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Abstract

Spermatogenesis is composed of three distinctive phases, which include self-renewal of spermatogonia via mitosis, spermatocytes

undergoing meiosis I/II and post-meiotic development of haploid spermatids via spermiogenesis. Spermatogenesis also involves

condensation of chromatin in the spermatid head before transformation of spermatids to spermatozoa. Epigenetic regulation refers to

changes of heritably cellular and physiological traits not caused by modifications in the DNA sequences of the chromatin such as

mutations. Major advances have been made in the epigenetic regulation of spermatogenesis. In this review, we address the roles and

mechanisms of epigenetic regulators, with a focus on the role of microRNAs and DNA methylation during mitosis, meiosis and

spermiogenesis. We also highlight issues that deserve attention for further investigation on the epigenetic regulation of spermatogenesis.

More importantly, a thorough understanding of the epigenetic regulation in spermatogenesis will provide insightful information into the

etiology of some unexplained infertility, offering new approaches for the treatment of male infertility.
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Introduction

Epigenetic regulation refers to the inheritable changes of
phenotype or gene expression caused by mechanisms
other than modifications in the underlying DNA
sequences (Egger et al. 2004). Epigenetic regulators
can control the expression of genes at the transcriptional
and/or post-transcriptional levels, and epigenetic
disorders may lead to human diseases, including mental
retardation and cancer. Formation of functional sperma-
tozoa is a complex process which involves self-renewal
of spermatogonia by mitosis, meiosis of spermatocytes to
form haploid spermatids, and transformation of sperma-
tids to spermatozoa via spermiogenesis. These orche-
strated processes involve unique transcriptional
regulation and comprehensive chromosome remodel-
ing. To keep the totipotence of zygote, epigenetic
markers of male germ cells must be reset. Consequently,
male germ cells are particularly vulnerable to epigenetic
defects. Thus, epigenetic abnormality could be a
potential cause of male infertility. The epigenetic
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reprogramming includes primordial germ cell (PGC)
specification, spermatogonial stem cell (SSC) renewal,
chromosome remodeling in the meiosis and histone
transition in sperm maturation.

There are several major epigenetic regulators, includ-
ing small non-coding RNAs and DNA methylation.
Notably, Human Genome Program indicates that genes
encoding proteins comprise only about 2% of human
genomics, whereas the remainder consists of non-coding
nucleic acid. MicroRNA (miRNA) is a novel class of
endogenous small RNA molecules (w18–22 nucleotides
in length) that can negatively control their targeting
genes. MiRNAs are initially transcribed by RNA
endogenous polymerase as primary miRNAs and
eventually incorporated into the miRNA-induced
silencing complex (miRISC) under a series of processing
steps (Bartel 2004). It has been demonstrated that
miRNAs are involved in the mitotic, meiotic and post-
meiotic phases of spermatogenesis by inhibiting the
expression of target genes (Tang et al. 2007, Hayashi
et al. 2008). DNA methylation refers to the process in
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which a methyl group is added to the cytosine nucleotide
with the typical location in the symmetric CG contexts
(Chen & Li 2004), and it is related to genomic imprinting,
transposon repression and X-chromosome inactivation
in normal development. DNA methylation defects are
associated with infertility in humans. With the appli-
cation of 5-aza-2 0-deoxycytidine, a demethylation agent,
aberrant male germ cell development has been detected
in males with reduced fertility (Kelly et al. 2003).
Therefore, a thorough understanding of epigenetic
regulation in spermatogenesis is of great significance
for the therapy of male infertility and for developing new
approaches for male contraception. Based on recent
advances in epigenetic regulation, we discuss herein the
roles of miRNAs and DNA methylation in regulating
mitosis, meiosis and spermiogenesis.
MicroRNA and spermatogenesis

MiRNAs are small non-coding regulatory RNA
molecules that regulate gene expression either by
targeting mRNA for degradation or by translation
inhibition, as we illustrated in Fig. 1. In general, mature
miRNA is processed through at least three sequential
steps: i) the pre-miRNA (w70 nucleotides) is generated
by the primary transcripts (pri-miRNA) through RNase III
member Drosha and its cofactors Pasha/DGCR8 (Lee
et al. 2003, Han et al. 2004); ii) the pre-miRNA is
transported from the nucleus to the cytoplasm by
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Figure 1 Schematic diagram shows miRNA biogenesis. MiRNA genes
are transcribed as the primary capped and polyadenylated precursors of
miRNA (pri-miRNAs) by RNA polymerase II in the nucleus, and the
pri-miRNAs are further cleaved by Drosha and DGCR8. The processing
of the pri-miRNAs by RNase III enzyme Drosha along with cofactor
DGCR8 gives rise to the stem-loop pre-miRNA that is exported by
Exportin 5 from the nucleus to the cytoplasm. In the cytoplasm, the
RNase III enzyme Dicer catalyzes the pre-miRNA to form mature
miRNAs. The mature miRNAs are incorporated into the RNA-induced
silencing complex (RISC) that guides the 3 0-UTR of the target gene. The
association of the miRNA-RISC results in the silencing of the target gene
by mRNA degradation or translational repression.
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Exportin 5 (Lund et al. 2004); and iii) the mature miRNAs
are generated by Dicer cleavage (Hutvagner et al. 2001).

