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Mammalian genomes contain several hundred highly conserved genes encoding microRNAs. In silico analysis has
predicted that a typical microRNA may regulate the expression of hundreds of target genes, suggesting miRNAs
might have broad biological significance. A major challenge is to obtain experimental evidence for predicted
microRNA–target pairs. We reasoned that reciprocal expression of a microRNA and a predicted target within a
physiological context would support the presence and relevance of a microRNA–target pair. We used microRNA
microarray and proteomic techniques to analyze the cortex and the medulla of rat kidneys. Of the 377 microRNAs
analyzed, we identified 6 as enriched in the renal cortex and 11 in the renal medulla. From ∼2100 detectable protein
spots in two-dimensional gels, we identified 58 proteins as more abundant in the renal cortex and 72 in the renal
medulla. The differential expression of several microRNAs and proteins was verified by real-time PCR and Western
blot analyses, respectively. Several pairs of reciprocally expressed microRNAs and proteins were predicted to be
microRNA–target pairs by TargetScan, PicTar, or miRanda. Seven pairs were predicted by two algorithms and two
pairs by all three algorithms. The identification of reciprocal expression of microRNAs and their computationally
predicted targets in the rat kidney provides a unique molecular basis for further exploring the biological role of
microRNA. In addition, this study establishes a differential profile of microRNA expression between the renal cortex
and the renal medulla and greatly expands the known differential proteome profiles between the two kidney regions.

[Supplemental material is available online at www.genome.org.]

MicroRNAs are a class of endogenous, conserved, small regula-
tory RNA, the discovery of which has been hailed as one of the
most important breakthroughs in biology in recent years (Couzin
2002; Dennis 2002). MicroRNA is encoded by specific genes in
plant and animal genomes and may act primarily through bind-
ing to the 3� untranslated region of target mRNA and suppressing
protein translation (Ambros 2004; Bartel 2004; He and Hannon
2004; Kim 2005). In some cases, microRNA can also reduce the
abundance of target mRNA (Bagga et al. 2005; Lim et al. 2005).
Since microRNA exerts its biological effects through suppression
of target genes, it is necessary to identify microRNA–target pairs
to understand the biological significance of specific microRNAs.

An interesting characteristic of microRNA is that it only re-
quires partial complementarities with its target sequence. As a
result, a microRNA could potentially target multiple genes. One
could predict which genes might be targeted by a microRNA
based on the sequence characteristics of known microRNA–target
pairs (Rajewsky 2006). This type of in silico analysis has predicted
several hundred thousand microRNA–target pairs in human, rat,
and mouse (John et al. 2004; Lewis et al. 2005). Several thousand
protein-coding genes in mammalian genomes have been pre-
dicted to be targets of a few hundred known microRNAs. This
suggests that microRNAs may play an extremely broad and im-
portant role in biological regulation.

The fact that only partial sequence complementarities are
needed, however, makes it challenging to ascertain the presence

of a microRNA–target pair (Krutzfeldt et al. 2006). Only a few
dozen microRNA–target pairs have been experimentally vali-
dated in human, rat, or mouse (see http://microrna.sanger.ac.uk/
cgi-bin/targets/v4/known_targets.pl), despite the prediction of
several hundred thousand. Experiments to validate the presence
and relevance of a microRNA–target pair are laborious and time-
consuming. It would be highly valuable to identify those pre-
dicted microRNA–target pairs that are more likely to be present
and relevant.

We reasoned that reciprocal expression of a microRNA and
a predicted target within a physiological context would support
the presence and physiological relevance of a predicted micro-
RNA–target pair. We used microRNA microarray and proteomic
techniques to analyze the cortex and the medulla of rat kidneys.
The renal cortex and the renal medulla are functionally and
structurally distinct, yet closely related, providing an interesting
context for identifying possible microRNA–target pairs that may
be physiologically relevant. Reciprocal expression of several pairs
of microRNAs and their computationally predicted targets was
identified in the rat kidney, a differential profile of microRNA
expression in the renal cortex and medulla was established, and
the known differential proteome profiles in the two kidney re-
gions were greatly expanded.

Results

MicroRNA expression profiles in the renal cortex
and the renal medulla

The 377 microRNAs analyzed included 170, or 45%, that were
known rat microRNAs. In the renal cortex 110 microRNAs were
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considered detectable, while 71 were detectable in the renal me-
dulla. Among the detectable microRNAs in the renal cortex and
the renal medulla, 62% and 79%, respectively, were known rat
microRNAs. The four most abundant microRNAs in both the re-
nal cortex and the renal medulla, according to background-
subtracted and normalized fluorescent intensities, were rno-let-
7c, rno-miR-26a, rno-let-7b, and rno-let-7a. Absolute abundance
levels, however, should be interpreted cautiously since fluores-
cent intensities might be affected by other factors, such as varia-
tions in probe concentrations and the efficiency of printing pins.

