
Ward A. Heggermont and Stephane Heymans
MicroRNAs Are Involved in End-Organ Damage During Hypertension

Print ISSN: 0194-911X. Online ISSN: 1524-4563 
Copyright © 2012 American Heart Association, Inc. All rights reserved.

is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231Hypertension 
doi: 10.1161/HYPERTENSIONAHA.111.187104

2012;60:1088-1093; originally published online September 17, 2012;Hypertension. 

 http://hyper.ahajournals.org/content/60/5/1088
World Wide Web at: 

The online version of this article, along with updated information and services, is located on the

  
 http://hyper.ahajournals.org//subscriptions/

is online at: Hypertension  Information about subscribing to Subscriptions:
  

 http://www.lww.com/reprints
 Information about reprints can be found online at: Reprints:

  
document. Permissions and Rights Question and Answer this process is available in the

click Request Permissions in the middle column of the Web page under Services. Further information about
Office. Once the online version of the published article for which permission is being requested is located, 

 can be obtained via RightsLink, a service of the Copyright Clearance Center, not the EditorialHypertensionin
 Requests for permissions to reproduce figures, tables, or portions of articles originally publishedPermissions:

 at UNIV PIEMORIENTAA VOGADRO on November 12, 2012http://hyper.ahajournals.org/Downloaded from 

http://hyper.ahajournals.org/content/60/5/1088
http://www.ahajournals.org/site/rights/
http://www.lww.com/reprints
http://hyper.ahajournals.org//subscriptions/
http://hyper.ahajournals.org/


1088

Even in the new millennium, arterial hypertension remains 
a serious condition, with considerable morbidity and mor-

tality worldwide. Crucial in managing the disease is not only 
lowering arterial blood pressure but also preventing or treating 
the concomitant end-organ damage. Crucial organs, such as the 
heart, kidneys, vessels, eyes, and brain, are sensitive to high 
blood pressure.1,2

In the past decade, microRNAs (miRs) have become 
among the most popular kids on the cardiovascular block, 
being the subject of numerous studies on their involvement 
in hypertension-related manifestations.3,4 MiRs are small, 
double-stranded RNA molecules of 20 to 23 nucleotides in 
length. They are synthesized in the nucleus of every cell, 
after which they undergo different maturation processes 
before being included in the RNA-induced silencing com-
plex. This complex blocks translation of mRNA into protein 
and to some extent degrades mRNA. MiRs, with their often 
imperfect complementarity to the 3′ untranslated region of 
untranslated mRNA, are widely conserved among mammals. 
They typically act in clusters to influence a specific process, 
but 1 miR is often involved in different miR-mRNA interac-
tions.5 Large-scale expression analyses with microarrays led 
to subsequent in-depth functional studies of ≥1 differentially 
regulated miR(s), using a transgenic approach (miR-knockout 
or miR-overexpressing animals), or pharmacological block-
ade of miRs using highly specific oligonucleotides. Whereas 
other groups extensively reviewed the implication of miRs in 

atherosclerosis and vascular disease,6–8 this review focuses on 
their potential role in hypertension-related end-organ damage. 
Nevertheless, it needs to be affirmed that the contribution of 
arterial hypertension itself to end-organ damage is difficult to 
investigate, because end-organ damage is multifactorial and 
is a combination of genetic susceptibility and environmental 
factors. Even more challenging is determining the influence of 
individual miRs on these complex processes.

Are MiRs of Pathogenetic Importance in 
Arterial Hypertension Anyway?

Little is known about the involvement of miRs in essential 
hypertension as such. A recent study showed a miR signa-
ture in plasma of patients with essential hypertension, which 
differed from their healthy counterparts: 27 miRs were dif-
ferentially expressed.9 The evidence for the interplay among 
miR-155, the angiotensin receptor 1, A1166C polymorphism, 
and angiotensin receptor 1 protein expression levels10,11 pro-
vides a possible pathogenetic role for a miR in cardiac hyper-
trophy, whereas the description of a genetic variant in the 3′ 
untranslated region of vacuolar H+ ATPase ATPV0A1 cre-
ates a miR-637–binding motif related to hypertension risk 
by interfering with the fine-tuning of several vasoactive sub-
stances, including chromogranin A as precursor of catestatin, 
an inhibitor of catecholamine release.12

A refreshing point of view would be to study the effect of 
antihypertensive medication on miR profiles. Until now, such 
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studies in hypertension are generally lacking. This approach 
could, however, be promising.13,14 Lu et al13 observed that 
the cardioprotective effect of propanolol after myocardial 
infarction is at least partially mediated by downregulation 
of miR-1 in the heart. A similar approach in hypertension 
studies could lead to the discovery of miRs with a causal 
importance.