MiRNA interacts with the targeting genes through
specific base-pairing with the key domain of the mature
miRNA, particularly at bases 2–8 of the 5 0-end known
as the ‘seed’ region. The mRNA is cleaved under the
condition of perfect base-pairing between miRNAs and
miRNA regulatory elements (MRE) in the 3 0UTR of
targeting mRNAs, whereas imperfect interaction between
the miRNA and MRE leads to translational repression. The
first discovered miRNA, namely, lin-4, acts as a post-
transcriptional regulator (Lee et al. 1993, Wightman et al.
1993). Since then, a number of studies have shown that
miRNAs are involved in various kinds of biological
processes, including development, virus defense, hema-
topoiesis, organ formation, cell proliferation and apop-
tosis. Growing evidence has indicated that miRNAs play
critical roles in regulating male germ cell development
and are essential for epigenetic regulation of the mitosis,
meiosis and spermiogenesis (Hayashi et al. 2008,
Maatouk et al. 2008, Huszar & Payne 2013).
The roles of miRNAs in SSC self-renewal and
differentiation

SSCs are located in the basal compartment of the
seminiferous epithelium, and they play important roles
in maintaining normal spermatogenesis and the trans-
mission of genetic information to next generations. To
date, studies on SSCs have been reported in other
aspects, such as SSC transplantation, long-term culture
of SSCs and transgenic animals (Brinster & Avarbock
1994, Khaira et al. 2005, Sadri-Ardekani et al. 2009,
Kanatsu-Shinohara & Shinohara 2013). Significant
advances have been made in the field of SSC biology,
including gene regulation, signaling pathways and
epigenetic regulators. Interestingly, a series of studies
have demonstrated that miRNAs play essential roles in
conferring mouse SSC fate determinations.

In the past several years, a number of miRNA
expression profiles have been identified in the murine
testes by miRNA microarrays, RT-PCR or small RNA
sequencing technology (Hayashi et al. 2008, Buchold
et al. 2010, Jung et al. 2010). The expression profiling of
interesting miRNAs in the testis has been outlined in
Table 1, and their potential roles in regulating SSC self-
renewal and differentiation are illustrated in Fig. 2. In
total, 141 miRNAs have been identified in mouse testis,
of which 29 are novel by small RNA sequencing method
(Ro et al. 2007). These miRNAs may be involved in
mouse spermatogenesis. It has been reported that miR-
21 is functionally important in regulating SSC (Thy1C)
population by working with ETV5, a critical transcription
factor for maintaining the self-renewal of SSCs (Niu et al.
2011). Meanwhile, miR-34c, miR-182, miR-183 and
miR-146a have been shown to be preferentially
expressed in the SSC (Thy1C)-enriched population
www.reproduction-online.org
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Table 1 Expression and roles of miRNAs in mammalian testis.

microRNA Expression and roles References

miR-17–92 and miR-290–295 clusters miR-17–92 and miR-290–295 clusters are highly expression in spermatogonia Hayashi et al. (2008)
miR-141, -200a, -200c and -323 Expression of miR-141, -200a, -200c and -323 is reduced during PGC

development
Hayashi et al. (2008)

let-7a, d, e, f and g Expression of let-7a, d, e, f and g is increased during PGC development Hayashi et al. (2008)
miR-34c, -182, -183 and -146a miR-34c, -182, -183, and -146a are preferentially expressed in

Thy1C-enriched population
Niu et al. (2011)

miR-21 miR-21 is important in maintaining mouse Thy1C population Niu et al. (2011)
miR-20 and miR-106a miR-20 and miR-106a regulate mouse SSC renewal by targeting STAT3 and

Ccnd1
He et al. (2013)

miR-135a miR-135a contributes to the maintenance of mouse SSC by regulating FoxO1 Moritoki et al. (2014)
miR-221 and 222 miR-221 and 222 play an important role in the maintenance of the

undifferentiated state of mouse spermatogonia
Yang et al. (2013)

miR-17–92 cluster and miR- 106b–25 miR-17-92 cluster and miR-106b-25 are involved in the regulation of mouse
spermatogonial differentiation

