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Summary 

The presence of microRNA species in plant phloem sap suggests potential signaling roles by long-distance 

regulation of gene expression. Proof for such a role for a phloem-mobile microRNA is lacking. Here we show 

that phosphate (Pi) starvation-induced microRNA399 (miR399) is present in the phloem sap of two diverse 

plant species, rapeseed and pumpkin, and levels are strongly and specifically increased in phloem sap during Pi 

deprivation. By performing micro-grafting experiments using Arabidopsis, we further show that chimeric 

plants constitutively over-expressing miR399 in the shoot accumulate mature miR399 species to very high 

levels in their wild-type roots, while corresponding primary transcripts are virtually absent in roots, 

demonstrating shoot-to-root transport. The chimeric plants exhibit (i) down-regulation of the miR399 target 

transcript [PH02\, which encodes a critical component for maintenance of Pi homeostasis, in the wild-type 

root, and (ii) Pi accumulation in the shoot, which is the phenotype of pho2 mutants, miR399 over-ex pressors or 

chimeric plants with a genetic knock-out of PH02 in the root. Hence the transported miR399 molecules retain 

biological activity. This is a demonstration of systemic control of a biological process, i.e. maintenance of plant 

Pi homeostasis, by a phloem-mobile microRNA. 
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Introduction 

Inorganic phosphate (Pi) is one of the most limiting mineral 

nutrients for plant growth (Bieleski, 1973; Poirier and Bucher, 

2002; Marschner, 1995). The levels in the soil are often low, 

much of the Pi is covalently or non-covalently bound, and 

mobility is restricted. Strategies of plants to cope with and to 

improve Pi acquisition during Pi limitation include increas-

ing the root/shoot ratio (Lynch, 1995), alterations in root 

architecture (Lopez-Bucio et at., 2002; Williamson etal., 

2001), production of lateral roots into Pi-rich patches in the 

soil (Robinson, 1994), proliferation of long root hairs (Bates 

and Lynch, 2001), increasing high-affinity Pi uptake capaci-

ties (Mudge etal, 2002; Smith etal, 2003), establishing 

symbiotic interactions with mycorrhizal fungi (Harrison, 

1999), production and root secretion of organic acids to 

solubilize Pi in the soil and apoplast (Raghothama, 1999), 

and induction of phosphatases (del Pozo et al., 1999; Li at ai., 

2002) and RNases (Bariola et ai, 1994) that mobile organ-

ically bound phosphate inside and outside the plant. Chan-

ges in metabolism allow re-mobilization of Pi in the plant, 

including a general decrease in the levels of P-containing 

intermediates and co-factors such as nucleotides (Zrenner 

ef ai., 2006), or replacement of phospholipids by sulfo- and 

galactolipids (Dormann and Benning, 2002; Hartel etal, 

2000). 

Correct allocation of the available Pi in the plant, i.e. 

maintenance of Pi homeostasis by supplying growing 

organs and tissues such as young leaves and inflorescences 

with the spare resources taken up by roots, is also important 

for plant productivity and survival during Pi limitation. The 

existence of mutants with altered levels and distribution of 

Pi [phol, pho2 and pup 1; see Delhaize and Randall, 1995; 

Poirier ef al, 1991; Trull and Deikman, 1998) suggests that 

plants regulate the long-distance transport and allocation of 

Pi between shoot and root. PH01 encodes the founder 

member of a novel transporter family (Hamburger ef at., 



2002) and probably is involved in Pi transport into the xylem 

(Wang ef al., 2004), and PH02 encodes an E2 ubiquitin-

conjugating enzyme (Aung ef at, 2006; Bari ef al., 2006). The 

PH02 E2 conjugase is a major component for the mainte-

nance of Pi homeostasis in Arabidopsis. pho2 mutants 

grown in Pi-replete conditions display continuous induction 

of a subset of phosphate starvation-induced (PSI> genes, 

including some encoding phosphate transporters (Aung 

ef at, 2006; Ban ef at., 2006), and accumulate Pi to high 

levels (three- to fivefold increased) in shoots but not roots 

(Bari ef at., 2006; Delhaize and Randall, 1995). 