We found six microRNAs to be preferentially expressed in
the renal cortex, and 11 in the renal medulla (Fig. 1). The false
positive rate, according to a permutation approach described pre-
viously (Morrison et al. 2004), was 3.9%. The degree of enrich-
ment of specific microRNAs in one kidney region compared with
the other ranged from 1.5-fold to more than 100-fold (Fig. 1). Of
the 17 differentially expressed microRNAs, 15 were known rat
microRNAs. Hsa-miR-450 (currently hsa-miR-450a) is a human
microRNA identical to the rat microRNA rno-miR-450, which
was not represented in the array, except the last nucleotide.

We selected three microRNAs, rno-miR-192, rno-miR-194,
and rno-miR-27b, which represented varying degrees of differen-
tial expression, for further analysis using modified real-time PCR
(n = 6). All three microRNAs were verified as exhibiting statisti-
cally significant differential expression between the two kidney
regions (Fig. 2). The modified real-time PCR analysis, compared
with microarray, indicated smaller fold changes for two micro-
RNAs and greater fold changes for one.

Proteome profiles in the renal cortex and the renal medulla

On average, 2140 spots were detected in each of the four three-
color gels, a representative picture of which is shown in Supple-
mental Figure 1. Of 629 spots that were considered differentially
expressed between the renal cortex and the renal medulla, 409
were picked for mass spectrometry analysis. Protein identities
were obtained for 279 spots, or 68% of those picked. One hun-
dred ten of the identified spots were more abundant in the renal

cortex, and 169 were more abundant in the renal medulla. The
spot ID, common protein name, P-value, ratio between the two
kidney regions, UniProt ID, gene symbol, theoretical isoelectric
point (pI) and molecular weight, gel-based pI and molecular
weight, and sequence coverage, score and Expect values from the
Mascot analysis for each of these spots are described in Supple-
mental Tables 1 and 2. The location of each spot on the gel is
shown in Supplemental Figures 2 and 3.

We consider a protein as having different abundance levels
in the two kidney regions if the protein was identified in a single
differentially expressed spot. A protein might be identified in
multiple differentially expressed spots. All spots representing a
protein should be consistently more abundant in one kidney
region than the other for the protein to be considered having
different abundance levels in the two kidney regions. On the
basis of these considerations, 58 proteins were considered more
abundant in the cortex and 72 in the medulla. There were four
proteins, F1-ATPase beta chain (Atp5b), F1-ATPase alpha chain
isoform 1 (Atp5a1), beta actin (Actb), and lamin A (Lmna), in
which some spots of a protein were more abundant in one kidney
region while other spots of the same protein were more abundant
in the other region. These four proteins might be modified or
processed differently in the two regions.

We performed Western blot analysis for four of the identi-
fied proteins, copper-zinc containing superoxide dismutase
(Sod1), catalase (Cat), fumarase (Fh1), and heterogeneous nuclear
ribonucleoprotein K (Hnrpk). The differential expression of all
four proteins was verified (Fig. 3).

Possible microRNA-target pairs supported by sequence
characteristics and reciprocal expression patterns

We used TargetScan, PicTar, and miRanda to predict the targets
of the differentially expressed microRNAs. In the 16 differentially
expressed microRNAs (see Fig. 1), miR-27a and miR-27b, miR-
125a and miR-125b, and miR-200b and miR-200c have nearly
identical sequences and identical or nearly identical predicted
targets according to all three algorithms. These microRNAs were
consolidated, resulting in 13 microRNAs that were considered in
the subsequent informatic analysis.

Thirteen of 798 reciprocally expressed pairs of microRNAs
and proteins were computationally predicted to be microRNA–
target pairs according to TargetScan (Table 1). The proportion of
matches (Pr), 0.0163, was significantly greater than what can be
expected from random microRNAs (Pm = 0.0050, Z-test P < 0.05)
and tended to be greater than coexpression (Pc = 0.0071,
P = 0.131) (Fig. 4A). When PicTar was used, Pr (0.0110) tended to
be greater than Pm (0.0026, P = 0.096) and Pc (0.0038, P = 0.179).
Pr was slightly but not significantly higher than Pm or Pc when

Figure 1. MicroRNAs differentially expressed between the renal cortex
and the renal medulla in Sprague-Dawley rats. Expression levels of 377
microRNAs were measured by microRNA microarrays (n = 4). Differen-
tially expressed microRNAs, six enriched in the cortex and 11 in the
medulla, are shown. MicroRNAs are ranked, from left to right, by cortex/
medulla ratios.

Figure 2. Verification of microRNA differential expression by real-time
PCR. Fold differences between the renal cortex and the renal medulla
measured by microarray (array) and real-time PCR (qPCR) are shown.
n = 6; (*) significantly different from the other kidney region.
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miRanda was used. Similar statistical results were obtained when
only microRNAs with absolute log2 ratios >1 were considered.

