, the likelihood of the sample being

classed as receptor-positive decreased. This highlights poten-

tial regulatory roles for these miRNAs through inhibition of the

receptors themselves or of their co-regulators. Table 3

includes information on how the level of expression of each

miRNA correlates with the receptor status.

Coordinated expression of miRNA clusters

The expression of miRNAs from the same chromosomal loca-

tion was shown to be coordinated in our dataset. Figure 5

shows pairwise scatterplots for miRNAs transcribed from

adjacent chromosomal regions. This highly correlated expres-

sion of adjacent miRNAs is in keeping with their processing

from primary polycistronic transcripts.

Figure 3

Population analysis for receptor statusPopulation analysis for receptor status. Population analysis for (a) oestrogen receptor (ER) status. Using the transcript signature from the ANN 
model, it is possible to be able to place a patient with unknown ER status within this population structure, with 100% accuracy from an ANN predic-
tion, (b) progesterone receptor (PR) status, and (c) HER2/neu status. White, receptor-negative patients; grey, receptor-positive patients. y axis, arti-
ficial neural network (ANN) prediction with 0 being a receptor-negative prediction and 1 a receptor-positive prediction. Error bars indicate a 95% 
confidence interval.
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PCR validation

To confirm expression results obtained from the microarray

analysis we carried out RQ-PCR on a subset of miRNAs.

There was good correlation in sample-to-sample expression

patterns between the two techniques (Figure 6).

Validation/interrogation of identified miRNAs

The first miRNA identified by the ANN model in relation to ER

status was miR-342. The expression of miR-342 was further

analysed in a cohort of 95 breast tumours, 17 of which had

matched tumour-associated normal tissue. RQ-PCR of mature

miR-342 in these samples showed no significant difference in

expression between tumour and tumour-associated normal tis-

sue (P = 0.6, paired t test). Within the tumour samples, the

expression of miR-342 was significantly higher in ER-positive

tumours (n = 62) compared with ER-negative tumours (n =

32) (P = 0.04, independent t test), confirming the association

with ER positivity identified in the ANN response curve analy-

sis. miR-342 expression was also higher in the HER2/neu-

positive tumours (n = 59) versus the HER2/neu-negative

tumours (n = 32) (P = 0.001, independent t test). The expres-

sion of miR-342 was highest in the luminal B subtype of breast

cancers and was lowest in the triple-negative/basal subtype (P
= 0.001, analysis of variance; Figure 7). There was no associ-

ation of miR-342 with other clinicopathological parameters,

including PR status, grade, stage or nodal status.

Figure 4

Response curves for miR-342, miR-520g and miR-520dResponse curves for miR-342, miR-520g and miR-520d. Response curves for (a) miR-342, (b) miR-520g and (c) miR-520d*. Figures show the 
intensity of each transcript plotted against the artificial neural network (ANN) prediction with respect to the sample being classified as either (a) oes-
trogen receptor (ER)-positive or ER-negative, (b) progesterone receptor (PR)-positive or PR-negative and (c) v-erb-b2 erythroblastic leukaemia viral 
oncogene homolog 2 receptor (HER2/neu)-positive or HER2/neu-negative. Error bars indicate 95% confidence intervals.
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miR-520g was the top-ranked miRNA in the PR status signa-

ture (Table 3) and the second-ranked miRNA predictive of ER

in step 1 of the analysis (Table 4). The expression of miR-520g
was also analysed using RQ-PCR. There was a significant

positive correlation between miR-520g microarray expression

and RQ-PCR (R = 0.4, P = 0.029, Pearson). In the cohort of

95 breast tumours with 17 matched tumour-associated nor-

mal breast tissue tissues there was no significant difference in

miR-520g expression between tumour and tumour-associated

normal breast tissue (P = 0.228, paired t test). Within the

tumour samples, miR-520g expression was significantly

higher in PR-negative breast tumours (n = 33) compared with

PR-positive tumours (n = 58) (P = 0.032, independent t test).

The miR-520g expression was also significantly higher in ER-

negative tumours (n = 32) compared with ER-positive tumours

(n = 62) (P = 0.005, independent t test). There was no signif-

icant association of miR-520g with other tumour characteris-

tics, including HER2/neu status, tumour size, grade, stage or

nodal status.