PH02 expression is post-transcriptionally regulated by 

microRNA399 (miR399}. miR399 acts through transcript 

cleavage (Allen ef at., 2005) and probably also translation a I 

repression (Bari ef al, 2006). Consistently, over-expression 

of miR399 leads to high shoot Pi levels, thus phenocopying 

pho2 mutants (Aung ef al., 2006; Bari ef al, 2006; Fujii ef al, 

2005). The PH02 gene harbors five binding sites comple-

mentary to miR399 in its 5' UTR approximately 200-400 

nucleotides upstream of the start codon, and miR399-

dependent PH02transcript cleavage at these sites has been 

experimentally verified (Allen ef at, 2005). Six miR399 

species (a-f} that arise from five primary transcripts (PTs} 

have been identified in Arabidopsis (http://microma.sanger. 

ac.uk). miR399d is by far the most prominent one during Pi 

limitation, based on the abundance of its primary transcript 

(Bari ef al., 2006}. The levels of mature miR399 and the five 

miR399 PTs are highly and specifically increased during Pi 

limitation (Bari et al., 2006; Fujii etal., 2005), suggesting 

inhibition of PH02 under these conditions. Consistently, 

removal of the miR399 binding sites results in high and 

stable PH02transcript levels in Pi-limited plants (Fujii ef at., 

2005). Micrografting experiments revealed that a pho2 

mutant root genotype is sufficient to result in shoot Pi 

accumulation (Bari ef at., 2006). On the other hand, MIR399 

genes, and especially MIR399d, display particularly strong 

induction in shoots (as compared to roots} during Pi 

limitation, with the shoot miR399d PT level exceeding the 

root PH02 transcript level (Bari ef al., 2006). This led us to 

hypothesize that miR399 itself might act as a long-distance 

Pi starvation signal in Arabidopsis. 

Long-distance signaling in plants is known to be impor-

tant for the regulation of several processes including leaf 

development, flowering, pathogen defense and resource 

allocation (Jaeger and Wigge, 2007; Khamis etal., 1990; 

Palauqui ef at., 1997; Voinnet etal., 1998; for review, see 

Lough and Lucas, 2006}. The phloem translocation stream of 

higher plants contains a multitude of small molecules and 

macromolecules, including proteins, mRNA and small RNAs 

(Lough and Lucas, 2006; Ruiz-Medranoef af., 2001}. Several 

microRNAs have also been detected in the phloem sap of 

pumpkin (Yoo ef at, 2004} and oilseed rape (Buhtz ef al.}. 

However, unlike siRNA or mRNA species (Haywood ef at., 

2005; Ruiz-Medrano etal., 1999; Voinnet ef at, 1998; Yoo 

ef at, 2004}, microRNAs have not been functionally impli-

cated in plant long-distance signaling. Here we present data 

that identify miR399 as a phloem-mobile long-distance 

signal for regulation of Pi homeostasis in Arabidopsis. 

Results and discussion 

Presence and Pi-specific induction ofmiR399 in phloem sap 

To demonstrate the presence of miR399 and its Pi-status-

dependent changes in phloem sap, we grew rapeseed 

iBrassica napus] and pumpkin (Cucurbita maxima) plants 

under abundant and limiting Pi conditions, and collected 

phloem sap for the determination of microRNA levels. Doing 

this type of experiment with Arabidopsis is impracticable 

because of (i) major difficulties associated with the collec-

tion of sufficiently large quantities of phloem sap from this 

small plant species, (ii) problems with RNase contamination 

and/or wounding-inducible RNase activity (Kock ef al., 2004; 

LeBrasseur ef at., 2002) in phloem sap exudates collected by 

decapitation or incision methods, making isolation and 

quantification of RNA impossible (A.B. and J.K., unpub-

lished observations), and (iii} contamination of the sap with 

content (e.g. RNA) from other cells. Rapeseed plants are a 

useful alternative to Arabidopsis due to the close genetic 

relatedness of the two species, as well as their similar 

phloem sap composition, as judged by their protein profiles 

(J.K., unpublished data). In addition, phloem sap exudation 

from incised rapeseed inflorescence stems is quite strong, 

thus enabling rapid sampling and minimization of problems 

involving contaminating/induced RNase activity. 