Tong et al. (2012)

Mirlet7 family let-7 family miRNAs play a role in retinoic acid-induced spermatogonial
differentiation

Tong et al. (2011)

miR-146 miR-146 regulates spermatogonial differentiation by retinoic acid Huszar & Payne (2013)
miR-449/, miR-34b/c miR-449 and miR-34b/c are located in mouse spermatocytes and spermatids Bouhallier et al. (2010),

Bao et al. (2012) and
Wu et al. (2014)

miR-34a, -34b and -34c miR-34a, -34b and -34c are expressed in bovine sperm Tscherner et al. (2014)
miR-34c miR-34c is highly expressed in mouse pachytene spermatocytes and

round spermatids
Liang et al. (2012)

miR-469 miR-469 expression is associated with sperm development Dai et al. (2011)
miR-122 miR-122 expression is involved in sperm development Yu et al. (2005)

miR-34c, -182, -183, and -146a, miR-21, miR-20 and miR-106a,

miR-135a, miR-221 and miR-222

miR-449, miR-34b/c, miR-469, miR-17-92 cluster

miR-449, miR-34b/c, miR-469, miR-122

SSCs

Differentiated Spg

Spc

RS

ES
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miR-17–92 cluster and miR- 106b–25   , let7 family, miR-146

Figure 2 The expression patterns of miRNAs in various types of cells in
mammalian testis. MiR-17-92 and miR-290–295 cluster are highly
expressed in mouse spermatogonia, and numerous miRNAs (e.g.
miR-34c, -182, -183 and -146a, miR-21, miR-20, miR-106a, miR-135a,
miR-221, and miR-222) have been shown to regulate SSC self-renewal.
In contrast, miR-17–92 cluster, miR-106b–25, let-7 family and miR-146
are involved in the regulation of mouse spermatogonial differentiation.
MiR-449, miR-34b/c and miR-469 are located in mouse spermatocytes
and spermatids, while miR-34a, -34b, -34c and miR-122 are associated
with sperm development. SSCs, spermatogonial stem cells; Spc,
spermatocytes; RS, round spermatids; ES, elongating spermatids.
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(Niu et al. 2011), reflecting potential roles of these
miRNAs in mediating self-renewal and maintenance of
mouse SSCs. On the other hand, miR-34c has been
demonstrated to be involved in the differentiation of
mouse SSCs via targeting Nanos2 (Yu et al. 2014). Taken
together, miR-34 seems to be associated with both
division and differentiation of SSCs through targeting
different genes. Moreover, miR-135a has been shown to
retain the undifferentiated state of SSCs via FoxO1
(Moritoki et al. 2014). Impairing the function of X
chromosome-clustered miR-221/222 in mouse undiffer-
entiated spermatogonia causes a transition from KITK to
KITC state and the loss of stem cell ability to repopulate
spermatogonia (Yang et al. 2013). This study suggests
that miR-221/222 might play an important role in the
maintenance of the undifferentiated state of mammalian
spermatogonia. In addition, the expression of miR-17–92
(Mirc1) and miR-106b–25 (Mirc3) clusters has been
shown to be significantly down-regulated by retinoic
acid induction (Tong et al. 2012). During the develop-
ment of male germ cells, miR-17–92 and miR-290–295
cluster are highly expressed in mouse spermatogonia
(Hayashi et al. 2008). Collectively, these findings suggest
that miR-17–92 clusters play potential roles in maintain-
ing the stemness of SSCs. Consistent with these
observations, we have recently demonstrated that miR-
20 and miR-106a are required for the proliferation and
survival of mouse SSCs through targeting Stat3 and
Ccnd1 (He et al. 2013).