Heart: Cardiac Fibrosis, Hypertrophy, and 
Hypertensive Heart Failure

Studies in Models of Pressure Overload
Hypertensive heart disease and concomitant cardiac fibrosis 
have been the subject of numerous investigations, albeit not 
always in models of hypertension. These important manifesta-
tions of long-lasting arterial hypertension also occur on other 
stressors.15–17 MiRs are essential in different pathophysiologi-
cal processes underlying cardiomyocyte growth, remodeling, 
interstitial fibrosis, and heart failure.18 The expression of miRs 
during cardiomyocyte hypertrophy is dynamically regulated19 
and differs between hypertension-related hypertrophy and 
physiological hypertrophy,20,21 suggesting that different cell sig-
naling pathways are involved in these 2 distinct processes. MiR-
133a, constitutionally expressed in the heart, protects against 
myocardial fibrosis without affecting hypertrophy in pressure-
overloaded hearts.22 MiR-133a and miR-30 are involved in 
myocardial matrix remodeling, in part by their regulation of 
connective tissue growth factor.23 MiR-199a/b functions as an 
important negative regulator of hypertrophy,24 targeting dual-
specificity tyrosine-(Y)-phosphorylation regulated kinase 1a25 
and calcineurin/nuclear factor of activated T-cells (NFAT) sig-
naling,26 the latter also controlled by miR-23a.27

Studies in Other Cardiac Disease Models
The role of miRs in cardiovascular adaptation to stress has 
been extensively studied in other models, for example, doxo-
rubicin-induced cardiomyopathy, transgenic rodent strains, 
and adeno-associated virus vector–mediated approaches. 
Several groups already showed that targeted deletion of Dicer, 
the endoribonuclease of the RNAse-III family that cleaves 
immature forms of miRs, not only provokes spontaneous car-
diac remodeling but also leads to dilated cardiomyopathy and 
heart failure.28,29 These crucial findings clearly indicate that 
the normal heart is delicately fine-tuned by different miRs, in 
line with downregulation of Dicer in end-stage failing hearts.30

The constitutively expressed cardiac miRs, miR-1 and 
miR-133, are among influential regulators of cardiomyocyte 
biology. They are implicated in differentiation of embryonic 
stem cells into cardiomyocytes.31 MiR-1-1 and miR-1-2, rep-
resenting 40% of all expressed cardiac miRs, derepress certain 
elements of the cytoskeleton, such as twinfilin-1, to provoke 
cardiac hypertrophy.32 MiR-1 negatively regulates expression 
of several hypertrophy-associated genes, such as calmodulin 
and myocyte enhancer factor 2a,33 sarco/endoplasmic reticu-
lum calcium-dependent ATPase 2a,34 and insulin growth factor 
1.35,36 MiR-133 itself is downregulated in cardiac hypertro-
phy.37 Other known targets in hypertrophy, such as calcineurin 
and NFATc4, are also controlled by miR-133.38,39

Continuous pressure overload of myocardium gives 
rise to cardiac fibrosis, and miR-21 has been extensively 

investigated in this regard.40 Myocytes are at least partially 
protected from reactive oxygen species by miR-21, via its 
target programmed cell death protein 4,41 but miR-21 does 
contribute to myocardial fibrosis by stimulating mitogen-
activated protein kinase signaling in fibroblasts.42 However, 
Thum et al42 convincingly showed that inhibiting miR-21 
with a cholesterol-modified antago-miR prevented cardiac 
failure and fibrosis development; similar, but not identical, 
experiments by Patrick et al43 did not show this protective 
effect: their treatment with a locked nucleic acid–based anti-  
miR-21 was not able to prevent or treat cardiac fibrosis on 
transaortic banding. Probably other subtle factors are at 
stake when a specific miR is inhibited: the pharmacological 
blockade of miRs is not only dose dependent but also dif-
fers according to the oligonucleotide chemistry (antago-miR 
versus anti-miR) and the time of administration, factors that 
differed between both publications.

