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Abstract

The novel Coronavirus, SARS-CoV-2 disease (COVID-19) was defined as a global pandemic
and induced a severe public health crisis in 2020. Covid-19 viral infection targets the human
respiratory system and, at present, no specific treatment has been identified even though certain
drugs have been studied and considered apparently effective in viral progression by reducing the
complications in the lung epithelium. Researchers and clinicians are still struggling to find a
vaccine or a specific innovative therapeutic strategy to counter COVID-19 infection.

Here we describe our study indicating that SARS-CoV-2 genome contains motif sequences in the
5'UTR leader sequence that can be selectively recognized by specific human non-coding RNAs
(ncRNAs), such as micro and long non-coding RNAs (miRNAs and IncRNA). Notably, some of
these ncRNAs have been already utilized as oligo-based drugs in pulmonary and virus-associated
diseases. We identified three selective motifs at the 5"UTR leader sequence of SARS-CoV-2 that
allow viral recognition and binding of a specific group of miRNAs, some of them characterized
by “GU” seed alignments. Additionally, one seed motif within miRNAs has been found to be
able to bind the 5’UTR leader sequence. Among miRNAs having thermodynamically stable
binding site against leader sequence and that are able interacted with Spike transcript some are
involved in pulmonary arterial hypertension and anti-viral response, i.e. miR-204, miR-3661, and
miR-1343. Moreover, several miRNA candidates have been already validated in vivo and
specific oligo sequence are indeed available for their inhibition or overexpression.

Four IncRNAs (H19, Hotair, Fendrr, and LINCO05) directly interact with spike transcript
(mRNA) and viral genome.

In conclusion, we suggest that specific miRNAs and IncRNAs can be potential candidates to
design oligonucleotide-drugs to treat COVID-19 and that our study can provide candidate
hypothesis to be eventually tested in further experimental studies.
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Introduction

The virus causing COVID-19 disease(1), severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), is a subgroup member of coronaviruses family that together with Middle East respiratory
syndrome coronavirus (MERS-CoV), HIN1, and H5N1 influenza A, causes acute respiratory
distress syndrome (ARDS) and acute lung injury (ALI), and in chronic stages pulmonary failure
and fatality. Compared to World Health Organization estimated fatality rate for SARS-CoV
patients at 14-15% in 2003 (update 49, 7 May 2003, WHO), SARS-CoV-2 showed a pandemic
transmission rate, all over the globe, resulting in a pandemic global lock-down(2). One of the
reasons proposed for such increased transmission rate resides in the high mutation rate in
glycoprotein Spike, which made SARS-CoV-2 viral infection more rapidly(3)'. Coronavirus entry
mechanism requires the interaction of Spike with the cellular receptor Angiotensin Converting
Enzyme 2 (ACE2), which promotes Spike conformational changes and facilitates envelope fusion
with the cell membrane and virus endosomal entrance. Interim trial data on vaccination are still
ongoing and only preliminary data have been released. Moreover, there is no clinically approved
nor effective vaccine available against SARS-CoV-2. Current therapeutic interventions have been
reported in patients treated with chloroquine and mostly relevant with its derivative,
hydroxychloroquine, a malaria drug that may alter the SARS-CoV-2 cellular uptake(4). However,
recent evidences indicate that hydroxychloroquine was used more for symptoms prevention or
progression of Covid-19, rather than prevention of SARS-CoV-2 infection(5). Overall, the
potential prevention benefits of hydroxychloroquine remain to be determined, since long-term
usage is ineffective and imply severe side effects, i.e. eye damage(6). Therefore, it is important to
discover new potential therapeutic molecules with a low cost-effective ratio and with low side-
effects, potentially already clinically approved for other indications. Nevertheless, target-
selectivity is crucial to avoid side effects.