SSC differentiation is an essential step in spermatogen-
esis, which has been found to be modulated by miRNAs.
The expression of miR-141, miR-200a, miR-200c and
miR-323 are down-regulated during male germ cell
www.reproduction-online.org
development, whereas the levels of let-7 family (let-7a,
d, e, f and g) are up-regulated (Hayashi et al. 2008),
indicating distinct roles of these miRNA in male germ
cell differentiation. This speculation has been verified
by the findings that the members of miRNA let-7 family
(e.g., let-7a/b/c/d/e) regulate mouse SSC differentiation
(Tong et al. 2011, 2012). MiR-146 is involved in mouse
Reproduction (2015) 150 R25–R34
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SSC differentiation induced by retinoic acid signaling,
because its expression is diminished by w180-fold in
differentiating spermatogonia vs undifferentiated sper-
matogonia by targeting mediator complex subunit 1,
a coregulator of retinoid receptors (RARs and RXRs)
(Huszar & Payne 2013). In addition to regulating the
differentiation, Mir-17-92 (Mirc1) cluster also protects
meiotic cells from apoptosis by down-regulating E2F1
translation (Novotny et al. 2007). Although numerous
miRNAs have been found in modulating the self-renewal
and differentiation of SSCs in rodents, there are no
reports in the literature supporting miRNA function in
human SSCs due to difficulties in obtaining human testis
tissues in particular human SSCs. We have recently
compared the global miRNA profiles among human
spermatogonia, pachytene spermatocytes and round
spermatids, illustrating that 110 miRNAs are differen-
tially expressed between human spermatogonia and
pachytene spermatocytes (Liu et al. 2015), suggesting
that these miRNAs are involved in mitosis and meiosis.
Functions of miRNAs in meiosis and spermiogenesis

Meiosis of spermatocytes and spermiogenesis of sper-
matids are two indispensable phases of spermatogenesis
through which functional male gametes are generated.
These intricate processes must be tightly regulated, and
any mistake in these processes leads to the abnormality
of spermatogenesis. Some unexplained male infertility
may be the result of meiotic arrest in spermatocytes
and/or defects of spermiogenesis in post-meiotic sper-
matids. Notably, miRNAs likely play a role in regulating
gene expression throughout these developmental stages.
Drosha is required for the biogenesis of miRNAs in
spermatogenesis, and conditional knockout of Drosha
in male germ cells leads to a significant decrease of
miRNAs, reduces testis weight and a severe disruption in
both meiotic and haploid phases of spermatogenesis
(Wu et al. 2012). Meanwhile, Dicer is essential for the
biogenesis of both miRNAs and siRNAs in spermatogen-
esis. After conditional knockout of miRNA maturation-
related key enzyme Dicer in testes, the number of mouse
SSCs is decreased and their differentiation is also
blocked. In addition, loss of Dicer1 results in male
infertility in mice (Maatouk et al. 2008), illustrating an
essential role of miRNAs in spermatogenesis. Sertoli cell-
specific deletion of Dicer, a central component of the
RNAi machinery, severely impairs Sertoli cell compe-
tence, leading to male infertility due to the absence of
mature spermatozoa and testicular degeneration
(Papaioannou et al. 2009), reflecting an important role
of the Dicer for male germ cell development. Germ cell-
specific deletion of Dicer1 leads to overexpression of
genes for meiotic sex chromosome inactivation (MSCI),
an increase in spermatocyte apoptosis and defects in
chromatin organization and nuclear shaping of elonga-
ting spermatids (Korhonen et al. 2011, Romero et al.
Reproduction (2015) 150 R25–R34
2011, Greenlee et al. 2012, Zimmermann et al. 2014),
suggesting that Dicer1 is required for the meiotic and
haploid phases of spermatogenesis. In addition to Dicer,
DGCR8 has been shown to be indispensable for the
biogenesis of miRNAs but not endo-siRNAs, and similar
symptom occurs in the conditional DGCR8-knockout
mice, although the phenotype is less severe compared to
the Dicer1-knockout mice (Zimmermann et al. 2014).
Moreover, the knockout study of canonical enzymes in
the miRNA biogenesis process reveals that miRNAs are
of great importance in meiosis and spermiogenesis
phases of spermatogenesis since spermatogonial differ-
entiation appears to be unaffected by canonical enzyme
deficiency. These findings suggest that miRNAs necess-
ary to confer spermatogonial differentiation may be
synthesized by non-canonical enzymes, and the under-
lying mechanism remains to be elucidated.

