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Abstract. MicroRNAs (miRNAs) are a type of small 
non-coding RNA molecule that performs an important role 
in post-transcriptional gene regulation. Since miRNAs were 
first identified in 1993, a number of studies have demon-
strated that they act as tumor suppressors or oncogenes in 
human cancer, including colorectal, lung, brain, breast and 
liver cancer, and leukemia. Large high-throughput studies 
have previously revealed that miRNA profiling is critical for 
the diagnosis and prognosis of patients with cancer, while 
certain miRNAs possess the potential to be used as diag-
nostic and prognostic biomarkers or therapeutic targets in 
cancer. The present study reviews the studies and examines 
the roles of miRNAs in cancer diagnosis, prognosis and 
treatment, and discusses the potential therapeutic modality 
of exploiting miRNAs.
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1. Introduction

MicroRNAs (miRNAs/miRs) were identified in 1993 (1-3). 
They are a type of small non‑coding RNA, between 19‑24 
nucleotides in length, which perform a critical role in the 
regulation of gene expression at the post‑transcriptional level. 
miRNAs act by degrading their RNA targets or by repressing 
the translation of mRNAs (4). In the previous two decades, 
numerous studies have indicated the important role of miRNAs 
in the regulation of crucial cellular processes, including prolif-
eration, differentiation, migration, apoptosis, metabolism and 
the stress response (5). miRNAs have been demonstrated to 
act as key regulators in the pathogenesis of diseases (6-11), 
particularly in cancer.

miRNAs provide a novel insight into the study of cancer. 
Previously, >50% of miRNA genes were revealed to be located in 
cancer-associated genomic regions and to form central nodal points 
in cancer development pathways (5), suggesting that miRNAs may 
perform an important role in the pathogenesis of human cancer. 
The hypothesis that the dysregulation of miRNAs may perform 
a fundamental role in the onset, progression and dissemination 
of numerous types of cancer was primarily confirmed in chronic 
lymphocytic leukemia (CLL) by Calin et al (12), who demonstrated 
that miR-15a and miR-16-1 were downregulated or deleted in the 
majority of patients with CLL.

Uncovering the complex role of miRNAs in cancers presents 
a challenge. Previous studies revealed that miRNAs regulate a 
number of molecular pathways of cancer by targeting oncogenes 
and tumor suppressors in tumorigenesis, cancer maintenance and 
progression (13), involving biological pathways of cancer‑stem‑cell 
biology (14), angiogenesis (15), the epithelial-mesenchymal tran-
sition, metastasis (16) and drug resistance (17).

miRNAs are widespread and have been estimated to regulate 
>50% of the human genome (18,19). Results from previous studies 
revealed that changing the expression of a particular cancer‑asso-
ciated miRNA may alter the expression of a potential oncogenic 
or anti-oncogenic protein (20), demonstrating that miRNAs may 
be used as therapeutic targets and tools in cancer treatment.

2. The mechanism of miRNAs in cancer

miRNAs overexpressed in cancers were considered to be 
oncogenes, termed ‘oncomirs’, which may promote tumor 
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development by negatively regulating genes, generally those 
controlling cell differentiation or apoptosis and/or tumor 
suppressor genes. A certain number of oncomirs exist 
in the tumor genome, but only a few of them have been 
well characterized, including miR‑21 (21) and the cluster 
miR‑17‑92 (22,23).

miR‑21 is overexpressed in breast, colorectal, lung and 
pancreatic cancer, glioblastoma, neuroblastoma, leukemia and 
lymphoma. miR-21 affects proliferation, apoptosis, migra-
tion, invasion and maintenance of cancer cells in vitro, and is 
associated with survival of cancer patients in vivo by targeting 
a tumor-suppressor (21). The miR‑17‑92 cluster located at 
chromosome 13q31 is a polycistronic transcript consisting of 
miRNAs 17, 18a, 19a, 20a, 19b‑1 and 92a‑1, It is significantly 
overexpressed in lung cancer and lymphoma (22,23). V-myc 
avian myelocytomatosis viral oncogene homolog (c‑Myc) acti-
vates and regulates the miR‑17‑92 cluster to modulate E2F1 
expression and inhibit c‑Myc‑induced apoptosis through tumor 
protein p53 pathway (24). Additionally, miR‑17‑92 inhibits the 
tumor suppressor genes phosphatase and tensin homolog (25) 
and RB2 (26) by activating the protein kinase B signaling 
pathway to promote cancer‑cell survival (Fig. 1). Additionally, 
oncogenic miR-372 and miR-373 promote cell proliferation 
and tumor development by targeting the tumor suppressor 
gene large tumor suppressor kinase 2 (27) and neutralizing 
inhibition of p53‑mediated cyclin‑dependent kinase in human 
testicular germ cell tumors.