RNA-based drugs, i.e. small interference RNAs (siRNAs) and long RNA antisense locked nucleic
acid oligos (LNAs), are catching the interest of the scientific community due to their low side-
effects and high efficiency ratio, partly due to their mechanism of action that mimics an
endogenous and physiological mechanism of defense proper of many organisms, which indeed
include small RNAs. Notably, microRNAs (miRNAs) have been already proposed as potential
non-coding RNA (ncRNA) candidates to counter cardiovascular and inflammatory diseases(7),
and COVID-19(8), using the MirTarget program to predict putative miRNA candidates?. In this
manuscript, we aimed to achieve two different goals. First, we wanted to dissect the existence of
endogenous ncRNAs, like miRNAs and long non-coding RNAs, that could potentially be used to
generate oligosequence-like based anti-viral therapeutic drugs or for which therapeutic trials have
been already developed or are in advanced clinical trials. Second, we wanted to determine the
existence of COVID-19-selective motifs that might be recognized from specific ncRNA candidates
and that therefore could be selective for exogenous RNA genomes, promoting high selectivity for
oligo-based antiviral drugs.
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Results

MiRNAs bind the 5'UTR-leader sequence, the 3'UTR of SARS-CoV-2 and Spike mRNA
through noncanonical bindings

MiRNAs act as translational repressors by targeting mRNA transcripts in the RNA-induced
silencing complex (20,21), by recognizing mRNA 3°-UTR with 7-8 nucleotides at their 5 end,
termed miRNA seed. Animal but not plant-derived miRNAs can recognize also the mRNA
5’UTR to promote or inhibit mRNA-to-protein translation(22-24). This mechanism has been
modulated through artificially designed miRNA enhancers, termed miRancers(25).

To identify miRNAs as potential therapeutic candidates against SARS-CoV-2 infection, we
depicted putative miRNA binding sites (BS) on SARS-CoV-2 genome, focusing on its 3"UTR and
5’UTR. We also depicted miRNA BS against the mRNA of the glycoprotein Spike (Fig. 1a), which
facilitates SARS-CoV-2 envelope fusion with the cell membrane and virus endosomal entrance by
interacting with the cellular receptor Angiotensin Converting Enzyme 2 (ACE2). Although ACE2
has been proposed as target for anti-viral treatments®®, its fundamental protective role against
acute lung failure(27) leaded us to hypothesize that identification of putative miRNA and IncRNA
BS on Spike mRNA may represent a more effective mechanism, with less side-effects, to prevent
SARS-CoV-2 transcription.

We initially screened 2.656 human mature miRNA sequences using three RNA-RNA binding site
prediction methods(11,13). Although miRNAs interact with the 3"'UTR of mRNA transcripts, the
5’UTR of SARS-CoV-2 contain a highly conserved sequence of 90 nucleotides, termed “leader
sequence”, that is pivotal for viral transcription and that is used for the identification of all viral
subgenomic mRNAs (Fig. 1a). Therefore, we also considered miRNA noncanonical bindings
against viral 5°'UTR. Overall, we identified BS for 1.531 miRNAs against the S'UTR and 82
miRNAs BS against the 3"'UTR of SARS-CoV-2 genome (Fig. 1b and Suppl. Table 1-4).
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Figure 1. Canonical and noncanonical microRNAs binding sites identified within the 5’"UTR and
3’UTR of SARS-CoV-2 genome. (a) structural representation of SARS-CoV-2 genome with underlined
leader sequence, 3"'UTR, and spike transcript against which we identified (b) miRNA binding sites (BS)
using 3 RNA:RNA prediction algorithms. Only binding sites with a Jaccard index > 0.8 and a minimum
free energy (MFE) <-5 (for 5"UTR), or < -20 (for 3"UTR of viral-RNA and Spike transcript) were
considered. (¢) Only those miRNA BS involving the seed sequence (nt 2-8) were considered and (d)
screened in canonical and marginal according to Bartel classification.