Mature miR399 was detected by quantitative real-time 

PCR and RNA gel blotting in rapeseed and pumpkin phloem 

sap (Figure 1), but miR399 precursors or primary transcripts 

were not detectable (results not shown). Mature miR399 

levels increased very strongly in the phloem sap of Pi-limited 

plants (a difference of 7-10 quantitative real-time PCR Cj 

value units, equivalent to a >100-fold change) (Fig-

ure 1a-c,e}. The increase was even stronger and the abun-

dance higher in phloem sap than in leaves, for example 

(Figure 1c), suggesting efficient transport of miR399 into the 

sap and/or strong induction of miR399 expression in phloem 

companion cells. The increase/accumulation of miR399 in 

phloem sap or other plant organs such as roots was also 

specific, as levels for other microRNA species, i.e. miR164 

(Figure 1d) and miR172 (Figure 1f), did not change during Pi 

limitation. These results demonstrate that miR399 is present 

and highly abundant in the phloem, and indicate that the 

increase during Pi limitation is not related to decreased 

phloem mass flow. They also underscore the conserved Pi-

responsiveness of miR399 in distantly related plant species 

(Bari ef al., 2006; Chiou ef at, 2006}. 

We further investigated the Pi specificity of this response 

by investigating miR399 levels in phloem sap of plants 

http://microrna.sanger
http://ac.uk


Figure 1. Mature miR399 levels in phloem sap 

change with phosphate status, (a) Levels of 

mature miR399 in phloem saps of Brassica napus 

and Curcurbita maxima grown under full nutrient 

(FN, black bars) and Pi-limited (white bars) 

conditions. Data (mean ± SE, n = 3) depict 

40 - CT values, i.e. the cycle number when PCR 

ends (the threshold cycle number of the ampli-

con). Note the logarithmic scale (log(1 + E), where 

E is the PCR efficiency) of the /axis. miR399 

cDNA produced from 10 ng total RNA was 

included in each assay, (b) Pi levels in leaves of 

FN-grown and Pi-limited Brassica napus and 

Curcurbita maxima plants. Data are the mean 

SE (n = 4 or 5). (c, d) Levels of mature miR399 

and mature miR164 in phloem sap, roots, leaves 

and stems of Brassica napus grown under full 

nutrient (black bars) and Pi-limited (white bars) 

conditions, as determined by quantitative real-

time PCR. Data are depicted as in (a). miR399 or 

miR164 cDNA produced from 20 ng total RNA 

was included in each assay. Data are the 

mean ± standard deviation of two biological 

replicates (with two technical replicates for each), 

each pooled from 4-10 plants in independent 

experiments, (e-g) RNA gel blot signals for 

miR399 (e, g) and miR172 (f) in phloem-sap of 

Brassica napus plants grown with 0.5 ITIM (+) or 

without (-) phosphate (e,f) or sulfate (g). An 

aliquot (10 \xg) of total RNA isolated from pooled 

samples (n = 4-10) was loaded in each lane. 

5.8S rRNA is shown as a loading control. 
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starved of sulfate. RNA gel blotting showed that mature 

miR399 abundance was unaffected by sulfate deprivation in 

phloem sap (Figure 1g) and leaves and roots (results not 

shown) of rapeseed plants. This is in accordance with 

previous results showing that miR399 primary transcripts 

are unaffected by limitation of sulfate, nitrogen or carbohy-

drates (Bari et al.f 2006). It was also demonstrated that 

mature miR399 is unaffected by nitrogen (Bari et ai, 2006) or 

potassium limitation (Fujii et ai, 2005). Taken together, 

these results show that the responsiveness of miR399 and 

its primary transcripts is Pi-specific in all plant organs/ 

samples, including phloem sap. 

Micrografting reveals shoot-to-root transport and 

biological activity of shoot-derived miR399 in roots 

We next investigated whether miR399 produced in the shoot 

can be detected and consequently alter expression of its 

target gene (PH02) in the root. For this purpose, we used 

micro-grafting (Turnbull et ai, 2002) to generate chimeric 

Arabidopsis plants that over-express miR399 in either 

shoots or roots. Six miR399 species (a-f) that arise from five 

primary transcripts have been identified in Arabidopsis. 

miR399d is the most prominent one during Pi limitation, 

based on the abundance of its primary transcript (Bari et ai, 

2006) (Figures 2 and 3). Transgenic plants strongly over-

expressing miR399d(OX) under control of the35S promoter 

were previously shown to have approximately 10-fold lower 

levels of the target PH02 transcript (Bari et ai, 2006), and to 

accumulate Pi in leaves to levels as high as in pho2 mutants 

or in micro-grafted chimeric plants with a pho2 root and a 

wild-type (WT) shoot scion (Bari et ai, 2006). 