It has recently been found that miR-449 is predomi-
nantly expressed in mouse testes and it is mainly located
in spermatocytes and spermatids (Bao et al. 2012, Wu
et al. 2014). Interestingly, miR-34b and miR-34c have
been found to resemble the ‘seed’ sequence of miR-449.
Coincidentally, miR-34b and miR-34c exhibit a similar
effect to that of miR-449 during the development of male
germ cells and spermatogenesis (Bouhallier et al. 2010,
Bao et al. 2012, Wu et al. 2014). Individual deficiency in
miR-34b/c or miR-449 appears to have no obvious effect;
however, simultaneous inactivation of miR-34b/34c and
miR-449 leads to mouse oligoasthenoteratozoospermia
(Wu et al. 2014), implicating that double or triple
knockout approach of miRNAs is needed to obtain the
phenotype for certain miRNAs. It has been demonstrated
that all the members of miR-34 family (i.e. miR-34a,
-34b and -34c) are found in bovine sperm (Tscherner
et al. 2014). Additionally, miR-34c seems to be
important for the later steps of spermatogenesis because
it is highly expressed in mouse pachytene spermatocytes
and round spermatids in murine testis by targeting the
activating transcription factor 1 (ATF1; Liang et al. 2012).
Moreover, the induction of ATF1 in spermatocytes of the
pachytene stage is essential for maintaining cell viability
and mouse early development (Bleckmann et al. 2002,
Persengiev & Green 2003). These findings illustrate that
the members of miR-34 family are vital for spermato-
genesis. The expression of transition protein (TP) and
protamine (Prm) proteins are required for spermatid
elongation and spermiogenesis. MiR-469 has been
found to be essential for the timely translation at later
stages of spermiogenesis by inhibiting of TP2 and Prm2
transcripts (Dai et al. 2011). Another miRNA, namely
miR-122, has been shown to reduce the expression of
TP2 at transcription level by mRNA cleavage (Yu et al.
2005). These studies illustrate that miR-469 and miR-122
are associated with spermiogenesis. MiR-18 is abun-
dantly expressed in the testis and it displays cell
type-specific expression, with the highest intensity in
spermatocytes. Meanwhile, miR-18 directly targets heat
www.reproduction-online.org
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shock factor 2, which is a key transcription factor
essential for influencing embryogenesis and gameto-
genesis (Bjork et al. 2010).

Collectively, miRNAs play essential roles in regulating
each step of male germ cell development, including
mitosis, meiosis and spermiogenesis in rodents. Never-
theless, it remains to be defined whether miRNAs are
required for spermatogenesis in humans. Recently, we
have identified 559 miRNAs distinctively expressed by
human spermatogonia, pachytene spermatocytes and
round spermatids (Liu et al. 2015). Using miRNA
microarray, we have identified 144 miRNAs that are
significantly up-regulated while 29 miRNAs are down-
regulated in pachytene spermatocytes vs round sperma-
tids (Liu et al. 2015), reflecting essential roles of these
miRNAs in mediating spermiogenesis. A number of
novel binding targets of the differentially expressed
miRNAs have been identified using various bioinfor-
matics software and verified by real time PCR (Liu et al.
2015). Significantly, our ability to unveil the global
distinct miRNA signatures and binding targets of human
spermatogonia, pachytene spermatocytes and round
spermatids could provide novel small RNA regulatory
mechanisms mediating three stages of human sperma-
togenesis and offers new targets for treatment of male
infertility.
DNA methylation and spermatogenesis

DNA methylation, by definition, is an epigenetic
modification that DNA methyltransferase transfers a
methyl unit from the S-adenosyl-L-methionine to the
5th position of cytosine residues in nucleotides (Chen &
Li 2004, Portela & Esteller 2010). DNA methylation
occurs in the cytosine-phosphate-guanine dinucleotides
(CpGs) context, although it is also located in few non-
CpG sites; however, the function of DNA methylation
situated in non-CpG sites remains unclear (Jones 2012).
Dinucleotides with high frequency of CpG palindromes
are called CpG islands (CGI). The CpG island is defined
as the DNA region whose G & C content should be equal
to or O55% of the base pairs, and the ratio of observed-
to-expected CpGs is over 0.65 (Takai & Jones 2002).
Normally, CpG islands located in transcription start sites
(TSS) are unmethylated in developmental and house-
keeping genes, and the active TSS is marked by the
trimethylation of histone H3 lysine 4 (H3K4me3)
(Thomson et al. 2010, Messerschmidt et al. 2014). The
CGI promoter can be repressed by various molecular
strategies. On one hand, CGI promoter undergoes
de novo methylation and it can be kept in methylated
state by maintaining methyltranferase activity. This
mechanism is stable and lasts for a long period, and
it is responsible for X chromosome inactivation and
genomic imprinting (Jones & Liang 2009). On the other
hand, CGI promoter can be repressed by a large protein
complex through binding to the target genes so that the
www.reproduction-online.org
chromatin is enclosed (Boyer et al. 2006). Its target gene
is marked with repressive and active H3K4me3, which is
called the bivalent modification pattern (Bernstein et al.
2006, Pan et al. 2007). This strategy is unstable and the
silenced genes can be reactivated under certain
circumstances (Cedar & Bergman 2009). The CpG
islands located in gene bodies are marked by
H3K9me3 and they bind to MeCP2 which is associated
with histone deacetylation and chromatin condensation
to repress gene expression (Nguyen et al. 2001). In
contrast to CpG islands located in the TSS, methylation
of CpG islands located in gene bodies is able to activate
genes (Jones 1999).