According to Bartel classification(20,21), 325 out of 1.531 5"'UTR-identified miRNA BS were
located in the leader sequence, 53 classified as marginal BS and 34 as canonical BS (Fig. 1b-d and
Fig. 2a). 21 out of 82 3"UTR-identified miRNA BS were marginal and 13 were canonical (Fig.
1d and Fig. 2b). Identified miRNAs bound the leader sequence and the 3"UTR of viral genome
through a more “noncanonical” binding, which devoid of GU-alignments (Fig. 2a,b and Suppl.
Table 1-2). Conversely, 540 potential miRNA BS identified against Spike mRNA (3"'UTR) lack
of GU annealing (Fig. 2¢, and Suppl. Table 3). Notably, miRNAs can bind “nonclassical targets”,
like IncRNAs, through a more noncanonical and GU-enriched binding(28). Irrespective from the
genomic region considered, miRNAs bound the leader sequence, the genomic 3"UTR, and Spike
transcript preferentially through an offset-6mer binding (Fig. 2a-c). Moreover, although the
number of 8mer and 7mer-m8 miRNA BS identified against Spike transcript was increased,
according to the increased chance to predict 3"UTR-like interactions, the offset-6mer site was still



the most enriched BS (Fig. 2¢ and Suppl. Table 3). Taken together, these data indicate the
presence of a conserved and/or preferred seed sequence within the viral genome.
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Figure 2. Identified miRNA BS on SARS-CoV-2 leader sequence, genomic 3"UTR, and Spike
3°UTR transcript. Binding sites (BS) identified and classified according to Bartel classification against
(a) viral-leader sequence, (b) the viral genomic 3"UTR, and (c) against the 3"UTR of glycoprotein Spike
transcript, which interact with cell receptors ACE2 and TMPRSS?2 of the target cell.

MiRNAs bind the leader sequence of SARS-CoV-2 through a seed-enriched triplet motif

We identified a nucleotide motif enriched in the seed sequence of miRNAs targeting the leader
sequence through a noncanonical binding (GU enriched) that we define as “miRNA-leader triplet
motif”. The motif consists of a “GGG” nucleotide triplet within the miRNA seed (nt 2,3,4) (Fig.
3a and Suppl. Table 4). The consensus motif bits rate was significantly high and independent
from the type of BS classification. Moreover, the “GGG” motif was absent in miRNA seeds
binding the genomic 3"UTR or the Spike transcript. Notably, we did not identify conserved motifs
among all 2.656 human miRNAs, nor references indicating conserved motifs in miRNAs seed
sequences that can be used to increase miRNA selectivity for their mRNA targets. These data
suggest the existence of specific miRNAs that can recognize the SARS-CoV-2 leader sequence



through a triplet motif. The triplet may stabilize noncanonical bindings of identified miRNAs with
exogenous genomes.

SARS-CoV-2 leader sequence contains three motifs matching GGG-seed enriched miRNAs

During the analysis of miRNA BS identified against the 5'UTR of SARS-CoV-2 we observed that
almost all miRNAs recognize recurrent nucleotide motifs located in the leader sequence of viral-
RNA. We hypothesized that these motifs may increase and stabilize miRNAs-viral RNA
interaction, especially that of miRNAs containing noncanonical BS. MEME suite analysis of
enriched motifs in the leader sequence of SARS-CoV-2 identified three consensus motifs (Fig. 3b
and Suppl. Table 4). In line with our findings, the motifs completely bounded the seed of miRNAs
with BS against the leader sequence, including those containing the “GGG” motif and comprising
GU alignments (Fig. 3b and Suppl. Table 4).
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Figure 3. GGG and leader sequence motifs identified using RNA:RNA algorithms against all
miRNA candidates. Schematic representation and relative (a) GGG and (b) leader motifs identified on
selective miRNAs, with an RNA:RNA thermodynamic predisposition to interact. The violin graph
indicate the motif conservation and the corresponding miRNA region involved in the interaction.