As expected, the primary transcripts of miR399d (miR399d 

PT) and mature miR399 were strongly increased (threshold 

fluorescence was reached 12-13 cycles earlier during quan-

titative real-time PCR, equivalent to a >1000-fold increase) in 

root and shoot material from OX plants compared to the 

same material from WT plants (Figures 2 and 3 and 

Table S1). The levels of miR399d PT and mature miR399 in 

OX shoots matched the high levels found in Pi-starved WT 

shoots (Figure 2d,f), but the levels of the other miR399 

primary transcripts (a, b, c, e/f) remained at barely detectable 

or undetectable levels, as in Pi-replete WT (see Table S1; 

note that in Figures 2 and 3 values for 40-deltaCT of less than 

approximately 30 correspond to transcript copy numbers of 

far less than 1 per cell in our quantitative real-time PCR 

system (Czechowski et ai, 2004; also see Experimental 

Procedures)). In Figures 2 and 3, values for 40 - ACT of less 
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Figure 2. Quantitative real-time PCR expression levels of miR399 and PH02\n 

shoots. Levels of (a-e) the five miR399 primary transcripts (PT), (f) mature 

miR399, and (g, h) PH02\n shoots of WT (black bars), miR399 OX (white bars), 

and micrografted chimeric plants (gray bars). Shoot (S) and root (R) 

genotypes of the chimeric plants are depicted below the graphs. Plants were 

grown with Pi (+) or were Pi-starved (-). Expression levels are given on a 

logarithmic scale expressed as 40-ACT, where ACT is the difference in 

quantitative real-time PCR threshold cycle number (CT value) between the 

studied gene and the reference gene UBQ10{At4g05320); 40 therefore equals 

the expression level of UBQW (the number 40 was chosen because the PCR 

run stops after 40 cycles). The fold difference in expression is 2AACT when the 

PCR efficiency is 2 (e.g. an ordinate value of 30 represents 1000-fold lower 

expression than a value of 40). The results are the mean ± standard deviation 

for two biological replicates each pooled from four or five shoots in 

independent experiments. 

than approximately 30 correspond to transcript copy num-

bers of much less than 1 per cell in our quantitative real-time 

PCR system (see Experimental procedures). The level of 

PH02 transcript, measured using two quantitative real-time 

PCR primer pairs amplifying near the 3' and 5' ends of the 

PH02 coding sequence (CDS), was approximately 10-fold 

decreased in OX plants (equivalentto 3 or 4 quantitative real-

time PCR cycles) (Figure 2g,h and Table S1), and the leaf Pi 

level was four- to fivefold increased (Figure 4) as previously 

reported (Bari et ai, 2006). 

When shoot material from chimeras with an OX shoot and 

WT root (OX/WT) was investigated, it showed the same 

behavior as OX shoots of non-chimeric plants with respect 

UBQW 
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Figure 3. Quantitative real-time PCR expression levels of miR399 and PH02\r\ 

roots. Levels of (a-e) the five miR399 primary transcripts (PT), (f) mature 

miR399, and (g,h) PH02\n shoots of WT (black bars), miR399 OX (white bars), 

and micrografted chimeric plants (gray bars). Shoot (S) and root (R) 

genotypes of the chimeric plants are depicted below the graphs. Plants were 

grown with Pi (+) or were Pi-starved (-). Expression levels are given as 

described in the legend to Figure 2. The results in (a-e), (g) and (h) are the 

mean ± standard deviation of two biological replicates pooled from 3-6 

seedling roots in independent experiments, and the results in (f) are the 

mean ± standard deviation of three biological replicates pooled from 2-6 

roots in independent experiments. Two technical replicates were measured 

for each biological replicate. 