There are two patterns of DNA methylation, namely,
the maintenance methylation and the de novo methyl-
ation (Holliday & Pugh 1975). A number of DNA
methyltransferases, including DNMT1, DNMT1o,
DNMT3a, DNMT3b and DNMT3L, are involved in
these two mechanisms. DNMT1 is responsible for
maintenance methylation activity and it has a high
affinity for hemi-methylated DNA (Pradhan et al. 1999).
It is composed of C-terminal methyltransferase domain
and N-terminal regulation domain (Song et al. 2012).
N-terminal domain interacts with proliferating cell
nuclear antigen (PCNA; Chuang et al. 1997) and
UHRF1, which facilitates DNMT1 binding to the
replication fork (Bostick et al. 2007, Hashimoto et al.
2008). DNMT1 recognizes the hemi-methylated DNA
and methylates the newly generated strand so that the
DNA methylation patterns can be maintained (Cedar &
Bergman 2012). DNMT3a and DNMT3b are responsible
for the de novo methylation (Okano et al. 1998). After the
wave of demethylation in PGCs, the imprinted genes and
transposon methylation patterns can be reestablished
through the de novo methylation (Law & Jacobsen 2010).
The de novo methylation mechanism is interpreted by
both histone modification and piRNA pathways (Ooi
et al. 2007). As an example, H3K4 methylation may be
involved in de novo methylation. DNMT3L lacking the
methyltransferase activity (Chedin et al. 2002) can recruit
DNMT3a2 to the unmethylated H3K4 tail site (Jia et al.
2007), whereas this activity is inhibited by the methyl-
ation of the H3K4 tails (Ooi et al. 2007). Consequently,
only the unmethylated H3K4 leads to the de novo
methylation. Additionally, piRNA pathways may also
explicate de novo methylation, since piRNA is related to
the transposon silencing and the silenced transposons are
methylated through de novo methylation (Aravin et al.
2007). PiRNA can interact with PIWI proteins, including
MILI and MIWI. Notably, male germ cells with MILI and
MIWI2 deficiency assume DNA methylation defect in
retrotransposons regulation regions in the phase of
de novo methylation (Kuramochi-Miyagawa et al.
2008). Meanwhile, piRNA–PIWI complex could
indirectly recruit the de novo methyltransferase through
interacting with chromatin modifiers (Aravin & Bourc’his
2008). Together, these findings indicate that the
Reproduction (2015) 150 R25–R34
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de novo methylation regulates the development of
male germ cells.

There are also two different modes for demethylation,
namely the passive and active demethylation. Aberrant
maintenance of methylation pathways in the replication
may decipher the passive demethylation which is
replication-dependent (Mertineit et al. 1998, Kagiwada
et al. 2013). Meanwhile, the active demethylation is
likely an enzymatic process. First of all, 5mC is
hydroxylated by ten–eleven translocation enzyme to
become 5hmC and further to 5-formylcytosine (5fC) or
5-carboxycytosine (5caC) (He et al. 2011, Ito et al.
2011). Secondly, the modified 5mC can be recognized
by the activation-induced deaminase (Aid) or apolipo-
protein B mRNA-editing enzyme catalytic polypeptide 1
(Apobec1) and converted to thymidine, which results in
T:G mismatch. After the removal of the T:G mismatch by
the glycosylase thymine–DNA glycosylase and methyl-
CpG binding domain protein 4, the site can be repaired
by a base pair excision repair mechanism to regenerate
the unmethylated cytosine (Rai et al. 2008, Cortellino
et al. 2011).
erasure of the DNA methylation markers, reestablishment of the male
germ cell DNA patterns initiates from prospermatogonia to entering
meiosis. After fertilization, DNA patterns are broadly erased by active
demethylation activity, whereas the imprinted genes are maintained by
DNMT1o activity. (B) The de-novo methylation and maintenance
methylation activity initiates from type A spermatogonia to meiosis.
A type, type A spermatogonia; B type, type B spermatogonia; PL,
preleptotene spermatocytes; P, pachytene spermatocytes; D, diplotene
spermatocytes; RS, round spermatids; ES, elongating spermatids.
Bimodal pattern of DNA methylation in male germ cells