Downregulation of miR-29 induces the expression of col-
lagens in vitro and in vivo and enhances the fibrotic response 
in the myocardium.44 Furthermore, miR-21 and -29 also medi-
ate complex signaling in the development of renal fibrosis45–48 
and thus seem to modulate similar processes in different tar-
get organs (Figure). MiR-133a regulates collagen 1A1 expres-
sion,49 and miR-199 also links antiapoptotic Akt signaling with 
β-adrenergic stimulation.50 Finally, miR-199a-5p is regulated 
by signal transducer and activator of transcription 3, thereby 
linking cardiomyocyte and endothelial cell function.51 MiR-9 
regulates myocardin expression together with NFATc3,52 the 
latter being controlled by miR-23a.53 Furthermore, phospha-
tase and tensin homolog is also derepressed by miR-22, hence 
protecting rat cardiomyocytes from hypertrophy.54 Mitogen-
activated protein kinase, which is regulated by miR-21 in 
fibroblasts, is under the control of miR-142.55 Others report 
that both miR-22156 and miR-27b57 promote cardiac hyper-
trophy, whereas miR-206 attenuates cardiac remodeling by 
inhibiting metalloproteinase inhibitor 3.58

MiRs as Biomarkers for Cardiomyocyte Injury
A few miRs implicated in cardiac function are possible bio-
markers for cardiomyocyte injury. MiR-208a/b is encoded 
together with the cardio-specific α- and β-myosin heavy 
chains. Elevated plasma miR-208 levels were reported in 
myocardial infarction59 and are associated with adverse clini-
cal outcomes in human dilated cardiomyopathy.60 When miR-
208a is inhibited in Dahl hypertensive rats, cardiac function 
and survival improve during hypertension-induced heart fail-
ure.61 MiR-208a functions as a regulator of hypertrophy and 
conduction62 by downregulating the expression of α-myosin 
heavy chain.63 Together with miR-208b, circulating miR-499 
also reflects myocardial damage in cardiovascular disease, in 
general,64 and, more particularly, in myocardial infarction.65 In 
2011, Wang et al66 showed that miR-499 targets calcineurin 
and dynamin-related protein 1, thereby regulating mitochon-
drial dynamics. Furthermore, also miR-423-5p was reported 
to be a possible candidate biomarker for heart failure.67,68 
These biomarker miRs are not only part of a disease-specific 
miR signature, but their up- or downregulation might bring 
cardiovascular signaling networks to light that are involved in 
heart failure.69,70
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Kidney: Renal Fibrosis and Hypertensive Kidney 
Failure

Studies in Models of Arterial Hypertension
Because of its enormous reserve capacity, kidney failure is 
only an end-stage manifestation of arterial hypertension.71 
Pre-emptive screening by measuring serum creatinine clear-
ance is insufficient to detect early hypertensive kidney failure. 
Already in 2010, miR-200a/b, miR-141, miR-192, miR-205, 
and miR-429 were described to be highly expressed in the kid-
neys of patients with hypertensive nephrosclerosis.72 However, 
few studies have investigated these miRs in models of arterial 
hypertension but rather in models of kidney disease, such as 
the unilateral ureteral obstruction model.73 However, some 
pathogenetic links might shed more light on these complex 
processes. The renal juxtaglomerular cells are responsible for 
renin production. MiR-663 and miR-181a clearly interfere in 
the metabolism of renin: in vitro experiments in HEK293 cells 
demonstrated that miR-663 binds to the renin and apolipopro-
tein E 3′ untranslated region and regulates both mRNA levels; 
miR-181a, on the other hand, binds to and regulates renin and 
mitochondria-associated apoptosis-inducing factor (AIFM1) 
mRNA.74 Furthermore, Dicer-knockout mice lose numerous 
juxtaglomerular cells and develop marked renal fibrosis.75 
This implies at least a role for these miRs in the pathogenesis 
of hypertensive renal injury, but further studies are certainly 
needed to elaborate these findings.