Discussion
In the wake of molecular profiling and the identification of

intrinsic subtypes, breast cancer is now considered a hetero-

geneous group of disease entities with distinct clinical, patho-

logical and molecular features. This biologic heterogeneity has

implications for treatment; response to therapy can be pre-

dicted by subtyping tumours based on their expression pro-

files [2]. The molecular subclasses of breast cancer that are

predictive of prognosis are based on their expression of spe-

cific genes including ER and HER2/neu: luminal-A subtype,

ER+/HER2/neu-; luminal-B subtype, ER+/HER2/neu+; basal-

like subtype, ER-/PR-/HER2/neu-; HER2/neu-overexpressing

subtype, ER-/HER2/neu+ [1]. The expression of these recep-

tors alone has also been shown to have an effect on chemo-

Figure 5

Coordinate expression of co-located microRNAsCoordinate expression of co-located microRNAs. Scatterplots of expression values for microRNAs located adjacently on the same chromosome. (a) 
miR-16 and miR-15a; Ch13q14.3. (b) miR-16 and miR-15b; Ch3q26.1. (c) miR-143 and miR-145; Ch5q14. (d) miR-99a and let-7c; Ch21q16. 
(e) miR-195 and miR-497; Ch17p13.1. (f) miR-520g and miR-520h; Ch19q13.42. (g) miR-17-5p, miR-18a, miR-19a, miR-19b, miR-20a, miR-92; 
Ch13q31.3.
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therapy sensitivity [28]. Furthermore, the only targeted

therapies currently used in the management of breast cancer

are directed at these receptors; ER-positive tumours are

treated with endocrine therapy in the form of selective ER

modulators, pure anti-oestrogens such as fulvestrant that com-

pletely inhibits ER signalling, or aromatase inhibitors that

deplete extragonadal oestrogen synthesis. The monoclonal

antibody trastuzumab has been developed to target the

HER2/neu, while lapatinib inhibits HER2/neu-associated tyro-

sine kinase activity.

The specific combination of receptor status has a significant

impact on the outcome of these targeted therapies; HER2/

neu-positive breast cancer is less responsive to any type of

endocrine treatment [29]; approximately one-half of HER2/

neu-positive breast cancers are also ER-positive, and this

breast cancer subgroup (luminal B) is thus more refractory to

endocrine therapy – despite the ER-positive status. In addi-

tion, many patients with HER2/neu-positive breast cancers do

not respond or eventually evade trastuzumab by both de novo
and acquired mechanisms of therapeutic resistance. The sub-

set of patients who are HER2/neu-negative and ER-negative

(basal like/triple negative) are a particular therapeutic chal-

lenge as they typically exhibit aggressive clinical behaviour and

poorer prognosis. Focused research has revealed promising

strategies for treating this subtype of breast cancer, including

platinum agents, epidermal growth factor receptor (EGFR)-tar-

geted agents and poly(ADP-Ribose) polymerase (PARP)

inhibitors; however, there is as yet no specific target for effec-

tive tailored therapy in this subgroup.

Clearly the hormone (ER and PR) and HER2/neu receptors

are vitally important to the current classification and manage-

ment of breast cancer; however, there is little knowledge

regarding the precise regulation of these receptors. For this

reason we sought to identify miRNAs associated with these

receptors.

Figure 6

Correlation between microRNA expression on microarray and RQ-PCRCorrelation between microRNA expression on microarray and RQ-PCR. For a subset of microRNAs (miRNAs) and samples we performed RQ-PCR 
to independently assess miRNA expression. RQ-PCR data are normalized using let-7a and miR-16. There is generally good correlation between 
miRNA expression using the two techniques. probe-specific differences were observed, however. R value using Pearson correlation, P < 0.05 signif-
icant.
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Microarray profiling is a useful strategy for examining global

gene and miRNA expression [17]. Messenger RNA profiling

has been central to breast cancer subtyping. Adaptation of

microarray-devised gene sets into routine clinical practice,

however, has been hindered by the apparent lack of consen-

sus between gene sets. One reason for this hindrance is that

the classical computational analysis of such highly dimen-

sional microarray data has proved problematic as it is not

robust enough. The inherent noise (for example, experimental

error, sample and chip variability) can significantly interfere

with the development of accurate predictive models, and their

performance is compromised by their modelling of extraneous

portions of the dataspace. Michiels and colleagues ques-

tioned the robustness of the analysis of several microarray

studies, and found that the molecular signatures were largely

dependent on the selection of patients in training sets and that

several of the largest studies addressing cancer prognosis

failed to classify patients better than randomly [30].

ANNs were chosen as the bioinformatics tool for microarray

data analysis for the present study due to their ability to cope

with complex data and the potential for modelling data of high

nonlinearity. For this reason, they have been widely applied to

a range of domains including character/face recognition [31],

stockmarket predictions [32], or survival prognosis for trauma

victims [33]. ANN model development is achieved by a training

process involving the adjustment of the weighted interconnec-

tions between nodes within the neural network over a defined

number of epochs. This adjustment occurs by the iterative

propagation of the predictive error back through the entire net-

work with a learning algorithm (for example, the back-propaga-

tion algorithm used in the present study). ANNs have already

been successfully applied in a number of contexts where mark-

ers of biological relevance have been identified, including poly-

cystic ovarian syndrome [34], melanoma [22], prostate cancer

[35] and breast cancer [36].

