
MicroRNAs as Potential Regulators
of Immune Response Networks in
Asthma and Chronic Obstructive
Pulmonary Disease
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Chronic respiratory diseases (CRDs) are an important factor of morbidity and mortality,

accounting for approximately 6% of total deaths worldwide. The main CRDs are asthma

and chronic obstructive pulmonary disease (COPD). These complex diseases have

different triggers including allergens, pollutants, tobacco smoke, and other risk factors.

It is important to highlight that although CRDs are incurable, various forms of treatment

improve shortness of breath and quality of life. The search for tools that can ensure

accurate diagnosis and treatment is crucial. MicroRNAs (miRNAs) are small non-coding

RNAs and have been described as promising diagnostic and therapeutic biomarkers for

CRDs. They are implicated in multiple processes of asthma and COPD, regulating

pathways associated with inflammation, thereby showing that miRNAs are critical

regulators of the immune response. Indeed, miRNAs have been found to be

deregulated in several biofluids (sputum, bronchoalveolar lavage, and serum) and in

both structural lung and immune cells of patients in comparison to healthy subjects,

showing their potential role as biomarkers. Also, miRNAs play a part in the development or

termination of histopathological changes and comorbidities, revealing the complexity of

miRNA regulation and opening up new treatment possibilities. Finally, miRNAs have been

proposed as prognostic tools in response to both conventional and biologic treatments

for asthma or COPD, and miRNA-based treatment has emerged as a potential approach

for clinical intervention in these respiratory diseases; however, this field is still in

development. The present review applies a systems biology approach to the

understanding of miRNA regulatory networks in asthma and COPD, summarizing their

roles in pathophysiology, diagnosis, and treatment.
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INTRODUCTION

Chronic respiratory diseases (CRDs) like asthma and chronic

obstructive pulmonary disease (COPD) are complex and
heterogeneous diseases that pose a challenge for investigation

and management. Multiple environmental factors and genetic

predisposition modulate asthma and COPD phenotypes and

severity, as well as how a patient responds to treatment. In

these diseases, genomics, metabolomics, epigenomics, and

transcriptomics engage in intricate interaction at the cellular
level. Systems biology tries to construct models or approaches

throughout the network that reveal the underlying biology and

help to understand living systems. Traditionally, gene

modulation and cell-signaling networks have been thought to

be the main regulatory systems in cells, and RNAs have been

considered molecules that only codify genetic information to

protein synthesis. However, this idea is changing due to the
recent advances in non-coding RNAs, such as microRNAs

(miRNAs) (1). MiRNAs are 18–22 nucleotides in length and

block protein translation by RNA-miRNA interaction (2). These

small RNAs regulate hundreds to thousands of genes, offering a

broad combinatorial possibility and constituting complicated

regulatory networks. As a result, systems biology approaches
are essential to understand miRNAs functions in complex

diseases such as asthma and COPD, combining data from

high-throughput experiments with computational models for

performance of data driven modeling and model driven

experimental methods (Figure 1).

New procedures have been applied in this topic, particularly

to determine the coordinate function of miRNAs in cancer. Lai
et al. used a systems biology approach to unravel the role of

miRNAs therapeutics in this disease (3, 4). This approach

highlights the importance of high-throughput experiments to

determine from the same biological experiments the

transcriptome of miRNAs and their gene targets, with further

exploration by proteomic data, or immunoprecipitation-based
analysis, as this is very helpful in validating the huge amount of

predicted miRNA-gene interactions detected in silico by diverse

bioinformatic tools reviewed by Gomes et al. (5). After getting

this data, then it is easier to apply computational biology

approaches, most of them based on previously validated data

for gene-miRNA interaction determination. After this, system
biology comes in, because as previously stated it helps in creating

maps of miRNA-gene-pathway interactions that may have an

actual function in cell physiology (6). The actual mapping can

be further detailed by introducing the regulation that occurs

on the controllers (miRNAs) themselves, as we have to take into

account miRNA biogenesis and structure, epigenetics,

epitranscriptomics, transcription factor circuits and super

enhancers, all of them modulating miRNAs functions in

diseases (7).
In this review, we will focus on asthma and COPD, two of the

most common CRDs worldwide, providing an overview about

those molecular pathology mechanisms by miRNAs.

Additionally, we will explore new insights in the field of

miRNAs as biomarkers of these diseases. Lastly, we will

highlight altered after specific treatment for each disease and
discuss clinical advances in the use of miRNAs. With this review

we want to set the foundations of actual data of miRNAs as

regulators and biomarkers of chronic respiratory diseases, being

able to serve as a guide for future application of complex system

biology approaches to determine the actual combined effects of

this miRNAs in these diseases, seeing the big picture of
the pathophysiology.

PATHOPHYSIOLOGY OF ASTHMA
AND COPD

CRDs are an important cause of morbidity and mortality

worldwide. According to the World Health Organization, the

most common CRDs are asthma, COPD, lung hypertension, and
occupational lung diseases (8). It is estimated that more than 300

million people worldwide have asthma and 3 million people die

each year from COPD, accounting for an estimated 6% of total

deaths globally (8).

The causes triggering the development of CRDs are diverse.