In detail, we identified an “AACnAAC”, “AUACCUUCCA”, and “nUnGAUCUnU” motif
recognized within the miRNA sequence, and within the nt 3-8 of miRNAs seed (Fig. 4a-b, Suppl.
Fig., and Suppl. Table 4). Several GGG-enriched miRNA candidates recognized more than one
motif (Fig. 4b, Suppl. Fig., and Suppl. Table 4). Next, using StarMir algorithm(17,18), we



performed a logistic prediction of miRNA:leader-sequence folding and pairing using available
high throughput and V-CLIP datasets. In particular, miRNA:leader bindings were analyzed
considering thermodynamic, structural, and sequence features. This prediction returns an output
value termed “probability of unpaired” (PU), which is the probability for each nt of the leader
sequence to bind to a miRNA nt, therefore to be unpaired according to the miRNA:leader-sequence
thermodynamic features. Accordingly, the logistic prediction confirmed the propensity of GGG-
enriched miRNAs to selectively interact with identified leader-enriched motifs, especially the
“nUnGAUCUNnU” motif (Fig. 4b, Suppl. Fig., and Suppl. Excel File). The logistic prediction
identified thermodynamically stable miRNA:leader-sequence BS, i.e. those for miR-4531 and
miR-449a, and revealed those thermodynamically instable and therefore improbable, i.e. those for
miR-6752 and miR-5572 (Fig. 4b and Suppl. Fig.). Taken together, these data indicated that
leader-enriched motifs are recognized by GGG-enriched miRNAs that interact with viral genome
through noncanonical BS. The motifs may contribute to miRNA final recognition of viral genome
and increase binding stability of those miRNAs that use a noncanonical binding to target SARS-
CoV-2.
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LncRNAs H19, LINCO0S, and Fendrr interact with SARS-CoV-2 and Spike transcript

To identify IncRNA candidates that may interact with SARS-CoV-2, we browsed the available
literature to select IncRNA candidates related to pulmonary hypertension, cardiovascular and
inflammatory diseases. We considered 12 human IncRNAs as potential candidates (Fig. Sa).
Considering that SARS-CoV-2 completes its replicative cycle within cell cytoplasm, we focused
on cytoplasmic IncRNAs and used nuclear IncRNAs as negative controls. LncRNA matching
propensity against the 3"UTR, 5'UTR and Spike RNA was analyzed using the same approach
adopted for miRNAs and considering IncRNA complex secondary structures. LncRNAs were
ranked according to their interaction energy (IE, arbitrarily set as significant when < -15). LncRNA
H19 showed the highest and significant interaction propensity with SARS-CoV-2 5'UTR and
Spike transcript (IE -20.82 and -40.43, respectively) (Fig. Sb). Except for Miat (IE -17) and
APOA1_AS (IE -16) that showed a mild binding propensity for Spike transcript, all nuclear
IncRNAs lack of a potential propensity of interaction. LncRNAs Fendrr, H19, Hotair, and LINCO05
significantly interacted with the Spike transcript (Fig. Sc,d). LINCO05 showed a significant binding
propensity also for the 3"'UTR of SARS-CoV-2 genome. Notably, H19 promotes the pathogenesis
of pulmonary arterial hypertension (PAH)(29), suggesting that H19 might contribute to SARS-
CoV-2 acute pulmonary injury.
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Figure 5. Interaction propensity of IncRNAs involved in pulmonary arterial hypertension, anti-viral
response, and inflammatory diseases. (a) Heat map of IncRNA interaction propensity with SARS-CoV-
2 5°UTR, 3°UTR, and with Spike mRNA using IntaRNA, RNAup, and RNAplex. Significantly binding



sites for Spike were identified for cytoplasmic (b) IncRNAs H19 (and for 5'UTR), (¢) Fendrr, and (d)
LINCOS. Nuclear IncRNAs were used as negative control. Rectangles represent the zoomed view of
IncRNA interaction loops. LncRNA minimum free energy secondary structures were predicted using
RNAfold web tool. Colors represent base-pair probabilities. *p<0.05; **p<0.01; p<0.001

Discussion

COVID-19-related global pandemic and severe public health crisis have underlined the importance
to find strategies able to avoid the risk of future re-emergence events. Waiting for a capillary
utilization of an efficient vaccine and considering the severe respiratory failure at which patients
affected by COVID-19 are subjected, priority is to be given to prevent or at least to reduce viral-
related complications.