to the levels of miR399 PTs, mature miR399 and PH02 

transcript (Figure 2). The root material of the same OX/WT 

chimeras exhibited WT-like miR399 PT levels (Figure 3a-e 

and Table S1), which were all below the expression level of 

some of the rarest transcription factor transcripts known 

(e.g. WUSCHEL, At2g17950), equivalentto an abundance of 

approximately 1 copy per 100 cells or less for each miR399 

PT (see Czechowski et ai, 2004). In contrast, the same WT 

roots had very high, OX-like, mature miR399 levels (Fig-

ure 3f), equivalent to a copy number of > 500 per cell, which 

is similar to that of one of the most abundant plant 

transcripts, UBQW (see Czechowski et ai, 2005) and OX-

like low PH02 transcript level (Figure 3g,h). The shoot 

material had high Pi levels in the leaves, similar to those of 

genotypes in which PH02 is inhibited in roots (Figure 4). We 

have previously shown by micro-grafting of pho2 and WT 
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Figure 4. Leaf phosphate levels in chimeric plants. Phosphate levels in leaves 

of 5-week-old, hydroponically grown WT (black bars), miR399 OX (white 

bars), pho2 mutant (gray bars) and reciprocally grafted chimeras (hatched 

bars). Shoot (S) and root (R) genotypes of the chimeric plants are depicted 

below the graph. Data are mean values ± SE {n = 4 or 5). 

that decreased PH02 in the shoot alone does not lead to 

increased Pi in the shoot (Bari et ai, 2006). 

A theoretical explanation for the virtually absent miR399 

PTs and the simultaneous massive accumulation of mature 

miR399 in roots of OX/WT chimeras could be highly efficient 

cleavage of miR399 PTs into shorter fragments that escape 

oligo(dT)-primed reverse transcription and subsequent 

quantitative real-time PCR detection. Although there is no 

indication of highly efficient cleavage in roots of OX plants 

or WT/OX chimeras (i.e. the level of miR399 PTs mirrors the 

mature miR399 level), we analyzed whether there is an 

increase of corresponding fragments by reverse-trans-

cribing total RNA with a primer binding to the 3' region of 

the miR399d precursor sequence (Figure 5) (see Experimen-

tal procedures). However, there was no evidence for accu-

mulation of such fragments in the roots of the OX/WT 

chimeras, as the level was as low as in Pi-replete WT. 

Similarly, the miR399 complementary duplex strand 

(miR399*) could not be detected in roots of OX/WT chimeras 

or roots of Pi-replete WT, but was clearly present in Pi-

limited WT roots and miR399d PT over-expresser roots 

(results not shown). These results further suggest that the 

MIR399 genes are truly inactive in the roots of the OX/WT 

chimeras. The explanation for the massive accumulation of 

mature miR399 found in roots of OX/WT chimeras therefore 

must be transport of miR399 molecules from the OX scion to 

the WT root, where they exert their biological function, i.e. 

suppress PH02. Co-localization of miR399 and the PH02 

target transcript in the root vascular cylinder has been 

reported previously (Aung et ai, 2006), and further supports 

their interaction in vivo. The inactivity of the MIR399 genes 

in the roots of OX/WT chimeras also excludes the possibility 

that another phloem-mobile molecular species (e.g. a 

hormone or metabolite) acts as an intermediate signal to 

trigger miR399 synthesis. 

Figure 5. Absence of miR399d precursor fragments in roots of OX/WT 

chimeras, (a) Depiction of miR399d primary transcript structure. miR399 is 

shown in black, the miR399 precursor in gray, and the residual parts of the 

known transcript in white. The hatched part towards the 3' end is of 

unknown size. RT1 is the oligo(dT) primer, RT2 is the reverse transcription 

primer used for cDNA synthesis for the quantitative real-time PCR mea-

surements shown in (b) and (c), together with quantitative real-time PCR 

primers Fwd and Rev. (b, c) Expression levels of the quantitative real-time 

PCR amplicon in (b) shoots and (c) roots. For additional information, see 

legends to Figures 2 and 3. 