Asthma is a multifactorial and heterogeneous disease, and a variety

of risk factors have been linked to this disease such as genetics,
atopy, and recurrent viral infections (9). Additionally, tobacco has

been described as the main cause of COPD, though exposure to

other toxic substances such as air pollution originated from biomass

fuel has been also linked to COPD (10, 11). Independently of origin,

CRDs are characterized by the inflammation and obstruction of the

lower respiratory tract due to a hyperresponse of the immune
system accompanied by cellular infiltration (12, 13). In allergic

asthma, the predominant leucocytes are eosinophils, with a

triggered type 2 immune response with high abundance of

interleukin (IL)-4, IL-5, and IL-13 (14, 15); however, in COPD

the most abundant cellular populations are neutrophils,

macrophages, and T lymphocytes (11, 13).
Asthma presents with high variability among patients, thus

posing a challenge for the improvement of diagnostic and

therapeutic tools (16). Asthma is characterized by chronic

airway inflammation, mucus hypersecretion, and bronchial

hyperresponsiveness and the presence of respiratory symptoms

such as wheezing, shortness of breath, chest tightness, and cough

(17). Airway inflammation and structural remodeling together
with reversible airflow obstruction and airway hyperreactivity are

the main distinctive findings of asthmatic disease (18). In addition,

asthma encompasses several disease variants, meaning that it can

Abbreviations: a-SMA, alpha-smooth muscle actin; ACO, Asthma-COPD

overlapping; ASMC, airway smooth muscle cells; AUC, area under curve; BALF,

bronchoalveolar lavage fluid; COPD, chronic obstructive pulmonary disease;

COX-2. cyclooxygenase-2; CRDs, chronic respiratory diseases; CSE, cigarette

smoke extract; FEV1, forced respiratory volume in the first second; GCs,

glucocorticoids; HBECs, human bronchial epithelial cells; HDAC, histone

deacetylase; HIF-1a, hypoxia-inducible factor 1-alpha; ICS, inhaled

corticosteroid; IFN-g, interferon gamma; IL, interleukin; lncRNA, long-

noncoding RNA; MAPK, mitogen-activated protein kinase; miRNAs,

microRNAs; PBMCs, peripheral blood mononuclear cells; PGE2, prostaglandin

E2; PI3K, phosphatidylinositol 3-kinase; ROS, reactive oxygen species; TGF,

transforming growth factor; TLR, Toll-like receptor; TNF, tumor necrosis factor.
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be stratified into several phenotypes and endotypes. Phenotyping

and endotyping of asthma with the use of induced sputum or

peripheral blood cytology can facilitate responsiveness to

treatment, specify the pathogenic mechanisms, and anticipate
risks. These features attest to the complexity of asthmatic disease

and the numerous factors involved in its pathophysiology,

suggesting that systems biology can aid in understanding the

key factors implicated in molecular networks.

COPD is a multifactorial and heterogeneous disease that affects

millions of people worldwide (19). This pathology is a major cause
of chronic morbidity and mortality, and many people bear the

burden of this disease for years. COPD encompasses small airway

obstruction, emphysema, and chronic bronchitis, and it is

characterized by chronic inflammation of the airways and lung

parenchyma with progressive and irreversible airflow limitation

(20). Symptoms include dyspnea, cough, and sputum production

(21). The phenotypic characterization of COPD patients may
allow for better risk stratification and personalization of therapy

(22). Airway damage in COPD is triggered by dust, fumes, vapors,

or gas, but the primary factor is exposure to tobacco smoke (23).

Cigarette smoke alters both innate and adaptive immunity by

upregulating cytokines (IL-1, IL-6, IL-8, tumor necrosis factor

[TNF]-a…) (24, 25), and modifying the physiological function of
alveolar macrophages (26), dendritic cells (27), neutrophils (28),

and natural killer cells (29). Smoking also modifies the behavior of

the epithelium by increasing mucin production (MUC5AC) (30)

and disrupting epithelial cell-cell junctions, thus increasing the

permeability of the epithelial barrier (31).
It has been shown that besides altering the normal physiology

of the airways, cigarette smoke may change the epigenetic

landscape, and these changes can be passed on to future

generations through inheritance (32). Several studies show that

COPD causes certain epigenetic changes in the lungs (33, 34),

and many of these changes are likely due to tobacco smoke
exposure (35), such as F2RL3 methylation, which is associated

with smoking behavior and high mortality (7, 36). These

epigenetic changes can be targeted as a possible therapy;

current genetic editors like zinc-finger nucleases and CRISPR-

Cas9 can be coupled to them and enzymes to rewrite epigenetic

markers induced by tobacco smoke or related to COPD

pathophysiology (37, 38).

MiRNAs IN LUNG DISEASES

The complex interplay between genetics, epigenetics, protein

synthesis, and immune response in asthma and COPD is actually

even more intricate when another layer of regulation is introduced:

FIGURE 1 | Systems biology approaches allow for better understanding the roles of miRNAs in pathophysiology, diagnosis, and treatment of asthma and COPD.

Being miRNAs regulators of multiple genes expression affecting thus several pathways simultaneously, a comprehension of the global picture of their regulation is in

need. System biology approach helps in this matter, by using a data driven method for creating computational models from previous data of high-throughput

experimentation (transcriptomics, proteomics, epigenomics and epitranscriptomics) that could be obtained from the literature. Network mapping modeling allows

determining the interaction between miRNAs, genes (or proteins) and phenotype and clinical data. Besides, mathematical models can help finding key miRNAs with

power to alter the core of cellular pathway regulation and performance. After this, model driven experimentation allows to confirm the predicted targeting by miRNAs

in cooperation by their modulation in vivo or in vitro, uncovering their role in the disease and their use in therapy. Finally, this new data obtained and validated can be

summed up to confirm previous high-throughput results, enlarging the available data of miRNA regulation in asthma or COPD.
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miRNAs. These small molecules or noncoding RNAs are capable of

regulating the gene-protein expression of immune system

performance (39) and structural airway homeostasis and function

(40). Moreover, miRNAs can regulate epigenetic modulators and be

regulated by epigenetic changes as well (41). MiRNAs are therefore

essential players in the physiopathology of both diseases, creating
complex networks and interactions among diverse factors (genes,

proteins, cells) that play a role in these pathologies (Figure 2).