NcRNAs can represent a class of molecules offering an evolutionary and adaptive advantage in
humans. MiRNAs and IncRNAs are epigenetic modulators of various biological processes and
comprise almost 90% of the genome, underlying their critical role as fine-tuning regulators of cell
adaptive processes, including viral infections. Indeed, RNA-based drugs, such as siRNAs,
Gapmers, and LNA-flanked oligos, have been already extensively used in vitro and in vivo to treat
inflammatory and viral-related diseases, show high cell-type specificity and lack of side
effects(7,30,31). Therefore, modulation of an endogenous anti-viral and anti-inflammatory
mechanism can represent a more attractive and promising strategy against COVID-19. However,
viral specificity of ncRNA-based drugs may represent an obstacle when modulating endogenous
ncRNAs. Here, we described the existence of selective motifs located in the SARS-CoV-2 genome
and in the seed of certain miRNAs that may represent a way to generate viral-selective RNA-based
drugs with unwanted side effects.

We performed an in silico analysis to identify miRNA BS against the SARS-CoV-2 leader
sequence, 3'UTR, and against the Spike transcript. We identified a triplet motif enriched in the
seed of those miRNAs binding the SARS-CoV-2 leader sequence, and three motifs within the
leader sequence that were recognized by GGG-enriched miRNAs. All together, these motifs may
consent a more thermodynamically stable interaction of those miRNAs targeting the leader
sequence through a noncanonical binding. Nevertheless, these motifs may direct the interaction of
certain miRNAs against viral rather than endogenous RNAs. These motifs are absent in the seed
of miRNAs binding the 3'UTR of SARS-CoV-2 genome or the Spike transcript. Therefore, they
represent a promising site to design RNA-based anti-viral drugs.

To accelerate the chance to generate effective RNA-based anti-viral drugs, we screened
currently available literature to depict miRNAs involved in viral response, pulmonary and
cardiovascular diseases, and inflammatory processes. We identified 35, 16, and 44 miRNA
candidates binding the leader sequence, the viral 3'UTR, and the Spike transcript, respectively
(Table 1 and Suppl. Table 5). Fifteen GGG-enriched miRNAs binding the leader sequence are
known modulators of viral replication upon infection in humans. In example, miR-3661 has been
reported to be directly involved in SARS-CoV-2 proteins formation in lung(32). MiR-3145-5p and
let-7c-5p inhibit viral HIN1-deriving protein synthesis in patients with chronic obstructive



pulmonary disease (COPD)(33,34). Seven miRNAs were involved in arthritis or
osteonecrosis(35,36). Several miRNA candidates, e.g. Spike-binding miR-648(37), miR-19a-
3p(38), miR-644a(39), and miR-320d(40), and leader-binding miR-449a(41), miR-4531(42), and
miR-204(43) were involved in PAH, asthma, COPD and pulmonary fibrosis. Leader-binding miR-
6752 is highly enriched in airway epithelial cells upon mucin overproduction(44), miR-4531 is
upregulated in children with asthma, and miR-4520-3p is associated with familial Mediterranean
fever(45). Hence, miRNAs targeting the leader sequence of SARS-CoV-2 might partly explain
increased susceptibility of certain patients with familial or previous complications. Additionally,
other leader-binding and Spike-binding miRNAs, and IncRNA HI19(29), are involved in
cardiovascular diseases, diabetic retinopathy, and other inflammatory and metabolic diseases.
Most of miRNAs indicated in Table 1 have been inhibited or overexpressed using RNA-based
oligos, tested in vitro and in vivo, or used as disease-associated markers, and can therefore be
potentially applied as anti-viral drugs.