In total, 52 pairs of reciprocally expressed microRNAs and
proteins were predicted by at least one of the three algorithms to
be microRNA–target pairs (Table 1). Two pairs were predicted by
all three algorithms, while seven pairs were predicted by two
algorithms. TargetScan and PicTar had an overlap of 67%. The
overlap between TargetScan and miRanda and between PicTar
and miRanda was 14% and 8%, respectively. A summary of the
reciprocal expression and the match with computational predic-
tions is shown in Supplemental Figure 4.

The fold changes of the 42 proteins in Table 1 tended to be
greater than those of the proteins that were differentially ex-
pressed but not predicted to be targets of microRNA, but the
difference did not reach statistical significance (absolute log2 ra-
tio, 1.33 � 0.09 vs. 1.20 � 0.04, P = 0.127). Of the 42 genes in
Table 1, eight were predicted targets of two microRNAs each, and
one was a predicted target of three microRNAs. No significant
difference was observed between the fold changes of these nine
proteins and the proteins that were predicted targets of one
microRNA each. Four genes have two binding sites for a micro-
RNA. There was no significant difference between the fold changes
of these four proteins and the remaining proteins in Table 1.

One of the predicted microRNA–target pairs, miR-450 and
HNRPK, was further tested in HK-2 cells. The pair was selected in
part because of our ongoing interest in HNRPK. As shown in
Figure 4B, blocking endogenous miR-450 with anti-miR-450
slightly but significantly increased the protein expression level of
HNRPK. Increasing cellular contents of miR-450 with pre-miR-
450 significantly decreased the protein level of HNRPK. mRNA
levels of HNRPK were not affected. Similar results were obtained
in human umbilical vein endothelial cells, in which anti-miR-
450 increased the protein level of HNRPK by 23 � 4%, while
pre-miR-450 decreased it by 28 � 3% (n = 4, P < 0.05 vs. control
oligonucleotides). These data provided evidence supporting the
regulation of HNRPK by miR-450 that was suggested by the mi-
croarray, proteomic, and bioinformatic analysis.

Discussion

The present study has made three contributions. First, we have
identified reciprocal expression of several microRNAs and their
predicted targets in the rat kidney. Second, we have established a
differential profile of microRNA expression between the renal
cortex and medulla. Third, we have greatly expanded the known
differential proteome profiles in the two kidney regions.

The present study provided evidence of reciprocal expres-
sion for a large set of computationally predicted microRNA–
target pairs. Establishing the presence and relevance of any one
microRNA–target pair often requires a major, time-consuming
study, in part due to the lack of high-confidence candidates.
Computational prediction of microRNA–target pairs considers se-
quence characteristics and provides a valuable starting point.
Demonstration of a reciprocal expression pattern is a significant
step beyond computational prediction and substantially in-
creases the level of confidence on calling the presence of a mi-
croRNA–target pair. The large set of reciprocally expressed pairs
of microRNAs and predicted targets that we identified could sig-
nificantly accelerate the study of the biological significance of
microRNA.

The possible microRNA–target pairs identified in the present
study exhibited reciprocal expression under physiological condi-
tions. The traditional approach to identifying possible micro-
RNA–target pairs is to experimentally inhibit or overexpress a
specific microRNA and examine subsequent changes in gene or
protein expression (Lim et al. 2005; Krutzfeldt et al. 2006; Vin-
ther et al. 2006; Wang and Wang 2006). Both our approach and
the traditional approach rely on sequence characteristics to dis-
tinguish direct interactions between a microRNA and its targets
from secondary effects. The advantage of our approach is the
reciprocal expression patterns we observed were present in un-
disturbed in vivo conditions, supporting not only the presence,
but also the physiological relevance, of the identified microRNA–
target pairs. Our approach also allows the investigation of many
microRNAs simultaneously. The advantage of the traditional ap-
proach is that the experimental alterations of a particular mi-
croRNA are presumably specific and can be well controlled.

The proportion of reciprocally expressed pairs of microRNAs
and proteins that matched computationally predicted micro-
RNA–target pairs was higher or tended to be higher than the pro-
portions found with coexpression or randomly selected micro-
RNAs. This is consistent with the finding that, in Drosophila,
microRNAs and their targets tended to be expressed in neighbor-
ing tissues rather than in the same tissue (Stark et al. 2005).