It is important to differentiate between two kinds of miRNAs:

intracellular and extracellular (found inside extracellular vesicles

such as exosomes, microvesicles, and apoptotic bodies) (42).

Intracellular miRNAs regulate several cellular pathways, and
their expression is tissue- and disease-specific, so they have been

widely used as prognostic and diagnostic biomarkers of different

pathologies, including viral infections, cancer, cardiovascular and

allergic diseases (43, 44). Also, circulating miRNAs have been

studied and used as biomarkers due to their molecular properties

(resistance to degradation and ubiquity) (45).

MiRNAs as Asthma Biomarkers
Circulating cell-free miRNAs can be found in serum or plasma

incorporated into extracellular vesicles, such as exosomes, and in

ribonucleoprotein complexes. There are many studies showing

miRNA deregulation in asthmatic patients (Table 1). It is known

that several miRNAs are increased in serum samples including

miR-21, miR-145, miR-146a, and miR-338, among others (45,

70). Likewise, other authors have described downregulation of

other serum miRNAs, such as miR-18a, miR-126, and miR-155
(71). However, due to the complex relation between miRNAs

and genes (a single miRNA can regulate hundreds of genes), not

all miRNAs qualify for use as biomarkers. One solution to this

problem may be to use combinations of several miRNAs or a

specific miRNA profile to achieve good sensitivity, specificity,

and positive and negative predictive values.
In 2016, Panganiban et al. established a differential miRNA

profile among asthmatic patients, non-asthmatic patients with

allergic rhinitis, and non-asthmatic non-allergic subjects (45). In

their study, the researchers found 30 miRNAs in plasma that

were differentially expressed among three groups, showing six

miRNAs (miR-125b, miR-16, miR-299-5p, miR-126, miR-206,
and miR-133b) with a high predictive value when differentiating

allergic and asthmatic status. Moreover, some of these circulating

miRNAs grouped asthmatic patients into two clusters according

to the number of peripheral blood eosinophils. Finally, they

FIGURE 2 | MiRNA interactions in asthma and COPD diseases. MiRNAs play a crucial role, regulating multiples processes characteristics of both pathologies. In

asthma, deregulation of multiples miRNAs affects to inflammatory processes (miR-221-3p), Th1/Th2 response imbalance (miR-21), cytokine production (miR-629-5p,

miR-142-3p, and miR-223-3p), epithelial injury (miR-221), macrophage polarization to M2 phenotype (miR-146a/b, miR-21) and airway remodeling (miR-3162).

However, miRNAs also can alleviate inflammation (miR-146a) and cytokine decrease production (miR-24 and miR-27). In COPD pathogenesis, miRNAs can be

altered by CSE exposition and they are involved in mucus hypersecretion (miR-218) and cytokine production (miR-149-3p). Moreover, several deregulated miRNAs

are implicated in lung fibrosis (miR-135b, miR-145, and miR-452), and in tissue damage (miR-218). Similarly to asthma, in COPD some miRNAs can act as

regulators of inflammation decreasing the secretion of several cytokines such as TGF-b (miR-1343), TNF-a, and IL-1 b (miR-344b-1-3p).
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demonstrated that circulating miRNAs could be used to diagnose

both allergic rhinitis and asthmatic patients and characterize

asthma subtypes. Milger et al., in 2017, identified some possible

plasma miRNA candidates as biomarkers in a murine model of

asthma (72). These miRNAs were validated in a different cohort
of healthy subjects and asthmatic patients, using a regularized

logistic regression model to identify five miRNA ratios that are

able to differentiate allergic asthmatics from controls with an

area under the curve (AUC) of 0.92. However, this miRNA

signature did not differentiate asthma sub-phenotypes.

Our group recently described an eosinophil miRNA profile

for asthma diagnosis based on statistical models (43). First, we

described a miRNA signature from peripheral blood eosinophils,
which is able to differentiate asthmatic subjects from healthy

controls. Among deregulated miRNAs, we found upregulation of

miR-21 and miR-146a/b, which have been associated with

TABLE 1 | List of miRNAs involved in asthma pathogenesis.