Methods

Dataset

Covid genome has been downloaded from ENA (MN908947)
(http://www .ebi.ac.uk/ena/data/view/<accession>), 3’- 5’- UTR and Spike portion have been
collected from the same entry. 2656 human miRNA sequences have been downloaded from
miRBase (May 2020) (9). The sequences for the following IncRNA have been downloaded from
RNAcentral(10): Fender, Ftx, H19, Hotair, Malat1l, Meg3, Mhrt, Miat, Nron, Sencr, IncWDR59,
LINCOS5, APOA1-AS.

miRNA and IncRNA interaction with SARS-CoV-2 genome

3 RNA-RNA binding site prediction methods have been considered: IntaRNA(11), RNAplex (12)
and RNAup (12). The choice is based on two recent comparative studies which highlighted them
as the best overall methods (13) (14). These programs have been run with default parameters,
exceptions made for the maximum matching interaction length which has been set to the miRNA
length and to 100 for IncRNA-RNA matches. Average pair probabilities for locally stable
secondary structures, necessary for RNAplex, have been calculated with RNAplfold (12).
Examples of the running commands are:

IntaRNA
IntaRNA -t <input_file_query> -q <input_file_target> > <output_file>

RNAplex
RNAplfold -W <mirna_length> -u <mirna_length> -O --plex_output < <input_file>



RNAplex -1 <mirna_length> -q <input_file_query> -t <input_file_target> -a ./

RNAup
RNAup -w <mirna_length> -b -0 -3 -5 --interaction_first < <input_file>

RNA-RNA interaction analysis

Results of the 3 methods have been analyzed and merged, giving high priority to consensus
matches. Match ranges, the overlap of which has been expressed through the Jaccard indexes of
the matching residues in both RNAs, and interaction energy (minimum free energy, MFE,
expressed in Kcal/moll) are then considered (Supplementary Tables 1-3). We considered only
match ranges with Jaccard index threshold of > 0.8. For miRNA BS predicted at the viral 3"UTR
or at the Spike mRNA transcript (3"'UTR) we considered a MFE threshold of < -20. For miRNA
BS predicted at the viral 5"UTR of SARS-CoV-2 genome we considered a MFE threshold of < -
5, since it is considered a noncanonical site of interaction and datasets refers mainly at 3"UTR
bindings. An interaction propensity threshold of < -15 was arbitrary set-up for IncRNA:RNA
interactions.

MiRNAs and SARS-CoV-2 leader sequence motifs analysis

Enriched motifs have been searched with the MEME suite(15) with default parameters. A logo of
the miRNA seed motifs and leader motifs has been generated using WebLogo(12,16) with default
parameters.

Logistic prediction of miRNA-target sites using high throughput and V-CLIP studies

For further analysed each miRNA candidate showing BS in the leader sequence and with a
functional annotation using STarMir Tool (17,18) to implement the logistic prediction,
crosslinking high throughput miRNA binding data with immune-precipitation (CLIP) studies. The
advantage of this additional prediction is that we can incorporate comprehensive thermodynamic,
structural and sequence features. First, for each miRNA candidate interacting with the leader
sequence according to RNAup, RNAplex, and IntaRNA analysis, we further analysed the
interaction propensity using the available “5'UTR” filter to screen the high throughput and V-
CLIP datasets. All interactions were confirmed and followed Bartel classification. Next, we
evaluated the target site probability score, ranking the target sites based on their logistic
probability, site and seed access score. The Site Access is the measure of structural accessibility
as computed by the average probability of a nucleotide being single strand (i.i., unpaired) for the
nucleotides in the predicted binding site. The Seed access is the measure of structural accessibility
as computed by the average of single-strand probabilities of nucleotides in the target sub-region
complementary to the miRNA seed. The potential of nucleation (AGnucl) and stability (AGnybria) of
the target site annealing were used to measure the total energy change of the hybridization (AGtotar)
(see Supplementary Excel file for additional details).



We further analysed the miRNA:leader sequence interaction. Considering the thermodynamic of
predicted BS, we calculated the probability of each nucleotide within the leader sequence to be
involved in a binding with each miRNA. A probability unpaired value (PU) for each nt below 0.05
corresponded to a significantly high propensity of interaction. In contrast, a high PU value
corresponds to miRNA:RNA loops.