Figure 3. Verification of protein differential expression by Western
blotting. Western blots and fold differences between the renal cortex and
the renal medulla measured by proteomic techniques (2D/MS) and West-
ern blotting (Western) are shown. Band densities in Western blots were
normalized to Coomassie blue staining. Note that the differences found
in the proteomic analysis were statistically significant based on four rats,
although error bars are not provided. (Sod1) Copper-zinc containing
superoxide dismutase; (Hnrpk) heterogeneous nuclear ribonucleoprotein
K. n = 3–4; (*) P < 0.05 vs. the other kidney region.
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Wide-spread reciprocal expression and, in some cases, coexpres-
sion, of microRNAs and their target mRNAs have been reported
in mammalian species (Farh et al. 2005; Sood et al. 2006; Tsang
et al. 2007). The present study demonstrated reciprocal expres-
sion of microRNAs and proteins encoded by microRNA target
mRNAs. For the few cases of coexpression found in the present
study, it would be interesting to examine whether up-regulation
of microRNA represents a negative feedback response to up-
regulation of target proteins. While the proportion statistics ap-
pear to suggest that TargetScan and PicTar have fewer false posi-

tives than miRanda, validation experiments on a large scale
would be needed to systematically compare various target pre-
diction algorithms.

Both the renal cortex and the renal medulla are involved in
the general process of tubular transport, contain continuous tu-
bular loops and vasculature, and consist largely of epithelial cells.
The two regions differ in several aspects, including filtration and
specific transport activities, blood and oxygen supply, and inter-
stitial osmolarity. MicroRNA–target pairs that are reciprocally ex-
pressed in the renal cortex and the renal medulla may participate

Table 1. Reciprocally expressed microRNAs and computationally predicted targets

miRNA
miRNA

log2(M/C)a
Target
symbol Target common name

Protein
log2(M/C) TargetScan PicTar miRanda

miR-194 �5.61 Bckdha Branched chain keto acid dehydrogenase E1, alpha 0.97 Yes Yes
miR-194 �5.61 Ckb Creatine kinase (EC 2.7.3.2) chain B 0.82 Yes
miR-194 �5.61 Myh6 Myosin alpha heavy chain 0.84 Yes
miR-194 �5.61 Pdhb Pyruvate dehydrogenase beta 1.05 Yes Yes Yes (2)b

miR-192 �5.21 Fabp3 Fatty acid binding protein 3 0.89 Yes
miR-192 �5.21 Ldhb L-Lactate dehydrogenase B chain (EC 1.1.1.27) 1.48 Yes
miR-203 �3.17 Aco2 Aconitase 2, mitochondrial 1.21 Yes Yes Yes
miR-203 �3.17 Dars Aspartate-tRNA ligase (EC 6.1.1.12) 0.67 Yes
miR-203 �3.17 Eif4a1 Eukaryotic translation initiation factor 4A1 1.12 Yes
miR-203 �3.17 Gdi1 GDP dissociation inhibitor 1 2.76 Yes
miR-450 �1.04 Anxa5 Annexin V 1.6 NA Yes
miR-450 �1.04 Capza2 F-actin capping protein alpha-2 subunit 0.81 NA Yes
miR-450 �1.04 Hnrpk Heterogeneous nuclear ribonucleoprotein K 0.79 Yes NA
miR-450 �1.04 Tpm3_v1 Tropomyosin 5 1.06 NA Yes
miR-450 �1.04 Vim Vimentin 1.07 NA Yes
miR-34a (34) �0.6 Aldoa Aldolase A, fructose-bisphosphate 2.42 Yes Yes
miR-34a �0.6 Hspa1a DnaK-type molecular chaperone HSP70 1.93 Yes
miR-34a (34) �0.6 Vcl Vinculin 1.72 Yes Yes
let-7e 0.5 Acads Acyl-CoA dehydrogenase (EC 1.3.99.3) short-chain �0.82 Yes (2)b

let-7e 0.5 Selenbp1 Selenium binding protein 2 �1.25 Yes
miR-24 0.77 Gpx3 Glutathione peroxidase 3 �2.35 Yes Yes
miR-30c 0.81 Cndp2 Nonspecific dipeptidase �1.14 Yes
miR-30c (30–5p) 0.81 Hspa5 Heat shock 70kDa protein 5 �1.65 Yes Yes
miR-30c (30–5p) 0.81 Idh1 Isocitrate dehydrogenase 1 (NADP+), soluble �1.04 Yes
miR-30c 0.81 Vdac1 Voltage-dependent anion-selective channel protein 1 �0.81 Yes
miR-27a/-27b 0.91 Acadm Acyl-CoA dehydrogenase (EC 1.3.99.3), medium-chain �0.71 Yes
miR-27a/-27b 0.91 Acads Acyl-CoA dehydrogenase (EC 1.3.99.3) short-chain �0.82 Yes
miR-27a/-27b 0.91 Cyb5 Cytochrome b5 �1.84 Yes
miR-27a/-27b 0.91 Msra Peptide methionine sulfoxide reductase �1.39 Yes
miR-23a 1.44 Abhd14b Abhydrolase domain containing 14b �0.76 Yes
miR-23a 1.44 Agxt2 Beta-alanine-pyruvate aminotransferase �2.19 Yes
miR-23a 1.44 Aldh9a1 4-Trimethylaminobutyraldehyde dehydrogenase �1.17 Yes
miR-23a (23) 1.44 Atp6v1b2 ATPase, H+ transporting, lysosomal 56/58kDa, V1 B2 �0.96 Yes
miR-23a (23) 1.44 Atp6v1e1 ATPase, H+ transporting, lysosomal 31kDa, V1 E1 �0.84 Yes Yes
miR-23a 1.44 Cryl1 Lambda-crystallin homolog �1.88 Yes
miR-23a 1.44 Gatm L-Arginine-glycine amidinotransferase �1.24 Yes
miR-23a (23) 1.44 Idh1 Isocitrate dehydrogenase 1 (NADP+), soluble �1.04 Yes Yes
miR-99a 2.31 Gatm L-Arginine-glycine amidinotransferase �1.24 Yes
miR-125a/-125b 2.53 Acads Acyl-CoA dehydrogenase (EC 1.3.99.3) short-chain �0.82 Yes
miR-125a/-125b 2.53 Agxt2 Beta-alanine-pyruvate aminotransferase �2.19 Yes
miR-125a/-125b 2.53 Cndp2 Nonspecific dipeptidase �1.14 Yes
miR-125a/-125b 2.53 Dpp4 Dipeptidyl peptidase 4 (EC 3.4.14.5) �1.44 Yes
miR-125a/-125b 2.53 Gss Glutathione synthase (EC 6.3.2.3) �0.86 Yes
miR-125a/-125b 2.53 Hspa5 Heat shock 70 kDa protein 5 �1.65 Yes (2)b