Studies in Other Models of Kidney Disease
A histological hallmark of long-lasting kidney damage is 
renal fibrosis. MiR-29b is partially protective in renal fibro-
sis because it mediates the downregulation of several colla-
gens in renal medullary injury,45 and suppression of miR-29 

by transforming growth factor β-1 (TGF-β1) contributes to 
enhanced renal collagen expression and resulting fibrosis.46 
Smad-3–mediated upregulation of miR-21 promotes the 
development of renal fibrosis.47,48 TGF-β modulates a lot of the 
compensatory mechanisms observed in diabetic nephropathy, 
which is also accompanied by renal fibrosis and glomerulo-
sclerosis. A miR circuit composed of miR-192 and miR-200b/c 
induces TGF-β expression, responsible for an acceleration 
of the profibrotic process in the kidney.76 Inhibition of these 
miRs with specific antisense oligonucleotides results in partial 
amelioration of renal fibrosis in mice77,78 and rats.79 However, 
there is debate regarding whether miR-192 is profibrotic or 
antifibrotic in the kidney. Although a profibrotic effect of miR-
192 was reported via TGF-β1 signaling,80 loss of miR-192 
did promote fibrogenesis in diabetic nephropathy.81 Possible 
explanations are the differences in animal models, cell types, 
and stimuli used in the assays and differences in seed-binding 
sites between rodent and human miR-192 targets. Also, miR-
382 is at play in the development of inner medullary intersti-
tial fibrosis in mice by targeting kallikrein-582 and TGF-β.83 
On the other hand, miR-200a is able to inhibit renal fibrosis 
by downregulating TGF-β.84

Eyes and Brain: Toward a MiR Signature for Organ 
Damage?
Hypertensive retinopathy and stroke are manifestations of 
inadequately treated, long-lasting arterial hypertension. 
Evidence for miRs contributing to these processes is scarce. 
A detrimental feature of retinopathy is that its consequence—
visual loss—only manifests at a late stage when the damage 
to the retina is mostly irreversible. Patients with known hyper-
tension under adequate follow-up should be screened on an 
annual basis for the development of hypertensive retinopathy.85 
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Several miRs seem to be involved in diabetic retinopathy.86–88 
Recently, a comprehensive atlas of the complete mouse eye, 
including the retina, has been developed,89 and a tool for miR-
restricted transgene expression in the retina has been set up.90 
Until now, evidence for a miR signature in hypertensive reti-
nopathy is lacking, yet the premise of miR-oriented research 
on this topic could be promising.

MiR expression profiling has been performed in animal mod-
els of intracerebral hemorrhage91,92 and in ischemic stroke.93–95 
Also in the repair phase after stroke in general, there is growing 
evidence that miRs regulate an important part of the process of 
controlled neuronal death,96,97 reviewed in Reference 98. One of 
the most dangerous consequences of ischemic stroke is hemor-
rhagic transformation, and here arterial hypertension plays a 
crucial role. MiR-211 as a regulator of angiopoietin-199 and 
miR-125a/b-5p inhibiting endothelin-1 expression in vascular 
endothelial cells100 do point toward the importance of miRs in 
vasculogenesis and vascular solidity. Furthermore, there is evi-
dence for involvement of miRs in vascular neointimal lesion 
formation,101,102 reviewed in Reference 103.

Perspectives in Cardiovascular MiR Research
In the past decade, knowledge on the function of specific miRs 
in development, health, and disease has boomed. We appreci-
ate miRs as delicate fine-tuners of developmental and patho-
physiological processes. In addition, this research field still 
leads to the discovery of previously unknown molecular tar-
gets in different diseases.

Furthermore, blocking of miRs with specific antisense oli-
gonucleotides could be of therapeutic use, also in the cardio-
vascular field. Referring to the end-organ damage described 
here, for example, administration of miR inhibitors in oph-
thalmology, is a challenging perspective. One of the theo-
retical advantages of miR-blocking therapy is that several 
miRs are often time-, organ-, and disease-specifically altered. 
However, contrasting effects of miR blockade should make us 
think about the clinical usefulness. The development of spe-
cific galenic forms, for example, anti-miR sponges, is under 
investigation.104 The discovery of highly disease-specific miR 
signatures is an interesting screening tool to detect a disease 
faster and more accurately, of course taking into account all 
the possible drawbacks.

In conclusion, miRs still remain an exciting subdomain in 
cardiovascular research. Process-specific miR signatures are 
revealed little by little in systemic diseases, such as arterial 
hypertension and diabetes mellitus. Those miR-rich networks 
form interesting therapeutic targets. However, we have to 
realize that miRs are only a micro-part of the vast number 
of noncoding RNAs,105 such as long noncoding RNAs, PIWI-
interacting RNAs, small nucleolar RNAs, transcribed ultra-
conserved regions, and large intergenic noncoding RNAs, 
which definitely merit our attention to better understand and 
treat diseases, including hypertension.
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