A situation similar to that in the OX/WT chimera was also 

observed in Pi-deprived WT plants. During Pi starvation, 

levels of the miR399 PT rise in WT roots, but only to levels 

that are approximately 1% of the level of mature miR399 

(Figure 3 and Figure S1a), while miR399 PT levels in WT 

shoots equal or exceed the mature miR399 level (Figure 2 

and Figure S1a). This result indicates that miR399 phloem 

transport is relevant in the normal biological situation. In 

addition, given the relatively long half-life time of mature 

miR399 (approximately 12 h, Figure S1b) (Bari et ai, 2006), 

we estimated that phloem transport rates are sufficiently 

high to achieve and maintain very high (i.e. PHO-inhibitory) 

levels of mature miR399 in roots that do not express miR399 

PTs within a physiological response time of 2-3 h (see 

Appendix S1). In summary, Pi deprivation in the shoot can 

be rapidly signaled to the roots through miR399. Subse-

quent inhibition of PH02 by miR399 in the root will lead to 

increased Pi uptake and transport to the shoot (Aung et ai, 

2006; Bari et ai, 2006; Delhaize and Randall, 1995). This 

elegant mechanism is capable of maintaining shoot 

Pi homeostasis and optimizing shoot growth during 

Pi limitation. 

No evidence for root-to-shoot transport ofmiR399 

Reciprocal chimeras (WT/OX) that over-express miR399d PT 

and mature miR399 in roots were also investigated. The root 

material (Figure 3) resembled that of normal OX plants, 

while the shoot material (Figure 2) resembled WT material, 

with low miR399d PT and low mature miR399. This indicates 

that root-to-shoot transport of miR399, which would occur 

via the xylem, does not take place or occurs to a negligible 



extent. Unlike water or ions, the transport of larger mole-

cules, including miR399, is not circulatory between shoot 

and root (Lough and Lucas, 2006). Accordingly, miR399 was 

not detectable in xylem sap from oilseed rape plants grown 

under normal or phosphate-deficient conditions (Buhtz 

et at., in press). The level of PH02 transcript in the shoots of 

WT/OX chimeras was high, resembling Pi-replete WT shoots 

(Figure 2g,h). Leaf Pi levels were also high (Figure 4}, 

resembling genotypes in which the level of PH02 transcript 

is low in roots (Ban ef al., 2006). 

Taken together, these results pinpoint the mature miR399 

as a phloem-mobile molecule that increases in concentra-

tion in phloem sap during Pi limitation, and that can be 

transported between plant organs and exert its biological 

role at its destination. Hence, miR399 fulfills the criteria for a 

long-distance signaling molecule. The existence of multiple 

microRNA species in phloem sap of diverse plant species 

(Buhtz et at., in press; Yoo et at., 2004) indicates that this 

might only be one example of systemic control of a 

biological process by a microRNA. 

Despite the demonstration that miR399 is transported in 

the phloem conduit, and thereby plays a central role in the 

maintenance of whole-plant Pi homeostasis, several ques-

tions remain to be addressed with respect to the transport 

mechanism. These include the mechanism and proteins 

required for miR399 entry into and exit from the sieve tubes, 

and the requirement and nature of RNA binding proteins to 

allow miR399 phloem transport, such as the 27 kDa phloem 

small RNA binding protein CmPSRPI (Yoo ef al., 2004} orthe 

16 kDa phloem protein 16 (CmPP16} (Xoconostle-Cazares 

ef at., 1999) in Cucurbita maxima. With respect to transloca-

tion in the phloem, the current data indicate that miR399, as 

already suggested for the whole miRNA population (Yoo 

ef at., 2004), travels as a single-stranded molecule, as, in 

contrast to the miR399 sense strand, the level of the miR399* 

strand does not show any increase under phosphate 

starvation (Buhtz et at., in press}. miR399 is efficiently 

translocated from Pi-replete OX shoots to Pi-replete WT 

roots. This suggests that the components of miR399 phloem 

uptake, translocation and exit are either constitutively pres-

ent or induced during Pi limitation in a miR399-dependent 

manner. 