miRNA Implication Origin Expression Target Gene/Pathway References

miR-

140-3p

CD38 expression, chemokine regulation,

inflammation and ASMC proliferation in asthma

ASMC Downregulated CD38, CCL11, CXCL12, CXCL10, CCL5, CXCL8 (46, 47)

miR-145 ASMC proliferation and migration Upregulated KLF4 (48)

miR-

146a-5p

Mucus production Downregulated UBD, CXCL10, CXCL8, CCL20, UCA1 (49)

miR-638 ASMC proliferation and migration Upregulated NR4A3, CCND1 (50)

miR-708 CD38 expression, chemokine regulation,

inflammation and ASMC proliferation in asthma

Downregulated CD38, CCL11, CXCL10, CCL2, CXCL8, JNK,

MAPK, PTEN/AKT signaling pathways

(47, 51)

miR-

146a/b

Regulation of inflammation, macrophage M2

polarization

Epithelial cells,

macrophages

Upregulated PTGS2, IL1B, NOTCH5 (52–56)

let-7

family

Asthma biomarker BALF-derived

exosomes

Downregulated (57)

miR-126 Asthma progression Upregulated DNMT1 (58)

miR-200

family

Asthma biomarker Downregulated (57)

miR-346 Airway inflammation, T helper cell differentiation Downregulated IL13 (59)

miR-

574-5p

Downregulated IL5RA (59)

let-7 Regulation of asthmatic hyperresponse Lung Upregulated IL13 (60)

miR-24 Cytokine regulation Upregulated IL-4 production pathway (61)

miR-27 Upregulated GATA3 (61)

miR-16 Asthma biomarker Plasma Upregulated (45)

miR-

125b

Upregulated (45)

miR-

133b

Downregulated (45)

miR-206 Upregulated (45)

miR-

144-5p

Asthma biomarker Serum Upregulated (43)

miR-155 Upregulated (62)

miR-

185-5p

Upregulated (43)

miR-

320a

Upregulated (43)

miR-

1246

Upregulated (43)

miR-

485-5p

Pediatric asthma Upregulated SPRED2 (63)

miR-

3162-3p

Upregulated CTNNB1 (64)

miR-221 Pediatric asthma, Epithelial cell injury Serum, epithelial

cells

Upregulated SPRED, SIRT1 (63, 65)

miR-21 Imbalance Th1/Th2 response, macrophage M2

polarization

Serum, lung,

macrophage

Upregulated IL12p3, IRF5, CSF1R (43, 52, 54,

62, 66, 67)

miR-

142-3p

Neutrophilic asthma Sputum Upregulated MAPK, NOD-like receptor, Toll-like receptor, JAK-

STAT, and the TGF-b signaling pathways

(68)

miR-

223-3p

Upregulated (68)

miR-

629-3p

Upregulated (68)

miR-

221-3p

Regulation of eosinophil counts and ROS

production

Downregulated CXCL17 (69)
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asthma and allergic diseases (73). In addition, this molecular

profile grouped the asthmatic population into two principal

clusters, which are distinguishable by the number of peripheral

blood eosinophils and serum periostin levels. Then, we evaluated

these miRNAs in serum and found that miR-1246, miR-144-5p,

miR-320a, miR-185-5p, and miR-21-5p were upregulated in
asthmatic patients. Specifically, miR-185-5p was related to

asthma severity. Combination of miR-185-5p, miR-144-5p, and

miR-1246 in a logistic regression model distinguished healthy

individuals from asthmatics with an AUC of 0.86, and a

specificity and sensitivity of 0.89 and 0.77, respectively. Serum

expression of miR-320a, miR-185-5p, and miR-144-5p was used
to classify subjects into different asthma disease phenotypes

(intermittent, mild persistent, moderate persistent, and severe

persistent) in a random forest model, showing that miRNAs can

be used for asthma diagnosis and severity classification.

Unfortunately, to date no more studies about specific miRNAs

of eosinophils have been conducted, making this is a field of
potential research focus.

Elkashef et al. have reported the use of miR-21 and miR-

155 as biomarkers in bronchial asthma (62). They showed that

both miRNAs are higher in serum of individuals with

eosinophilic asthma than healthy subjects. Through a

receiver operating characteristic curve with both miRNAs,

the authors obtained high values for sensitivity, specificity,
and AUC. Thus, they proposed that these miRNAs could be

used as non-invasive biomarkers in asthma diagnosis and

response to therapy.

As mentioned previously, another important factor in asthma

pathogenesis is the role that exosomes exert in the disease (74).

These particles are nanovesicles, with a diameter of 30–150 nm,
and their main role is linked to intercellular communication. It is

worth highlighting that these small vesicles contain miRNAs in

addition to DNA, proteins, and lipid mediators. Thus, some

circulating miRNAs have been associated with exosomes and it

has been observed that these exosomal miRNAs play a critical

role in asthma pathogenesis (75, 76).

It is important to take into account that exosomes can be
located in multiple biological fluids including serum, sputum,

bronchoalveolar lavage fluid (BALF), urine, breast milk, etc., and

that exosomes are associated with multiple pathological

processes, including asthma (16). In 2013, Levänen et al. found

significant differences in a set of exosomal miRNAs from BALF

between mild asymptomatic asthmatic patients and healthy
subjects, including miRNAs of the let-7 and miR-200 families

(57). Later, Gon et al. showed 139 exosomal miRNAs from BALF

deregulated in a house-dust mite murine model compared to

control mice (59). Also, they observed that 54 altered miRNAs

were common between exosomes and lung tissues. Using

computational analysis, the authors then found that 31 genes

were the targets of these miRNAs, including important genes in
asthma pathogenesis such as IL13 and IL5RA.

Different studies have been conducted in exosomes from

serum (58, 77). These showed that several miRNAs, including

miR-125b and miR-126, were altered in these nanovesicles

between asthma condition and normal status. According to the

authors, these results can be applied to the use of novel

diagnostic strategies.