The expression of tumor suppressor genes is decreased in 
cancer cells. Tumor suppressor miRNAs negatively inhibit 
oncogenes and/or genes that control cell differentiation or 
apoptosis and thus prevent tumor development. miRNAs 
let‑7 and miR‑34 family are known to be tumor suppressor 
genes.

The expression of let‑7 is reduced in a number of types of 
cancer, and is correlated with poor survival (28). The overex-
pression of let‑7 has been demonstrated to inhibit growth of 
lung cancer cells in vitro (29). Results from previous studies 
have revealed that the reduced expression of let‑7 increases 
the protein expression of the pro‑oncogene RAS in lung 
tumors (29-31) (Fig. 1). A loss of expression of miR‑34a is 
associated with metastasis and recurrence in prostate cancer, 
while restoration of miR‑34 expression is associated with 
clonogenic cell growth and invasion, apoptosis and cellular 
activation of chemotherapy and radiation in pancreatic cancer. 
Another study demonstrated that the miR-34 family may 
regulate the expression and mutation of p53, while miR‑34b 
and miR-34c target MYC (32-35). A lack of expression of 
miR‑34 family members attenuated p53‑dependent and 
p38‑mitogen‑activated protein kinase‑dependent responses 
to DNA damage, and led to oncogenesis.

3. Cancer stem cells

microRNAs have been demonstrated to perform critical roles 
in controlling the fate of cancer stem cells (CSCs) (36,37). 
Numerous genes essential for pluripotency and stem cell 
function, including Octamer‑binding transcription factor 
4, NANOG, SRY‑Homeobox 2 (SOX2), NOTCH and B-cell 
lymphoma 2, are targets of miRNAs, such as miR‑296, 
miR-134, miR-470 and the miR-34 family.

The let-7 family, miR-200 family, and miR-30 are all 
believed to be important for the regulation of breast cancer 
stem cells. The let‑7 family is downregulated in breast‑cancer 
stem cells. Let‑7 family members are associated with tumor 
formation and metastasis of breast cancer in immunocompro-
mised mice by regulating breast CSCs (38). Let-7 results in 
the loss of self-renewal (RAS silencing) and enhancement of 
multi‑lineage differentiation (high‑mobility group AT‑hook 
2 (HMGA2) silencing) in CSCs by targeting the 3' untrans-
lated region (UTR) of RAS and HMGA2 genes (39). The 
miR‑200 family, which comprises miR‑200a, miR‑200b, 
miR‑200c, miR‑141 and miR‑429, together with miR‑145 
and miR‑146 is highly downregulated in breast CSCs (40), 
which undergo epithelial-mesenchymal transition (EMT) in 
response to transforming growth factor β signaling (41). In 
addition, the stem cell genes SOX2, Krüppel like factor 4, 
polycomb complex protein BMI‑1, polycomb protein 
Suz12, Zinc finger E‑box binding homeobox 1 (ZEB1), and 
ZEB2 are all targets of miR‑200 family members (42,43). 
A low expression of miR‑30 inhibits self‑renewal of breast 
cancer stem cells, while antagonism of miR‑30 by antisense 
oligonucleotides enhances self-renewal, tumor regeneration 
and metastasis in differentiated breast cancer cells (44) 
(Fig. 2).