miR-125a/-125b 2.53 Mpst 3-Mercaptopyruvate sulfurtransferase (EC 2.8.1.2) �1.86 Yes
miR-125a/-125b 2.53 Acadm Acyl-CoA dehydrogenase (EC 1.3.99.3), medium-chain �0.71 Yes
miR-125a/-125b 2.53 Aldh2 Aldehyde dehydrogenase, mitochondrial (EC 1.2.1.3) �1.27 Yes
miR-200c/-200b 3.01 Acy1 Kidney aminoacylase 1 �1.58 Yes
miR-200c/-200b 3.01 Aldh9a1 4-Trimethylaminobutyraldehyde dehydrogenase �1.17 Yes (2)b

miR-200c/-200b 3.01 Cyb5 Cytochrome b5 �1.84 Yes
miR-200c/-200b 3.01 Got1 Aspartate transaminase (EC 2.6.1.1) �2.71 Yes
miR-200c/-200b 3.01 Lap3 Leucine aminopeptidase 3 �1.01 Yes

In TargetScan 3.1, searches for miR-34a, miR-30c, and miR-23a returned miR-34, miR-30-5p, and miR-23, respectively. miR-450 was not available in
PicTar.
aLog2(M/C), log2 ratio of medulla over cortex.
bYes (2) indicates that the target has two predicted binding sites for the microRNA.
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in maintaining the tissue identity or regulating physiological ac-
tivities in the two kidney regions.

The number of possible microRNA–target pairs identified in
the present study was large in the context of the current knowl-
edge of microRNA. However, they likely represent a small subset
of all microRNA–target pairs functioning in the kidney. Only a
fraction of a tissue proteome can be analyzed by the proteomic
techniques used in this study. It is likely that multiple mecha-
nisms are involved in regulating the expression level of a protein.
Differences in mRNA levels may offset the effect of a microRNA,
resulting in the lack of differential protein expression. Con-
versely, differential expression of a protein may be due to tran-
scriptional regulation or other mechanisms, not the action of
microRNA. Measurement of mRNA levels, however, would not
definitively distinguish transcriptional regulation from mi-
croRNA actions since microRNA could affect mRNA levels in
some cases (Bagga et al. 2005; Lim et al. 2005). In addition, mi-
croRNA–target pairs that are present similarly in the two kidney
regions would not have been identified in the present study. In
other words, a microRNA that is not differentially expressed be-
tween the two kidney regions could nonetheless be functionally
important in the kidney. Furthermore, microRNA may have in-
direct effects on protein expression. For instance, down-
regulation of a protein by a microRNA could lead to up-
regulation of other proteins that are influenced by the direct
target of the microRNA. It should also be acknowledged that
currently available predictions of microRNA–target pairs likely do
not include all possible microRNA–target pairs.

The present study established the first differential profile of
microRNA expression in the renal cortex and the renal medulla.
MicroRNA expression profiles in whole kidneys have been re-
ported previously (Liu et al. 2004; Thomson et al. 2004; Naraba
and Iwai 2005). The difference between microRNA profiles in the
cortex and the medulla was substantial, suggesting a significant

role for microRNA in renal physiology. It is interesting to note
that miR-192, which we found highly enriched in the cortex, was
recently reported to be possibly involved in glomerular injury in
diabetic mice (Kato et al. 2007). A complete set of the microRNA
microarray data is available in Supplemental Table 3.