The miRNA expression profiles have shown superior accuracy

to mRNA signatures at classifying tumours [17]. The novel

application of ANNs to the analysis of miRNA array data

should serve to enable breast tumours to be classified accord-

ing to their miRNA expression profile, and should also focus

Figure 7

Expression of miR-342 and miR-520g in breast tumoursExpression of miR-342 and miR-520g in breast tumours. RQ-PCR detection analysis shows that expression levels of miR-342 are increased in: (a) 
oestrogen receptor (ER)-positive tumours compared with ER-negative tumours (P = 0.04), (b) v-erb-b2 erythroblastic leukaemia viral oncogene 
homolog 2 receptor (HER2/neu)-positive compared with HER2/neu-negative tumours (P = 0.001), and (c) luminal-B subtype of breast tumours (P 
= 0.001). (d) miR-520g expression is increased in ER-negative tumours compared with ER-positive tumours (P = 0.005) and in progesterone 
receptor (PR)-negative tumours compared with PR-positive tumours (P = 0.032). MicroRNA expression presented as log10 of the relative quantity. 
*P < 0.05, **P < 0.005.
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attention upon a relatively small number of molecules that

might warrant further biochemical/molecular characterization

to assess their suitability as potential therapeutic targets.

In the present study, miRNA transcript signatures predictive of

ER, PR and HER2/neu status were generated from microarray

data using an ANN model (Tables 3 and 4). The breast

tumours selected for the array experiment were relatively

homogeneous in terms of other clinicopathological parame-

ters, all being early stage (stages 1 and 2a) and free of nodal

disease. In the first step of the analysis, miRNAs capable of

classifying tumour samples according to receptor status with

an accuracy of 67 to 87% were identified. Sequential selec-

tion and addition of miRNAs to the ANN successfully identified

an optimum miRNA set based on predictive performance.

While the model shows high confidence for the dataset ana-

lysed (100% predictive accuracies), further validation is

required on larger datasets and validation of the miRNA sets

identified using alternative methods such as PCR.

Confirmation of the expression data from the microarray by

RQ-PCR was used for validation in this dataset; the expres-

sion patterns of a subset of eight miRNAs was validated in the

same sample set by stem-loop RQ-PCR, and there was signif-

icant positive correlation in sample-to-sample expression pat-

terns between the two techniques (Figure 6, P < 0.05).

Furthermore, the expression patterns and phenotypic associa-

tions of the top-ranking miRNAs miR-342 and miR-520g were

validated in an independent sample set of 95 tumours (Figure

7).

The miRNA signatures generated for ER status (miR-342,

miR-299, miR-217, miR-190, miR-135b, miR-218), for PR

status (miR-520g, miR-377, miR-527-518a, miR-520f-520c)

and for HER2/neu status (miR-520d, miR-181c, miR-302c,

miR-376b, miR-30e) include miRNAs that have previously

been identified as dysregulated in breast cancer and other

cancers [7,9,37-43] and involved in the regulation of cell func-

tions such as growth, apoptosis, migration and invasion

[38,42,43]. This finding suggests that the miRNAs thus iden-

tified are biologically relevant and their selection is not arbitrary

or a result of the highly dimensional nature of the data.

Notably, two chromosomal locations account for a number of

the dysregulated miRNAs in these predictive sets: Ch19q13

(miR-520g, miR-520d, miR-527-528a, miR-520f-520c, miR-
181c) and Ch14q32 (miR-342, miR-299, miR-377, miR-
376b). Allelic deletions on chromosome 14q32 are frequently

observed in various tumours, including renal cell carcinoma

[44], neuroblastoma [45], colorectal carcinoma [46], bladder

cancer [47], ovarian carcinoma [48], meningioma [49] and

breast carcinoma [50].

Approximately one-third of human miRNAs are organized in

clusters, which may represent a single transcriptional unit and

coordinated regulation – possibly leading to synergistic bio-

logical effects, as suggested by the inclusion of miRNAs from

adjacent chromosomal locations in our signatures. This may

contribute to our finding that while single miRNAs are capable

of distinguishing between different breast tumours (step 1;

Table 4), multiple miRNAs in combination significantly

enhance the predictive power of these models (step 2; Table

3). Our finding of co-expression of other neighbouring miRNAs

not included in the predictive signatures (Figure 5) is in con-

cordance with previous studies [7,51] and is probably due to

shared regulatory elements.