Sputum miRNAs Characterize the

Inflammatory Focus
While it is clear that serum/plasma miRNAs are good non-
invasive biomarkers, miRNAs from sputum samples could also

be used as diagnostic tools. However, the number of studies in

this field reduced drastically and only a few research articles

address this topic (Table 1). One of them was performed in 2018,

conducted by Zhang et al. (69). In this study, the authors found

that sputum and plasma miR-221-3p levels were significantly
decreased in asthmatics compared with healthy subjects.

Furthermore, there was a positive correlation between plasma

and induced sputum miR-221-3p levels and values of this

miRNA in epithelial cells, just like a negative correlation with

the eosinophil percentage in sputum, the number of eosinophils

in bronchial biopsies, and fraction of exhaled nitric oxide levels.

The study highlighted that sputum miR-221-3p levels were
increased in asthmatic patients after 4 weeks of inhaled

corticosteroid (ICS) treatment, compared with asthmatic

patients at baseline. With these data, the researchers proposed

that sputummiR-221-3p could be used as a biomarker for airway

eosinophilic inflammation and response to treatment. In another

study performed in 2016, Maes et al. showed a different miRNAs
profile in sputum samples among healthy subjects, patients with

mild-to-moderate asthma, and patients with severe asthma (68).

They presented three miRNAs that were increased in sputum

samples from patients with severe asthma, which are related to

neutrophilic asthma phenotype (Table 1).

MiRNAs for Characterization of COPD
Study of miRNAs has been rapidly extended to respiratory

diseases including COPD, likely due to research showing that

cigarette smoke acts as a modulator of miRNA regulation in

samples such as lung tissue (78, 79), serum (80) and sputum (81)

(Table 2). Therefore, similarly to asthma, there are miRNAs that

can serve as biomarkers for COPD against healthy conditions in
different biofluids. MiRNAs also regulate the expression of genes

in COPD. Several miRNAs have been implicated in the

physiopathology of COPD (89, 149). However, it is also

important to mention that some miRNAs are also related to

protective functions in COPD pathology when induced by

treatment (144).
Related to lung function, some miRNAs have shown

correlation with worse pulmonary function values in COPD,

some of them being directly correlated with forced expiratory

volume in the first second (FEV1) values (81, 104, 106, 130);

while others, correlate negatively (96, 125); and even, in other

cases, present a negative correlation with FEV1/FVC ratio (97,

113, 122) (Table 2).
Regarding characteristic processes of COPD, fibrosis is almost

the main pathological event that occurs in this disease. MiR-1343

reduce transforming growth factor (TGF)-b receptors I and II,

SMAD2 and SMAD3, which are fibrotic factors (150), whereas

miR-145 may have profibrotic effects, inducing differentiation of
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TABLE 2 | List of miRNAs involved in COPD pathogenesis and diagnosis.

miRNA Implication Origin Expression Target Gene/Pathway References

miR-452 Control of airway

inflammation and

remodeling

Alveolar macrophages Downregulated MMP12 (82)

miR-344b-1-3p Modulator of the immune

responses by CSE

Upregulated TLR2 (83)

miR-637 Development of

pulmonary hypertension

Artery smooth muscle cells Downregulated CDK6 (84)

miR-197 Vascular remodeling and

contraction

Downregulated E2F1 (85)

mir-106a-363 and

-106b cluster

COPD diagnosis and

severity

BALF, plasma, leukocytes Upregulated/

downregulated

AKT1, PTEN, MYD88, IRAK4, IL6,

TGF-bR

(86–88)

miR-146a Inflammation and mucus

secretion

BECs, fibroblasts,

macrophages, plasma, lung

tissue

Upregulated/

downregulated

IRAK1/TRAF6, PGE2, COX2,

PDE7A, IL-1R kinase-1

(52, 89–95)

miR-195 Cytokine production and

inflammation

BECs, lung tissue Upregulated PHLPP2 (96)

miR-132 Direct correlation to

FEV1/FVC%

BECs, monocytes, serum Upregulated SOCS5 (97)

Profile of 9 miRNAs Lung cancer prediction in

COPD patients

Blood cells Downregulated SRCAP, DCTN5, ULK1, and

SEMA7A

(98)

miR-183 (-5p) Increases disease

severity and

pathogenesis

Blood, lungs, smooth muscle

cells, leukocytes

Upregulated/

downregulated

BKCab1, Autophagy, TLR, NSCLC,

cardiomyopathy

(88, 99)

Profile of 5 miRNAs Differentiating healthy,

asthma and COPD

Breath exhaled condensate Downregulated in asthma IL-13, IL-5, GATA3, FcϵR1 b, IL-1

b, MMP-1, Mucin-1

(100)

miR-29b Regulation of cytokine

expression

Bronchial epithelial cells Downregulated BRD4 (101)

miR-10a-5p Pathobiology of COPD

and asthma

Upregulated FOXO3 and PDE7A (94)

miR-132-212, -17-92,

-192-194 clusters

COPD diagnosis against

lung cancer

BALF Downregulated AKT1, ERBB2, KRAS, PTEN,

MYD88

(87)

miR-191 Endothelial injury and

inflammation

Circulating endothelial

microparticles released by

CSE

Upregulated (102)

miR-638 Regulation of oxidative

stress response

Emphysematous lung tissue Upregulated ADAM15, HDAC5, APBB1 (103)

miR-126 Endothelial injury and

inflammation

Endothelial microparticles,

ECs, UVECs

Upregulated/

downregulated

ATM protein kinase (102, 104)

miR-125a (-5p), 125b Inflammation, severity

and AECOPD

Endothelial microparticles,

leukocytes, sputum, plasma

Upregulated Autophagy, TLR, NSCLC,

cardiomyopathy

(81, 88, 102,

105)

miR-503 Correlate with pulmonary

function (FEV1)