The present study greatly expanded the known differential
proteome profile in the renal cortex and medulla. A number of
groups have performed comparative analysis of renal cortical and
medullary proteomes (Witzmann et al. 1998; Arthur et al. 2002).
The number of regionally enriched proteins identified in the
present study was several times more than previously reported.
This was made possible by recently available proteomic tech-
niques. Several proteins we identified were also found in previous
studies. Examples include enrichment of sorbitol dehydrogenase
(Sord), aldehyde dehydrogenase (Aldh2), alpha 2u globulin, and
isocitrate dehydrogenase (Idh1) in the cortex, and transferrin
(Tf), aldose reductase (Akr1b4), and albumin (Alb) in the me-
dulla. Some of the identified proteins might be from residual
plasma even though the kidneys were flushed with normal sa-
line. The use of the differential in-gel electrophoresis (DIGE)
technique also allowed us to detect small shifts in spot locations
and identify a number of proteins that might be modified differ-
ently in the two kidney regions. A notable absence in the iden-
tified proteins was transporters and signaling molecules, prob-
ably due to the limited ability of our proteomic techniques to
detect membrane or low-abundance proteins (Hoorn et al. 2005).

The cortex and the medulla each consist of a mix of ana-
tomical structures and cell types, making it difficult to predict the
functional significance of some of the identified proteins. None-
theless, the expanded proteome profile may provide insights into
the molecular basis of renal function and facilitate further studies
of renal physiology and disease. For example, several key anti-
oxidant proteins, including copper-zinc containing superoxide
dismutase (Sod1), catalase (Cat), glutathione synthase (Gss), and
glutathione peroxidase 3 (Gpx3), were expressed at higher levels
in the renal cortex than in the renal medulla. This expression
pattern might contribute to or reflect different redox states in the
two kidney regions (Gonzalez-Flecha et al. 1993), which might be
relevant to the regulation of arterial blood pressure (Taylor et al.
2006).

The present study points to several exciting directions for
future research. Each possible microRNA–target pair we identified
is a strong candidate for a major study to definitively confirm the
presence of specific microRNA–target interactions. It will be im-
portant to examine the functional significance of the identified
microRNA–target pairs and regionally enriched proteins in renal
physiology and disease. As more microRNA–target pairs are es-
tablished, we could further improve our ability to predict mi-
croRNA targets and better understand the fundamental biology
of microRNA.

Methods

Isolation of microRNA from rat renal cortical and medullary
tissues
The kidneys were harvested from four male Sprague-Dawley rats
weighing 250–300 g, the renal cortex and the renal medulla were
dissected, and total RNA was extracted as we described previously
(Liang et al. 2002, 2003; Liang and Pietrusz 2007). MicroRNAs
were enriched using YM-30 columns (nucleotide length cutoff 60
for single-stranded, and 50 for double-stranded), similar to a pre-

Figure 4. Analysis of reciprocal expression of microRNAs and compu-
tationally predicted targets. (A) Proportions of reciprocally expressed or
coexpressed microRNA and protein pairs, or pairs of randomly selected
microRNAs and differentially expressed proteins, that matched compu-
tational prediction using the indicated algorithm are shown. Details of
the calculation are described in Methods. (*) P < 0.05 (Z-test). (B) Anti-
miR-450 and pre-miR-450 (50 nM) significantly increased and decreased,
respectively, the protein expression level of HNRPK in HK-2 cells. n = 4; (*)
P < 0.05 vs. control.
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viously reported method (O’Donnell et al. 2005). The enrich-
ment procedure removed 99% of 5S rRNA according to real-time
PCR analysis.

Construction and hybridization of microRNA microarray
A microRNA probe set representing 377 microRNAs and several
controls (Ambion) were resuspended in the Schott Spot printing
solution (Schott) to obtain a final concentration of ∼25 µM. The
amine-modified probes were printed in triplicate on Nexterion E
epoxy-coated slides (Schott) using a GMS 417 arrayer (Af-
fymetrix). The printing procedures were similar to those that we
used to construct cDNA microarrays (Liang et al. 2002, 2003).
Unused amine binding sites on the slide were blocked by im-
mersing the microarray in a solution containing 1 M Tris (pH 9),
50 mM ethanolamine, and 0.1% sodium dodecyl sulfate (SDS), at
50°C for 20 min. MicroRNA samples (n = 4) were fluorescently
labeled through a poly(A) extension reaction using the mirVana
microRNA labeling kit (Ambion). Labeled microRNAs were puri-
fied and hybridized with microRNA microarrays for 16 h at 42°C.
Hybridized microarrays were washed and scanned using a Scan-
Array confocal scanner.