As illustrated in Fig. 3, DNA methylation in male germ
cell specification and maturation displays a bimodal
pattern. PGC, the origin of male germ cells, derives from
epiblast at E6.5–E7.5. Once stimulated by BMP4, PGCs
migrate from the epiblast to hindgut at E7.5–E9 and the
genital ridge at E9.5–E11.5 (Saitou & Yamaji 2012). In the
E6.5 mouse embryo, the DNA patterns in PGCs are
similar to those in somatic cells in term of their fates. For
instance, the pluripotent markers are repressed by DNA
hypermethylation (Seisenberger et al. 2012). During the
migration of PGCs, the epigenetic marks are widely
erased (Popp et al. 2010). In particular, the paternal
imprinted genes and transposons of PGCs are also
demethylated. The re-establishment of DNA methylation
patterns in male germ cells initiates from the prosper-
matogonia or gonocytes. Although a great proportion of
DNA methylation is acquired during the prenatal mitotic
arrest of the gonocytes, the de novo methylation and
maintenance methylation occur in the mitosis of
spermatogonia and meiotic prophase I, while the
maintenance methylation appears only in mitosis (Santos
et al. 2005, Oakes et al. 2007).

The global erasure of the DNA methylation also occurs
during early embryonic development (Mayer et al. 2000,
Oswald et al. 2000). The outcomes and gene expression
patterns of demethylation may differ between early
embryogenesis and PGCs. First, the demethylation
during the early embryogenesis results in totipotency,
whereas the demethylation of the PGCs derived from
the epiblast leads to pluripotency. Secondly, the
demethylation manner during the early embryogenesis
is similar to the process of demethylation in PGCs with
Reproduction (2015) 150 R25–R34
the exception of the imprinted genes, which facilitate the
expression of parent-specific genes in embryos. Finally,
it has been demonstrated that the sperm and oocyte
genomes have different demethylation modes during
embryogenesis, and active DNA demethylation appears
in parental genome compared to the replication-
dependent demethylation in maternal genome (Santos
et al. 2005).
DNA methylation and SSC division and differentiation

To maintain the stem cell pool, SSCs either remain in a
quiescent state or undergo self-renewal. DNA methyl-
transferase 3-like (DNMT3L) is involved in SSC quies-
cence. DNMT3L positively regulates the stability of
promyelocytic leukemia zinc finger (PLZF) in THY1C

SSCs through down-regulating CDK2 expression, which
may degrade PLZF through the ubiquitin pathway (Liao
et al. 2014). The distal CpG island of Cdk2 promoter has
been shown to be hypomethylated in Dnmt3l-knockout
SSCs compared to the wide-type cells (Liao et al. 2014).
On the other hand, it has been reported that the
expression of DNMT3a2 and DNMT3b is undetectable
in PLZF-positive and KIT-negative SSCs (Shirakawa et al.
2013). Thus, there are distinctive roles for different
www.reproduction-online.org
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members of DNMT3 subfamily in regulating mitotic
self-renewal of mouse SSCs.

Besides undergoing self-renewal, SSCs also give rise to
differentiated spermatogonia. DNA methylation may be
required to the transition from the Kit-negative SSCs to
Kit-positive differentiated spermatogonia. It has been
demonstrated that the transcripts of DNMT3a2 and
DNMT3b remains at the highest level in type A
spermatogonia compared to other types of male germ
cells. Shirakawa et al. (2013) have recently reported that
DNMT3a2 and DNMT3b are not present in PLZF-
positive and KIT-negative SSCs. Conversely, DNMT3a2
and DNMT3b expression is parallel with the Kit
expression in spermatogonia. These observations suggest
that DNA methylation is less prevalent in SSCs vs
differentiated spermatogonia. Furthermore, overexpres-
sion of DNMT3b in the Kit-negative SSCs can induce Kit
expression (Shirakawa et al. 2013). Altogether, the
DNMT3a2 and DNMT3b may methylate genes essential
for maintaining SSCs in an undifferentiated state and
facilitating the transition from the undifferentiated
spermatogonia to the differentiated state. It is of great
interest to further explore the interaction between the
DNA methylation dynamics and SSC differentiation in
a global scale, which can shed light on the epigenetic
causes of the non-obstructive azoospermia with sperma-
togenesis arrest in the SSC phase.
The role of DNA methylation on meiosis and
spermiogenesis