LncRNA secondary structures
MEFE secondary structures of IncRNAs interacting with Spike transcript, SARS-CoV-2 5 or
3"UTR were predicted using RNAfold web tool(19). Colors represent base-pair probabilities.
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Table 1. Role of main miRNA candidates binding the leader sequence of SARS-CoV-2

miRNAs Reported function ref
hsa-miR-1283 Endothelial vascular injury (46)
hsa-miR-495-5p Inhibits vascular remodeling and angiogenesis in PAH 47
hsa-miR-1303 Regulate the autophagy process in mycobacteria infection (48)
hsa-miR-204-3p Promoter of PAH 43)
hsa-miR-6529-5p Novel potential tissue specific biomarker in cattle 49)
hsa-miR-1343-3p Attenuate fibrosis in fibrotic lung disease/microvescicle (50,5
D
hsa-miR-3661 Direct involvement with SARS-CoV-2 proteins from lung biopsy | (32)
hsa-miR-381-3p Deregulated in lung adenocarcinoma (52)
hsa-miR-3976 Regulates apoptosis in hosts after microbial infection (53)
hsa-miR-520b-5p Inhibits NSCLC (54)
hsa-miR-3144-5p Interact with viral proteins (55)
hsa-miR-4652-5p Lung cancer expressed miRNA (56)
hsa-miR-6857-5p Prognostic of viral-related cervical cancer/ marker of NSCLC 57




hsa-miR-377-5p Promote fibronectin production/inhibits lung cell proliferation (58,5
9
hsa-miR-1292-5p Inhibitor of osteogenic differentiation, promotes osteoporosis (60)
hsa-miR-219a Arthritis/NSCLC (35)
hsa-miR-30c-1-3p Positive bone development/promotes viral infection (61,6
2)
hsa-miR-449a Inhibits pulmonary fibrosis 41
hsa-miR-5572 Upregulated in osteonecrosis femoral head (36)
hsa-miR-6752-5p Highly expressed in airway epithelial cells/mucin overproduction | (44)
hsa-miR-4531 Upregulated in children with asthma 42)
hsa-miR-6831-3p Anti-atherogenic/PAH (44,6
3)
hsa-miR-377-5p Inhibits lung cancer cell proliferation (59)
hsa-miR-3123 Negative correlation with survival of COPD patients (64)
hsa-miR-3150b-3p | Inhibits cell proliferation in NSCLC patients (65)
hsa-miR-451b Inhibits osteosarcoma lung metastasis (66)
hsa-miR-4520-3p Associated with FMF-related mutations (45)
hsa-miR-491-5p Inhibits osteosarcoma lung metastasis (66)
hsa-miR-6515 Contributes to IncRNA H19-mediated lung cancer metastasis (67)
hsa-let-7c-5p Inhibits HIN1 protein synthesis/anti-inflammatory role in COPD | (34,6
8)
hsa-miR-6887-5p Inhibits squamous cell carcinoma cell growth (69)

PAH: Pulmonary arterial hypertension; NSCLC: Non-Small Cell Lung Cancer; COPD: Chronic obstructive
pulmonary disease; FMF: familial Mediterranean fever




Figures

a SARS-CoV-2 genome [JEnvelope [l Membrane [ accessory proteins
non-structural proteins (nsp)

5UTR === ORF1a | ORF1b

3'UTR

structural proteins (sp)