4. Angiogenesis

Angiogenesis is essential for tumor growth and metas-
tasis (45,46). Previous studies have demonstrated that 
miRNAs are able to regulate angiogenesis and tumor cell 
survival (47-51). The miR‑17‑92 cluster is significantly 
upregulated in Myc‑induced tumors and overexpressed in Ras 
cells, where it enhances tumor vessel growth in a paracrine 
manner (47), exhibiting potent tumor angiogenesis‑promoting 
activity. In ovarian cancer, miR‑378 enhances tumor angiogen-
esis, tumor cell survival and growth by targeting ALCAM and 
EHD1 (48). The overexpression of let‑7f and miR‑27b exerts 
pro‑angiogenic effects, as shown by the blockade of angiogen-
esis with 20‑O‑methyl oligonucleotide inhibitors in vitro (49). 
miR‑221 and miR‑222 inhibit angiogenesis by targeting at 
least two important regulators of pro-angiogenic endothelial 
cell function in tumors (50). Repression of the miR-15-16 
cluster was found to be associated with advanced tumor stage 
and poor prognosis in patients with colorectal carcinoma, and 
is shown to promote tumor angiogenesis and metastasis by the 
loss of restriction of its target gene, fibroblast growth factor‑2 
(FGF2) (51).

5. EMT and metastasis

Activation of EMT increases the rates of migration and 
invasion in tumor cells, while activation of the reverse 
mesenchymal-to-epithelial transition is required for metastasis 
outgrowth. Expression of epithelial‑cadherin (E‑cadherin) by 
the Cadherin 1 gene is essential for retaining an epithelial cell 
type (52). EMT transcription factors that serve as E‑cadherin 
repressors‑ such as zinc finger protein (SNAI)1/SNAI2, basic 
helix‑loop‑helix proteins including E47, E2‑2, Twist‑related 
protein (TWIST)1/TWIST2, and ZEB1/ZEB2, activate cancer 
cells by triggering EMT (53). The miR-200 family, miR-27 and 
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miR‑205 inhibit ZEB1 and ZEB2 (54-56). In breast cancer, the 
expression of miR‑200 is positively correlated with concentra-
tions of E‑cadherin. In kidney‑derived cells, the restoration 
of miR‑200 expression is sufficient to reverse the transition 
(mesenchymal-to-epithelial). In pancreatic epithelial cells, the 
expression of miR‑30 family members is inversely correlated 
with the mesenchymal phenotype (57). In mesenchymal‑like 
ovarian cancer cell lines, an overexpression of miR‑429 
reverses EMT (58).

6. Clinical applications of miRNAs

miRNAs as diagnostic indicators. Numerous tumor‑profiling 
studies have been conducted over the previous 5 years. Several 
miRNA expression signatures have been identified, which may 
be used to differentiate between malignant and benign condi-
tions in several organs by screening resected tumors and biopsy 
samples (59). In leukemia, a 4‑miRNA signature was able to 
differentially diagnose acute lymphoblastic leukemia from 
acute myeloid leukemia with a sensitivity and specificity of 
up to 100% (60). In breast cancer, a 97‑gene expression profile 
has been demonstrated to be an improved method for the clas-
sification of breast cancer histological grade compared with 
lymph‑node status and tumor size (61). In pancreatic ductal 
adenocarcinomas, a signature of 7 differentially expressed 
miRNAs may provide a more accurate diagnosis compared 
with conventional cytology (62).

miRNAs as prognostic indicators. miRNA expression 
patterns have been identified to predict the outcome and 
prognosis of cancer in several studies. In breast cancer, 31 
miRNAs were demonstrated to be significantly associated 
with clinical factors, while the overexpression of 17 miRNAs 
was associated with estrogen‑receptor‑positive stage I 
or II breast cancer, with good clinical outcome (63). The 
overexpression of miR‑210 is associated with an increased 
risk of recurrence and a reduced chance of relapse‑free 
survival (64). miR‑155 overexpression exhibits an association 
with poor post‑operative survival in lung cancer and B cell 
lymphomas (65,66). miR-183 family, miR-183, miR-182 and 
miR‑96 expression has been revealed to correlate with the 
progression of non-small-cell lung cancer (67). miR-200c 
expression has been associated with overall survival 
subsequent to surgery in colorectal cancer (68). According 
to prognosis, 13 miRNAs were identified with variable 
expression in CLL.

miRNAs and cancer treatment. MicroRNAs possess the 
capacity to target between tens and hundreds of genes 
simultaneously. They perform a key role in tumorigenesis 
as important modulators in cellular pathways by regulating 
target gene expression through translation repression or 
mRNA degradation. Thus, miRNAs are attractive candi-
dates for prognostic biomarkers and therapeutic targets in 
cancer. The identification of miRNAs and their targets is 
essential for cancer development and metastasis, and there-
fore may provide exciting therapeutic opportunities. In the 
present review, potential target genes and a possible mecha-
nism of tumorigenic miRNAs are summarized (69-92) 
(Table I).