Lung fibroblasts Downregulated VEGF (106)

miR-335-5p Modification of fibroblast

behavior and function

Downregulated Rb1, CARF, and SGK3 (107)

miR-31-5p Regulator of mucus

hypersecretion

Lung tissue Upregulated ST3GAL2, PITPNM2, ARHGEF15 (108)

miR-1274a, -424 Emphysema and fibrosis. Lung tissue and bronchial

epithelial cells

Upregulated IL-6, TEP1, CAT, TGFb, and WNT

pathway

(79)

miR-134-5p Chronic mucus

hypersecretion

homeostasis

Downregulated KRAS (90)

miR-150 Suppression of CSE-

induced inflammation

Downregulated P53 (109)

miR-223 Emphysema, fibrosis,

immunity

Lung tissue, BECs Upregulated IL-6, TEP1, CAT, TGFb, WNT,

HDAC2

(79, 110)

let-7 family (a,c,d) Mucus, inflammation,

malignancy

Lung tissue, BECs, BEC,

sputum, serum

Upregulated/

downregulated

EDN1, IL-13, TGF- bR, TLR4, c-

myc, TNFR-II

(78, 81, 90, 100,

102, 111, 112)

miR-21 Lung function,

inflammation, CRD

differentiation

Lung tissue, BECs,

exosomes, serum, plasma,

BEC

Upregulated/

downregulated

GF-b/Smad, PTEN, PI3K/HDAC2,

Notch1, IL-13R, STAT3, IL-1 b

(95, 100, 113–

119)

miR-101 Mucus homeostasis and

inflammation

Lung tissue, macrophages Upregulated MKP-1 (120)

(Continued)
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lung myofibroblasts, while also negatively regulating cytokine

expression of airway smooth muscle cells (ASMCs) (146, 147).

Mucus hypersecretion, is in turn regulated by several miRNAs in

bronchial biopsies by targeting the mucin-related genes (90)
(Table 2). Other miRNAs, such as miR-101 and miR-144, are

upregulated in COPD lungs activating the ERK pathway (120,

151), while miR-15b is also increased in COPD lungs, and the

expression of its target SMAD7 is decreased (79).

MiRNAs are also important in COPD comorbidities like

limb-muscle weakness, as it has been shown that miR-1, miR-
206, and miR-27a are upregulated in limb tissues from weak

muscle COPD (133). Decreased levels of miR-637 in COPD

pulmonary artery smooth muscle cells (PASMCs) are related to

pulmonary hypertension (84), while miR-197 is involved in

ASMCs proliferation and phenotype (85), and miR-183

expression is augmented in blood from COPD and related to
disease severity, targeting KCNMB1 in lungs and smooth muscle

cells (99).

Some miRNAs have been associated with emphysema,

another COPD hallmark, like miR-638 (103); or miR-223 (110).

On the contrary, others present protective effects on emphysema,

like miR-452, appearing downregulated in alveolar macrophages
from COPD (82), or miR-34c, that is also downregulated in

moderate compared to mild emphysematous tissue (140).

Cigarette Smoke Induces Tissue miRNA Changes

Associated With Malignancy
As previously said, miRNAs are profoundly implicated in the
regulation of pathogenesis of respiratory diseases such as asthma

and COPD. To begin with, miRNAs are affected by cigarette

smoke exposure. Many researchers have studied the effect of

cigarette smoke extract (CSE), both in vivo and in vitro, showing

modulations in miRNA expression that are accompanied by the

consequent functional effect.

In COPD, control of the inflammation induced by cigarette
smoke is critical and is performed by miRNAs like miR-135b or

TABLE 2 | Continued

miRNA Implication Origin Expression Target Gene/Pathway References

miR-218 (-5p) Malignant transformation,

lung function

Lung tissue, BECs, serum Downregulated/

upregulated

BMI1, TNFR1 (121–124)

miR-199a-5p Negative correlation with

pulmonary function

Lung tissue, PASMCs, Treg Upregulated/

downregulated

HIF-1a, SMAD3, TGF-b pathway (125–127)

miR-146b Regulating innate

macrophage responses

Macrophages Upregulated STAT1 (53)

profile of 8 miRNAs

including miR-135b

Diagnosing AECOPD,

inflammation

PBMCs, BECs Upregulated IL-1R1 and IL-1b (128, 129)

miR-1273g-3p, -24-

3p, -93-5p

Correlated with

pulmonary function

(FEV1)

Peripheral mononuclear cells Downregulated IL18, IL1B, TNF, NFKBIA, CCL3,

and CCL4

(130)

Profile of 5 miRNAs Differentiation of COPD

and asthma

Plasma Different expression

between COPD and

asthma

Interferon-gamma inducible (131)

Profile of 9 miRNAs Differentiation of COPD Plasma and airway epithelial

cell EVs

5 upregulated and 4

downregulated

Inflammation, extracellular matrix

and remodeling

(132)

miR-206 Apoptosis, atrophy,

inflammation

pvASMCs, limb tissue,

fibroblasts

Upregulated Notch3, VEGF, HDAC3, HDAC4,

IGF-1, SIRT-1, IRAK1

(133–135)

miR-20a, -28-3p COPD diagnosis Serum Downregulated (136)