leader sequence \ 5/‘ mRNA Spike "\3,

ATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAACGAAC

— s
e ..NNNNNE_!;%@EIEE]}T-5'miRNA miRNAs f Nwmmmggﬁﬂggv-smiﬁm
miRNAs seed sequence IncRNA IncRNA miRNAs seed sequence IncRNA
b d
1.2 H
Jaccard > 0.8; MFE<-5;:-20 5'UTR 3'UTR Canonical BS
- 1.0 - oy @ "mae — — '_. . Bmer
E R R [ \ : v MFE <-5 Jaccard>08 _ .. MFE <-20 Jaccard > 0.8 5. .NNNNNNNNNNNNA-3
o 0.6 TR il 1 ....NNNNNNNNNNNHN- 5" miRNA
:I ,'-. ::. - * i3 1968 8 TES 4 3? 1 .
2 O CAR S Tmer-A1 _
= 0.2 s : ‘C"‘& 5:~.........NNNNNNIEITh!ll!!I‘:Il!IA-3: |
Di0esssuvesenarenunas 3 NNNNNNNNNNNNN- 5° miRNA
BlT65 4 32|11
02 T T
-20 15 -10 -5 0 7mer-m8
mean_energy
c miRNAs coverage
) N N N I I T N N T R N T O T T -
yem LT, THG TLICI T LT TR R R || ) 0 0 O P 1| 1 10 118 4 Marglnal BS
6mer
0 ||||||||]||||!_l|||;|;".I|;i|i-I||fl||||i‘||"i'IZ'I||||[llllll|||III";!IHII;'iI||||”'I"!|!m|;i"||| ||i':;:||;||||[!||§|iu|1||,|i,|n"“|;-|ii|||.-:!|||[|"|”|I||“| '|IIIr““:|!:F!I'i“m“'i”||uirl |::!;--:i||”:|||!|"|H”::: 5 s NNNNNNNNNNNN -3
& " .r" o ‘M" | I |H' '| ||| il ”"' 1‘” e |:|||| ‘ ol '[|. Wl .‘I|| [lll“l o 2l b 1 | i 3 NNNNNANNNNNNN- 5 miRna
| e L
| ll I | | ” i | H|I | p offset 6mer
Figure 1

Canonical and noncanonical microRNAs binding sites identified within the 5’"UTR and 3"UTR of SARS-
CoV-2 genome. (a) structural representation of SARS-CoV-2 genome with underlined leader sequence, 3
"UTR, and spike transcript against which we identified (b) miRNA binding sites (BS) using 3 RNA:RNA
prediction algorithms. Only binding sites with a Jaccard index > 0.8 and a minimum free energy (MFE)
<-5 (for 5’'UTR), or < -20 (for 3"UTR of viral-RNA and Spike transcript) were considered. (c) Only those
miRNA BS involving the seed sequence (nt 2-8) were considered and (d) screened in canonical and
marginal according to Bartel classification.
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Figure 2

Identified miRNA BS on SARS-CoV-2 leader sequence, genomic 3'UTR, and Spike 3"UTR transcript.
Binding sites (BS) identified and classified according to Bartel classification against (a) viral-leader
sequence, (b) the viral genomic 3'UTR, and (c) against the 3"UTR of glycoprotein Spike transcript, which
interact with cell receptors ACE2 and TMPRSS2 of the target cell.
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Figure 3

GGG and leader sequence motifs identifled using RNA:RNA algorithms against all miRNA candidates.
Schematic representation and relative (a) GGG and (b) leader motifs identified on selective miRNAs, with
an RNA:RNA thermodynamic predisposition to interact. The violin graph indicate the motif conservation
and the corresponding miRNA region involved in the interaction.
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Figure 4

Leader enriched motifs and localization in miRNA BS GGG enriched. (a) Three leader motifs identified
with RNAup (1), IntaRNA (2), and RNAplex (3). (b) MiRNA BS containing in yellow the GGG motif and
localization of leader-enriched AACnhAAC (red), UnUnGAUCUNU (green), and AUACCUUCCCA motifs (light
blue). The graphics represent the probability of each nucleotide to pe unpaired (PU), considering
thermodynamic and structural features analyzed with StarMir algorithms
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Figure 5

Interaction propensity of IncRNAs involved in pulmonary arterial hypertension, anti-viral response, and
inflammatory diseases. (a) Heat map of IncRNA interaction propensity with SARS-CoV-2 5'UTR, 3"UTR,
and with Spike mRNA using IntaRNA, RNAup, and RNAplex. Significantly binding sites for Spike were
identified for cytoplasmic (b) IncRNAs H19 (and for 5°'UTR), (c) Fendrr, and (d) LINCO5. Nuclear IncRNAs
were used as negative control. Rectangles represent the zoomed view of IncRNA interaction loops.
LncRNA minimum free energy secondary structures were predicted using RNAfold web tool. Colors
represent base-pair probabilities. *p<0.05; **p<0.01; p<0.001
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