There are several acknowledged approaches to miRNA 
targeting: Anti-miRNA oligonucleotides (AMOs) are 
single-stranded molecules that form direct complementarity 

Figure 1. Interaction of miRNAs as oncogenic and tumor suppressor. let-7 
suppresses translation of the Ras GTPase genes. The downregulation of 
let‑7 promotes the cell cycle through the Ras‑MAPK pathway. miR‑17‑92 
may prohibit oncogene‑induced apoptosis. PTEN, phosphatase and tensin 
homolog; PI3K, phosphoinositide‑3 kinase; PKB, protein kinase B; MAPK, 
mitogen‑activated protein kinase; ARF, alternative reading frame protein 
of p16INK4a locus. miRNA/miR, microRNA; p53, tumor protein 53; E2F1, 
transcription factor E2F1; Akt, RAC‑α serine/threonine‑protein kinase.

Figure 2. miRNAs associated to breast cancer stem cells and their potential 
mechanisms. These miRNAs regulate target genes that are involved in the 
processes of stem cells. The abnormal expression of these potential ‘stem 
cell miRNAs’ in cancer indicates that deregulated stem cell genes lead to an 
increase in the level of self‑renewal and a reduction in the intracellular levels 
of apoptosis in cancer stem cells. This leads to the progression of the cancer. 
CSC, cancer stem cells; EMT, epithelial‑mesenchymal transition; HMGA2, 
high‑mobility group AT‑hook 2; Akt1, RAC‑α serine/threonine-protein 
kinase; Akt2; RAC‑β serine/threonine‑protein kinase; TGF‑β, transforming 
growth factor β; miRNA/miR, microRNA; Klf4, Krüppel like factor 4; 
BMI‑1, polycomb complex protein BMI‑1; ZEB1/2, Zinc finger E‑box binding 
homeobox 1/2; H‑Ras, transforming protein p21; Bcl2, B‑cell lymphoma 2; 
E-cadherin, epithelial cadherin.
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and thus inhibit specific miRNAs. Previous studies have 
widely used AMOs to target mRNAs and evaluate gene func-
tion in vitro and in vivo (93,94). The chemical modification 
of the AMOs may improve the hybridization affinity of the 
target RNA in vitro (95), make it resistant to nuclease degra-
dation and activate RNase or other proteins (96). For in vivo 
delivery, altering the protein binding properties of AMOs is 
necessary to delay plasma clearance and promote uptake into 
tissues (97,98). AntagomiRs are single-stranded molecules that 
form complementarity to miRNAs; however, in order to main-
tain stability while minimizing degradation, they may also be 
modified with a cholesterol conjugated 20‑O‑methyl (99,100). 
Locked nucleic acids (LNAs) have a methylene bridge to func-
tionally lock ribose conformation, which consequently leads to 
increased binding affinity and stability (101). miRNA sponges 
function by using multiple complementary 3'UTR mRNA 
sites for a specific miRNA (102). These sponges competitively 
bind to miRNA, thus interfering with the normal targeting of a 
single miRNA by targeting it with antisense oligonucleotides. 
In addition, the development of stable sponges may assist in 
recapitulating the effects of downregulation of aberrantly 
expressed miRNAs (103-105) and nanoparticles, the formula-
tions of which may be used primarily for in vitro delivery of 
miRNAs (106,107).

A small number of studies at present have used this 
technology for miRNA delivery (108). The results of 
previous studies demonstrated that by using liposome 
polycation-hyaluronic acid particles as a carrier for miRNA 
modified with a tumor targeting monoclonal antibody, a 
golgin candidate 4 single‑chain variable fragment, they were 
able to target lung metastases in a murine model of metastatic 
melanoma (109,110).

7. Conclusion

In conclusion, miRNAs have changed our understanding of 
gene expression and set a precedent for the development of 
novel diagnostic methods and treatments for cancer. To trans-
late these data into clinical application, large cohort studies 
are required to examine the prognostic and diagnostic value 
of miRNA panels. In the long term, it is important to identify 
additional potential targets of miRNA, and to develop safe and 
specific methods to deliver miRNA‑based treatments in order 
to make the modulation of miRNAs a critical technique for 
cancer treatment and management.
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