Profile of 9 miRNAs Environmental factors in

COPD subjects

Differentially expressed (137)

miR-1 Atrophy Serum / limb tissue Downregulated /

Upregulated

pAKT, HDAC3, HDAC4, IGF-1,

SIRT-1

(133, 138)

miR-7 COPD diagnosis,

inflammation

Serum, ASMCs Upregulated Epac1 (136, 139)

miR-100 (-5p) COPD severity Serum, leukocytes Downregulated/

upregulated

Autophagy, TLR, NSCLC,

cardiomyopathy

(88, 136)

miR-34 (a, b, c, c-5p) Lung function, apoptosis,

emphysema

Serum, lung tissue, pmvECs,

BECs, sputum

Downregulated/

upregulated

HIF-1a, Notch-1R, SIRT-1 and 6,

SERPINE1

(81, 125, 136,

140–142)

miR-181a, c COPD development,

inflammation, ROS

Serum, lung tissue, BECs Downregulated MMP, cell growth, apoptosis, NKs,

CCN1

(118, 143)

miR320a, b,d CRD differentiation, lung

function, inflammation

Serum, PBMCs, BECs Upregulated T‐cellR, FoxO, TGF‐b, MAPK,

PI3K‐AKT, IL1B

(130, 144, 145)

miR-30a-3p Correlate with pulmonary

function (FEV1)

Sputum Downregulated (81)

miR-145 Differentiating CRDs,

fibrosis and immunity

Sputum, serum, ASMCs,

BECs, lung tissue, plasma

Upregulated/

downregulated

SMAD3, KLF4 CFTR, KLF5 (70, 111, 131,

146–148)

miR-338/(-3p) Differentiation of asthma,

COPD and ACO

Sputum, serum, plasma Upregulated/

downregulated

RAB14, IGF2R (70, 131)

miR-27a Associated to muscle

weakness and atrophy

Vastus lateralis from limb

tissue

Upregulated HDAC3, HDAC4, IGF-1 and SIRT-1 (133)
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miR-29b, that regulates IL1R1, IL1b, and IL-8, respectively (128,

152). Indeed, in lung tissue and blood from COPD individuals,

several cytokines such as IL-6 or TNF-a are found

downregulated by the action of miR-203 (153). MiR-146a plays

an important role in COPD as previously commented. It is

upregulated in response to cigarette smoke and fine-tunes the
immune response by controlling cyclooxygenase-2 (COX-2)

expression in fibroblasts (91). MiR-146a is also upregulated in

epithelial cells in response to particulate matter and acts as a

negative feedback loop that involves IL-6 and IL-8 (NF-kb
signaling) (92). Nevertheless, the function of this miRNA

might be more complex, as another study showed that
fibroblasts from COPD stimulated with IL-1b and TNF-a
produce less miR-146a, resulting in a high prostaglandin E2
(PGE2) expression (89). This can be supported by data that show

that the minor allele of the rs2910164 polymorphism associates

with less miR-146a expression and higher PGE2 levels (154). This

complexity might be explained by how this miRNA is expressed
in a cell-specific manner as it seems to be downregulated in

COPD sputum but overexpressed in lung tissue (79, 81).

This is not the only association of miRNA polymorphisms in

COPD. Some polymorphisms provide resistance, as in rs3746444

(miR-499) and rs11614913 (miR-196a2), both associated with

COPD protection, bronchodilator response and, to a lesser extent,

COX-2 expression (miR-146 single nucleotide polymorphisms)
(154–157).

Another study showed that miR-218-5p is reduced in lung

tissue from COPD and healthy smokers and in mice and 16HBE

exposed to CSE, and its expression correlates directly with FEV1

values. This miRNA performs a protective role by reducing the

inflammation in COPD lungs (122, 123), something that has
been corroborated by other studies (101, 122–124). Similarly,

miR-181c targets CCN1 and reduces inflammation, reactive

oxygen species (ROS), and neutrophil infiltration (143). MiR-

483-5p is able to reduce Beas-2B proliferation and alpha-smooth

muscle actin (a-SMA) and fibronectin production in fibroblasts

(158) just like let-7c, which is decreased in COPD sputum and

lungs from mice and rats exposed to CSE (78, 81, 159).
Other miRNAs exert similar effects, like miR-145-5p, which is

able to reduce TNF-a, IL-8, and IL-6 (111). Nevertheless, the role of
this miRNA is not clear, existing contradictory data about it (148).

In blood samples from smoking COPD patients, miR-149-3p

was downregulated, and monocytes exposed to CSE diminished

this miRNA expression and upregulated TLR4 and NF-kb, which
increases inflammation (160). This is also observed for miR-

3202, which suppresses the increase of TNF-a and interferon

gamma (IFN-g) induced by CSE in lymphocytes (161), and

similarly for miR-150, who has a comparable role (109).

The methylation effect induced by CSE was observed in

miRNAs from human bronchial epithelial cells (HBECs), where

miR-218 and let-7c inhibition is related to HBE malignancy (112,
121, 162). MiRNAs are regulated by epigenetics, but they also

regulate the epigenetic landscape, like miR-217. This miRNA is

downregulated by CSE and, at the same time, CSE upregulates the

long-noncoding RNA (lncRNA) MALAT1, which is a target of

miR-217 inducing malignancy (163).