The de novo DNA methylation and maintenance
methylation are associated with meiosis in male germ
cells, as illustrated by the observation that the expression
of DNMT1, DNMT3a2 and DNMT3b is up-regulated
in leptotene and zygotene spermatocytes (Oakes et al.
2007). The methylation of testis-specific genes PRM1
and PRM2 has been shown in meiotic prophase I (Trasler
et al. 1990), and the imprinted genes and non-CpG
island sequences are methylated in meiosis (Oakes et al.
2007). Demethylation of testis-specific genes may be
required for meiotic initiation, since DNA methyl-
transferases are attenuated significantly in type B
spermatogonia and preleptotene spermatocytes.
Recently it has been reported that down-regulation of
DNMT3L may increase the expression of the premeiotic-
specific gene-STRA8, leading to the onset of meiosis
prematurely (Vanhoutteghem et al. 2014). In addition, it
has been revealed that 5mC-specific dioxygenase (TET1)
can mediate the demethylation of the locus-specific
genes, including the meiotic genes, and promotes the
meiotic initiation through the activation of these genes
in oocytes (Yamaguchi et al. 2012). It remains to be
determined whether the function of TET1 in spermato-
genesis resembles oocytes. Nevertheless, it is tempting to
speculate that the meiotic initiator may be demethylated
and activated in spermatogonia and preleptotene
www.reproduction-online.org
spermatocytes. Overexpression of DNMT3a2 and
DNMT3b during this phase or knockout of TET1, Aid
and Apobec1 can be helpful to identify the essential
factors in meiotic initiation.

In mice, the expression of DNMT1, DNMT3a2 and
DNMT3b is enhanced in leptotene and zygotene
spermatocytes and reduced in pachytene spermatocytes
(La Salle & Trasler 2006). In contrast to rodents, the
expression of DNMT1, DNMT3a2 and DNMT3b peaks
in pachytene spermatocytes in humans (Marques et al.
2011). These differences in the expression of DNMTs in
rodent vs human male germ cells may result from the
different isolation approaches used for separating these
cells. The former utilized the STA-PUT method by cell
gravity, while the latter employed the micromanipula-
tion based upon the cellular diameters from testicular
biopsy. However, the methylation activity in human
pachytene spermatocytes is limited to the expression
level and needs to be verified by functional assays.
Additionally, the mechanisms that maintain epigenetic
marks through meiosis especially in pachytene sperma-
tocytes require additional studies and verification.
Notably, during spermiogenesis in both mice and
humans, DNMT1, DNMT3a2 and DNMT3b are highly
expressed in round spermatids (La Salle & Trasler 2006,
Marques et al. 2011). Interestingly, DNMT1 is present
in non-proliferative round spermatids whilst DNMT3a2
and DNMT3b are expressed after the establishment of
paternal methylation pattern. Thus, DNMT3a2 and
DNMT3b may function in maintaining the methylation
patterns through the de novo methylation pathway,
although the roles of DNMT1 in round spermatids
remain to be elucidated in future studies.
Summary

In summary, we have discussed recent advances in the
field regarding the roles of novel epigenetic regulators,
including miRNAs and DNA methylation, in mitosis,
meiosis and spermiogenesis. Although much progress
has been made, there are many issues remaining to be
investigated. First, more studies should be conducted
in uncovering the spatiotemporal and sequential
expression of these epigenetic regulators in male germ
cells during spermatogenesis. Also, the roles of these
epigenetic mediators in controlling spermatogenesis
remain unknown. Secondly, it remains unclear which
epigenetic regulators are the actual initiators for the
onset of mitosis, meiosis and/or spermiogenesis. Thirdly,
most of the information on the epigenetic regulators in
spermatogenesis are derived from rodents, very little is
known about epigenetic regulation on human sperma-
togenesis due to the difficulties in obtaining human testis
tissues. Since cell types and stages of spermatogenesis
are distinct between humans and rodents, it is essential
to identify whether epigenetic regulators in rodent
spermatogenesis are similar to humans. Recently it has
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been shown that human SSCs can be induced to
differentiate into haploid spermatids which were used
successfully for fertilization with full developmental
capacity (Yang et al. 2014). It is interesting to explore
what epigenetic regulators (miRNAs and DNA methyl-
ation) are involved in human SSC mitosis and differen-
tiation. Finally, it is postulated that there are certain
check points in the spermatogenesis, e.g. the progress
from SSCs to differentiating spermatogonia, the entering
of mitotic germ cells to meiotic process, and the
transition from the canonical histone to the PRM in
spermatids. During these critical processes, the
interactions or crosstalk among epigenetic regulators
remain unknown. Significantly, the stringent epigenetic
regulation in spermatogenesis would yield novel insights
into the etiology of sterility/infertility and offer new
targets for gene therapy of male infertility. To uncover
new epigenetic regulators on spermatogenesis will also
facilitate the development of new approaches for male
contraception since it is feasible to control the epigenetic
regulation artificially without changing DNA sequences
and the process is reversible and safe.
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