Long-distance signaling in biological systems was put in 

place when multi-cellular organisms evolved. In this regard, 

it is interesting to note that miR399 and its target PH02 gene 

are found in higher multi-cellular plants only, including rice, 

poplar and Medicago, but not in single-celled algae (Bari 

et at., 2006). The Pi-dependence of miR399 expression is 

strongly conserved between dicots and monocots, as is the 

target gene with respect to gene structure, encoded protein 

sequence, and the number and positions of miR399 

binding sites in its 5' UTR (Bari ef at., 2006). This suggests 

co-evolution and conservation of the molecular components 

required for Pi homeostasis in higher multi-cellular plants. 

Long-distance transport of miR399 further cements this 

view. 

Experimental procedures 

Growth of rapeseed and pumpkin, and phloem sap sampling 

Rapeseed (Brassica napus cv. Drakkar) and pumpkin (Cucurbita 

maxima) plants were grown in 18 cm pots containing a low-Pi soil 

mix in a phytotron at 25°C <day)/20°C (night}, with a 16 h light period 

at an intensity of 550 nE. Plants were divided into two sets; one set 

was supplied with a full nutrient solution containing sufficient 

(3 mrui) Pi, and the other one was supplied with the same nutrient 

solution free of Pi. Rapeseed plants were grown until flowering (7-

8 weeks! and phloem sap was then collected by incising inflores-

cence stems (Giavalisco et at., 2006). Phloem sap from pumpkin 

plants was collected by stem incision 3 weeks after germination. 

After discarding the first droplets, the exuded phloem sap was 

collected into four volumes of ice-cold Trizol reagent (Inv'rtrogen, 

htt p://www. i n vit roge n. com/}. 

Hydroponically grown rapeseed plants were germinated on filler 

paper for 1 week before transferring them to a hydroponics system 

containing nutrient medium (Buhtz et at., in press) for 7-8 weeks. 

Nutrient solutions were changed after 3 weeks, and subsequently 

renewed once a week. Phosphate and sulfur starvation were 

initiated after 3 weeks by changing to medium containing no 

phosphate or sulfur, respectively, and phloem sap was collected 

from inflorescence stems as described above. 

Micrografting of Arabidopsis seedlings 

Micrografting of 6-day-old seedlings grown on sterile vertical agar 

plates was performed as described previously (Turnbull et al., 

2002). Seeds of the miR399d over-expressers, wild-type (ecotype 

Col-0>and pho2 mutant were surface-sterilized, and stratified at 4°C 

for 3 days. The seed were then laid onto sterile half-strength MS 

agar (0.7%} plates. The plates were kept vertically in constant light 

(approximately 120 (iE>at20°Cfor3 days in an Arabidopsis growth 

chamber (Percival Scientific Inc., http://www.percival-scien-

tific.com/}, and then kept at 28°C under an 8 h photoperiod (60 nE} 

for another 3 days. The seedlings were grafted using silicon tubing 

(0.3 mm internal diameter} as the collar, and grafted seedlings were 

kept on identical sterile agar plates and under the same growth 

conditions for another 6-8 days until the graft junction had healed. 

Successfully grafted plantlets (approximately 14 days old} were 

transferred to a hydroponic culture system with half-strength 

nutrient solution containing 1.5 mrui or no Pi (Scheible ef al., 2004-}, 

and grown for another 3 weeks before harvesting of leaf and root 

material into liquid nitrogen. This material was used for analysis of 

geneexpression and Pi content. Special care was taken to avoid any 

plants with adventitious roots. 

Pi measurements 

Pi levels were measured using a colorimetric micromethod (Itaya 

and Ui, 1966). Discs were taken from leaves of the same age using a 

6 mm cork borer, and individually ground in 50 \i\ distilled water 

using plastic rods (Sarstedt, http://www.sarstedt.com) in 96-well 

plates (Greiner Bio-One, http://www.greinerbioone.com}. Extracts 

were diluted with water to 125 j.il, and then the microtiter plate was 

centrifuged at 3000 gfor 4 min. Aliquots (10 j.il) of the supernatant 

were mixed with 15 j.il water, and 100 \i\ 1 M HCI and 100 j.il color 

http://www.invitrogen.com/
http://www.percival-scientific.com/
http://www.percival-scientific.com/
http://www.sarstedt.com
http://www.greinerbioone.com


reagent (one volume of 4.2% <NH4}6Mo7024'H20 in 5 N HCI, three 

volumes of 0.2% malachite green dye in water) were added. The 

plate was incubated at room temperature for 15 min before adding 

100 jil 1.5% Tween-20. The absorbance at 660 nm was measured 

another 15 min later. The Pi concentration in the samples was 

determined against a calibration curve. 