Analysis of microRNA microarray data
MicroRNA microarray data were analyzed using algorithms simi-
lar to those that we previously developed for cDNA microarrays
(Liang et al. 2002, 2003; Knoll et al. 2005). Briefly, a microRNA
was considered detectable on an array if its fluorescent intensity
was significantly above negative controls. Detectable microRNAs
were considered “low quality” and discarded if the fluorescent
intensity was not distinguishable from the spot’s own local back-
ground. Fluorescent intensities from replicate spots within an
array were averaged following background subtraction, and nor-
malized globally to a total intensity of 100,000 units for each
array. A microRNA was considered detectable in a kidney region
if the mean of its background-subtracted, normalized fluorescent
intensity across all samples was significant above 0 (P < 0.05)
according to a one-tailed, unpaired t-test. A microRNA was con-
sidered differentially expressed between the renal cortex and the
renal medulla if the P-value of a two-tailed, unpaired t-test was
<0.02 and the difference in fluorescent intensity was >253 ad-
justed units. The threshold of 253 adjusted units corresponded to
two times the average standard deviation of the adjusted inten-
sities of all microRNAs.

Measurement of individual microRNAs using modified
real-time PCR
Expression levels of individual microRNAs were quantified using
modified real-time PCR with either Taqman (Applied Biosystems)
or Sybr Green (Ambion) chemistry. The method was similar to
conventional real-time PCR (Knoll et al. 2005; Liang and Pietrusz
2007), with modifications that allowed detection of the short,
mature microRNAs. To avoid any bias introduced during the mi-
croRNA enrichment procedure, total RNA samples were used in
these analyses, and 5S rRNA was used as an internal normalizer.
In addition, two samples of each kidney region that were not
used in the microarray analysis were included in the modified
real-time PCR analysis (n = 6).

Preparation and fluorescent labeling of tissue proteins
Kidneys of male Sprague-Dawley rats (n = 4) weighing 250–300 g
were flushed in situ with cold normal saline. Renal cortex and
renal medulla tissue was collected as described above. A piece of
renal cortex or medulla were weighed and suspended 1:8 (weight:
volume) in a lysis buffer containing 8 M urea, 4% CHAPS, 2%

Pharmalyte 3–10, 30 mM Tris, 10 µL/mL protease inhibitor mix
(GE Healthcare), 10 µL/mL nuclease mix (GE Healthcare), and 5
mM MgAC. pH was adjusted with HCl to 8.5 on ice. Glass tubes
and pestles were cooled to �20°C before use. Tissue samples were
homogenized on ice by 200 strokes with the motor set at 30%.
The homogenate was sequentially centrifuged at 500g for 5 min,
5000g for 5 min, and 18,000g for 50 min. The supernatant was
collected and cleaned using a Bio-Rad 2D cleanup kit. Protein
concentrations were measured using Bio-Rad RC DC Protein Assay.

For DIGE analysis, 50 µg of each sample were mixed with 1
µl (400 pmol) of CyDye DIGE Fluor minimal dye (GE Healthcare)
working solution. For each pair of cortex and medulla samples,
Cy3 was used for one sample and Cy5 for the other. The two
fluorescent dyes were swapped for a total of four pairs of samples.
After a 30-min incubation period on ice in the dark, 1µl of 10 mM
lysine was added to the samples, which were then mixed, spun
briefly in a microcentrifuge, and left on ice in the dark for 10
min. For internal reference, a pooled sample was generated by
combining 50 µg of each protein sample, and this pool was la-
beled with a third fluorescent dye, Cy2.

Two-dimensional gel electrophoresis and fluorescent scanning
Bio-Rad Protean IEF Cell was used for the first dimension isoelec-
tric focusing. The 24-cm, pH 3–10 nonlinear (NL) IPG dry strips,
DeStreak Rehydration Solution, and pH 3–10 NL IPG buffer were
from GE Healthcare. A pair of cortex and medulla samples (la-
beled with Cy3 and Cy5), together with the internal reference
(labeled with Cy2), were pooled and mixed with 4.5 µL pH 3–10
NL IPG buffer and DeStreak Rehydration Solution (GE Health-
care) to a final volume of 450 µL containing a total of 150 µg of
protein. IPG dry strips were rehydrated at 20°C, 50V for 12 h,
then focused at 100V for 1 h, 500V for 2 h, 1000V for 1 h,
followed by gradient increases of voltage to 10,000 V over 3 h,
then 10,000 V for 6 or 7 h until the Vh reached 80,000. The dry
strips were stored at �80°C after isoelectric focusing.

For the second dimension electrophoresis, the IPG dry strips
were equilibrated first for 15 min in SDS equilibration buffer
containing 0.5% DTT, then 15 min in the same buffer with 4.5%
(w/v) iodoacetamide, and then loaded onto 12.5% vertical SDS-
PAGE slab gels (Jule Inc.). SDS-PAGE was carried out on Ettan
DALTtwelve electrophoresis systems (GE Healthcare) with 5
W/gel for the first 30 min, then 10 W/gel for 7 h. The gels were
kept from light during electrophoresis and scanned immediately
after electrophoresis.

The fluorescent signal was acquired with a Typhoon Vari-
able Mode Imager (GE Healthcare). All gels were scanned using
the same laser power and photomultiplier tube parameters.