A primate-specific conserved miRNA family is located at

Ch19q13.42 [52]. Two miRNAs from this location, miR-373
and miR-520c, have previously been shown to stimulate can-

cer cell migration and invasion in both in vitro and in vivo mod-

els and to be expressed at increased levels in metastatic

breast cancer [43]. The miRNAs from this family were associ-

ated with ER, PR and HER2/neu status in our analysis. Similar

seedpairing in miRNA families indicates that they may function

through the same pathways and share mRNA targets – such

as CD44, identified as a target of miR-373 and known to cor-

relate with survival in breast cancer patients [53]. It is likely that

this particular miRNA family has a significant regulatory role in

breast cancer.

miR-520g was ranked as the top miRNA in the PR signature

and also was identified in step 1 of the analysis as an ER-pre-

dictive miRNA. Both of these findings were validated using

RQ-PCR in a larger, more heterogeneous cohort of 95 breast

tumours (Figure 7d). To our knowledge this is the first report

of miR-520g dysregulation in association with ER and PR sta-

tus in breast cancer. Importantly, miR-520g is computationally

predicted to target a number of breast-cancer-related genes

including ABCG2 (BCRP) [54]. ABCG2/BCRP is an ATP-

binding cassette transporter that is often associated with

multidrug resistance due to its ability to remove substrates

from a cell against a concentration gradient [55]. ABCG2

expression in cancer cells has been shown to confer a drug-

resistant phenotype and correlates with response to anthracy-

clines in breast cancer [56]. The regulation of ABCG2/BCRP

is controlled via oestrogen and progesterone response ele-

ments [57,58], and the steroid hormones have been shown to

impact on ABCG2 expression [57,59,60].

Recent studies have shown that ABCG2 expression is also

regulated by miRNAs including miR-328 [61], leading to

increased mitoxantrone sensitivity, and by miRNAs from the

Ch19q13.42 cluster. Specifically, ABCG2 is downregulated

by miR-519c in drug-sensitive cells via a binding site in the 3'

UTR that is not present in their drug-resistant counterparts

[62], and miR-520h targets ABCG2 in hematopoietic stem

cells during their differentiation into progenitor cells [63]. miR-
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520g shares sequence homology with miR-520h, and these

miRNAs were coordinately expressed in our dataset (Figure

5); it is therefore probable that miR-520g may also be a regu-

lator of ABCG2. This hypothesis warrants further investiga-

tion; identification of miRNA binding sites in the 3' UTR of

genes such as ABCG2 that promote multidrug resistance

could enable the delivery of specific miRNAs from this cluster

to tumours in an attempt to repress ABCG2 and to increase

sensitivity to existing therapeutic agents.

The ER-status predictor miR-342, identified as having the

strongest response curve, was also chosen for further charac-

terization. Expression of miR-342 in the larger cohort of breast

tumours (n = 95) using RQ-PCR confirmed the microarray

findings of an association between miR-342 and ER positivity.

Furthermore, we report the first findings of an association

between miR-342 and HER2/neu positivity. Increasing evi-

dence suggests that miR-342 plays an important role in the

carcinogenic process, particularly in the hormonally regulated

breast cancer. miR-342 is dysregulated in multiple myeloma

[64] and has been shown to be epigenetically silenced by

methylation in colorectal carcinoma [42]. In vitro studies have

demonstrated that introduction of a hsa-miR-342 mimic to

colorectal cancer cells induces apoptosis, suggesting a

potential tumour suppressor role for this miRNA [42].

Previous miRNA profiling studies in breast cancer have identi-

fied associations between miR-342 and ER, intrinsic breast

cancer subtype and tumour grade [7,9]. A recent study has

shown downregulation of miR-342 in tamoxifen-resistant

breast cancer cells compared with tamoxifen-sensitive breast

cancer cells, suggesting a potential role as a biomarker of drug

sensitivity [65]. To our knowledge this is the largest number of

primary breast tumours in which miR-342 has been quanti-

tated using RQ-PCR. Our findings of increased miR-342
expression in both ER-positive and HER2/neu-positive

tumours is of particular interest as the luminal B (ER+/HER2/

neu+) and triple-negative tumours present particular therapeu-

tic challenges. In the present study, miR-342 has emerged as

a potential candidate for regulation of ER/HER2/neu expres-

sion that warrants further functional investigation to elucidate

its mRNA targets and its precise role in breast carcinogenesis.

Conclusions
Our novel use of ANN to analyse miRNA expression profiles

has identified biologically relevant miRNAs capable of discrim-

inating between tumours with differing hormone receptor sta-

tus in breast cancer. This approach contributes to the

understanding of miRNA expression profiling in breast cancer,

and the selection of the most predictive signatures has identi-

fied specific individual miRNAs and families of miRNAs that

are promising candidates for future functional studies. These

miRNAs have a potential influence on the behaviour of breast

cancer subtypes in addition to their role as potential biomark-

ers. Uncovering the miRNA layer of genetic regulation will be

part of the optimal approach to targeted therapy in breast can-

cer; this involves improving our understanding of molecular tar-

gets such as ER, PR and HER2/neu in addition to identifying

novel molecular pathways and targets in order to predict

response and to identify pathways of primary and acquired

resistance to therapy.
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