RNA isolation, cDNA preparation, and quantitative 

real-time PCR 

RNA isolation of total RNA from Brassica napus and Curcurbita 

maxima was achieved using Trizol reagent, and isolation of RNA 

from roots and shoots of micrografted Arabidopsis plants was 

performed using RNeasy mini kits (Qiagen; http://www.qiagen. 

com!. cDNA preparation and quantitative real-time PCR were 

performed using the primer pairs previously described (Bari ef al., 

2006; Czechowski etal., 2004, 20051. cDNA synthesis for the 

detection of miR399d precursors/primary transcript fragments was 

primed using 5'- GGCAAATCTCCTTTGGCAGAG-3' (RT2 in 

Figure 5). Typically, approximately 5-10 ng of cDNA, the amount 

produced from the RNA of several thousand cells (Czechowski ef al., 

2004J, was used per assay, yielding a CT value of 16-17 for UBQW 

(see Table SI), which is equivalent to 1-2 million single-stranded 

USQ70template copies in the PCR reaction vessel. 

For quantification of mature miR399 and miR164-, total RNA 

was reverse-transcribed using stem-loop primers (5'-GTCGT 

ATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCGGGG-

CAAA-3' and 5'-GTCGTATCCAGTGCAGGGTCCGAzGGTATTCGCA-

CTGGAT ACGACCGCACG-3', respectively) and MultiScribe reverse 

transcriptase (Applied Biosystems; http://www.appliedbiosystems. 

com/I (Chen ef at., 2005I. In brief, 1 jig total RNA was mixed with 1 jil 

10 ITIM dNTPs, 1 jil 2.5 JJM miRNA-specific stem-loop RT primer and 

RNase-free water to a final volume of 36.5 jil, heated to 65°C for 

5 min, and then chilled on ice. Then 10 jil of 5x first-strand buffer, 

2 jil 0.1 M DTT, 0.5 jil RNase inhibitor and 1 jil MultiScribe reverse 

transcriptase were added. The reaction mixture was incubated for 

30 min at 16°C, followed by 30 min at 42°C and 5 min at 85°C, and 

then held at 4°C until quantitative real-time PCR amplification 

using primers miR399fwd (5'-CGACGTGCCAAAGGAGATTTG-3'), 

miR164fwd (5'-CACGTGGAGAAGCAG GGCA-3') and miRrev 

<5'-CCAGTGCAGGGTCCGAGGT-3'>. Rather than TaqMan probes 

(Chen etal., 2005), SYBR* Green (Applied Biosystems; http:// 

www.appliedbiosystems.coml was used as the fluorescence dye 

for real-time monitoring of DNA amplification. 

Primer efficiency {E) was determined for all amplicons using the 

freeware program LinRegPCR(Ramakersera/., 2003). The value did 

not change significantly between different cDNA samples, and was 

always higher than 0.80. 

RNA gel blot analysis of microRNA species 

Northern analysis was performed as described by Bari et al. (20061. 

Aliquots (20 jig) of total RNA were resolved on denaturing 17% 

polyacrylamide gels containing 7 M urea in 0.5x Tris-Borate/EDTA. 

RNA was blotted to positively charged nylon membranes (Bio-

dyne B, Pall Europe Ltd; http://www.pall.com/) using a semi-dry 

transfer cell (Bio-Rad; http://www.bio-rad.com/) and auto-cross-

linked at 0.12 mJ in a Stratalinker 1800 (Stratagene; http;// 

www.stratagene.com/). The membrane was hybridized at 42'C with 

" P end-labeled probes (5'-TTACAGGGCAAATCTCCTTTGGCA-3' 

and 5'-ATGCAGCATCATCAAGATTCT-3') complementary to miR399 

and miR172, respectively, and visualized using a phosphorimager 

BAS-1800 II (Fuji Photo Film Co. Ltd; http://www.fujifilm.com/). 

Materials not commercially available and used in the experi-

ments reported will be made available for non-profit research on 

request. 
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