Differential expression and protein identification
DeCyder 2D software (version 6.5) was used for protein spot de-
tection, differential in-gel analysis, and biological variation
analysis. Default parameters were used with the exception that
the anticipated spot number was set at 3000. Criteria for differ-
ential expression were a P-value of <0.05, difference of >1.5-fold,
and the appearance of the spot in at least three of the four gels.

Preparative gels were run for cortex and medulla samples
separately using the same isoelectric focusing and SDS-PAGE con-
ditions as analytical gels, except the sample loading was in-
creased to 500 µg of protein. The gels were fixed in 5% acetic
acid, 5% methanol solution for 30 min after the electrophoresis,
stained with 0.02% Coomassie Blue R350 (GE Healthcare) over-
night, and destained in 5% acetic acid, 5% methanol solution for
12 h. The gels were scanned with a Typhoon Variable Mode Im-
ager. A pick list was obtained by matching the preparative gels
with the analytical gels using DeCyder software.

MicroRNA–target pairs in the rat kidney

Genome Research 409
www.genome.org



Protein spots were picked and digested by an Ettan Spot
Handling Workstation (GE Healthcare). The peptide mass spectra
were acquired using a Voyager DE PRO mass spectrometer (Ap-
plied Biosystems). The spectra were analyzed using Voyager Data
Explore (version 4.0.0.0) with the following parameters: correla-
tion factor 0.7 for noise filtering, trypsin autolysis peaks 842.52
and 2211.1046 for calibration, and H/peptides for peak deisotop-
ing. The resulting peak list was used in Mascot searches of the
MSDB database with the following parameters: up to one missed
cleavage allowed, trypsin digest, carbamidomethyl (C) fixed
modification, oxidation (M) as the variable modification, peptide
tolerance at 0.05, and monoisotopic. The score thresholds for
acceptance were set to 63 for the rodent database or 53 for the rat
database.

Western blot
Protein abundance was analyzed using Western blot as we de-
scribed previously (Liang and Pietrusz 2007). Coomassie blue
staining was used to normalize the abundance of specific pro-
teins. Antibodies for copper-zinc containing superoxide dismu-
tase (1:200), fumarase (1:500), and heterogeneous nuclear ribo-
nucleoprotein K (1:5,000) were from Santa Cruz Biotechnology.
The antibody for catalase (1:2,000) was from Sigma.

Bioinformatic analysis of microRNA-target pairs
Three algorithms were used to computationally predict targets of
differentially expressed microRNAs (Vinther et al. 2006). They
included miRanda (http://microrna.sanger.ac.uk/targets/v4/),
PicTar (http://pictar.bio.nyu.edu/), and TargetScan 3.1 (http://
www.targetscan.org/). The computationally predicted micro-
RNA–target pairs were downloaded to a local database. Standard
rat or human gene symbols of differentially expressed proteins
were used to search the downloaded database. A microRNA–
target pair was selected if the microRNA was enriched and the
abundance of the target protein was lower in one kidney region
compared with the other. Redundancies in which a binding site
was listed more than once because of multiple Ensembl IDs were
removed.

The proportion of reciprocally expressed pairs of microRNAs
and proteins that were computationally predicted to be micro-
RNA–target pairs (Pr) was calculated as Pr = nr/N, where nr was the
number of reciprocally expressed pairs of microRNAs and pro-
teins that were predicted to be microRNA–target pairs, and N was
the total number of reciprocally expressed microRNA-protein
pairs. Similarly, the proportion of coexpressed microRNAs and
proteins that were computationally predicted to be microRNA–
target pairs (Pc) was calculated. Coexpression was defined as en-
richment of both microRNA and protein in the same kidney re-
gion. In addition, eight microRNAs were randomly selected from
the 377 microRNAs on the array. Computationally predicted tar-
gets of the randomly selected microRNAs were retrieved. The
proportion of random microRNA-enriched protein pairs that
were computationally predicted to be microRNA–target pairs
(Pm) was calculated. A Z-test was performed to examine if the
chance for reciprocal expression (Pr) to match computationally
predicted microRNA–target pairs was significantly different than
that of coexpression (Pc) or random microRNAs (Pm). Chi-square
test or Fisher exact test (Vinther et al. 2006) yielded similar results
as Z-test.

Cell culture and transfection
HK-2, a human kidney epithelial cell line, was obtained from and
cultured as suggested by ATCC (Manassas, VA). Pre-miR and anti-
miR reagents were from Ambion. Transfection of HK-2 cells with

anti-miR or pre-miR (50 nM) was performed using Oligofect-
amine following the procedures that we previously used for small
interfering RNA (Liang and Pietrusz 2007). Cell homogenate was
prepared for Western blot analysis 48 h after transfection.

Statistics
Data were analyzed using student t-test except in those special
cases described above. P < 0.05 was considered significant. Data
are shown as mean � SEM.
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