Some miRNAs are upregulated directly by CSE, like miR-21,

which is induced by hypoxia-inducible factor 1-alpha (HIF-1a)
(114, 164), or others, like miR-664a-3p (targets FHL1), which is

raised in lung tissue and peripheral blood mononuclear cells

(PBMCs) from COPD patients, and in Beas-2B cells exposed to

CSE (165). Exosomes are also carriers for pathogenic miRNAs, as
CSE-treated HBECs produce exosomes carrying miR-21,

inducing myofibroblast differentiation and increasing a-SMA

and collagen-I through HIF-1a. Interestingly, downregulation of

miR-21 in mice prevented remodeling by CSE (113). This

miRNA is also implicated in the autophagy and apoptosis

produced by CSE in lung tissues of both mice and 16HBE
cells, being associated with worse lung function, proving its

potential as therapeutic target in COPD (115, 116).

It is known that CSE upregulates miR-34a expression in

human pulmonary microvascular endothelial cells and

increases their apoptosis by targeting NOTCH1 receptor (141),

although this relation seems to be the inverse in serum from
women with COPD exposed to biomass smoke (117). MiR-34a

upregulation is also induced by oxidative stress (related to CSE)

via phosphatidylinositol 3-kinase (PI3K) signaling in HBECs,

which downregulates the antiaging-related deacetylases SIRT1

and SIRT6 (166), being this result confirmed in another

study (142).

In the same way, CSE upregulates miR-206 in human
pulmonary microvascular endothelial cells and in COPD

patients, inducing cell apoptosis (134). CSE exposure, in both

mice and Beas-2B cells, increased miR-130a levels, inducing a

decrease inWNT1 and therefore causing cell injury, proliferation,

and migration by regulation of Wnt/b-catenin signaling (167).

Similarly, CSE upregulates miR-195 in Beas-2B cells, increasing
phospho-AKT and IL-6 synthesis (96). To the contrary, other

miRNAs, such as the anti-malignant miR-200c, are indirectly

downregulated by CSE and IL-6 through NF-kb signaling (168).

CSE exposure releases circulating endothelial microparticles

that are miRNA-enriched and, when engulfed by macrophages,

can inhibit their efferocytosis activity (102). Moreover,

expression of HIF-1a is controlled by miR-34a and miR-199a-
5p, both overexpressed in COPD lungs, and also by miR-186 in

fibroblasts, showing the intricacy of miRNA regulation (125,

169). Confirming this complex interplay of miRNA master

regulation, miR-199a-5p is downregulated in regulatory T cells

from COPD. This miRNA targets the TGF-b pathway, and its

aberrant expression may implicate adaptive immunity
dysregulation (126). MiR-199a-5p downregulation is also

present in monocytes from COPD patients, where the protein

unfolding response is activated and involved in COPD pathology

(170), while it also seems to regulate pulmonary artery

hypertension through targeting of SMAD3 (127). This account

for the very different functions that miRNAs may perform

depending on which tissues or cells are present, and how their
expression is influenced by the pathological environments,

performing a very specifically fine tuning of gene expressing

that occurs in a systemic manner.

Monocytes exposed to CSE also upregulate miR-132

expression inducing an increase in epidermal growth factor
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receptor, IL-1b, and TNF-a. Similar results were observed in

16HBE cells, and indeed this miRNA is upregulated in serum

from COPD and smokers (97). In addition, ASMCs have

deregulated miRNA expression due to the CSE effect, as seen

by the upregulation of miR-7 and the consecutive reduction of its

anti-inflammatory target Epac1 in ASMCs and COPD lungs
(139, 171). Likewise, fibroblast behavior and function are altered

by miRNAs modulated by CSE, adding another layer to the

system regulation of miRNAs function in pathological status (93,

106, 107, 135, 172).

Finally, in vitro and in vivo CSE models showed that the

increased DNA damage response due to CSE is also regulated by
miR-126, whose downregulation in COPD causes ATM protein

kinase activation promoting tissue dysfunction and aging (104).

Differential Expression of miRNAs in
Asthma and COPD and Their Roles as
Disease Mediators and Biomarkers
The implications of miRNAs in the human asthmatic response

have been widely investigated in both pediatric and adult

populations. In 2012, a study by Liu et al. showed differences

in the miRNA profile between asthmatic children and healthy

controls (63). They performed a miRNAmicroarray to screen for

differential expression of miRNAs in the pediatric population
and found upregulation of miR-221 and miR-485-3p in

asthmatic children. Also, the authors identified a potential

target of both miRNAs, SPRED2, a negative regulator of

different mechanisms in asthma such as airway inflammation

and hyperresponsiveness, by modulating IL-5 signaling pathway.

These results were confirmed in a murine model of asthma,
showing a significant reduction of Spred-2 in asthmatic mice. In

the same context, miR-3162-3p was identified as upregulated in

childhood asthma implicated in remodeling through b-catenin
(64). Wang et al., in 2015, observed an altered miRNAs signature

in peripheral blood from patients with childhood asthma,

showing that the levels of plasma miR-let-7c, miR-486, and

miR-1260a in children with asthma were significantly higher
than in healthy individuals (173).

To ascertain how miRNAs are involved in adult response to

asthma, several studies in adulthood population have also been

performed. Most research compares the miRNAs profile between

asthmatics and controls in a variety of sample types. Other studies

on miRNAs in asthma in adult population have been reported,
describing a number of miRNAs such as miR-20b, miR-138, miR-

143, miR-145, and others and their role in adulthood asthma (174).

Examples of miRNA profiles that allow COPD diagnosis,

development or differentiation against healthy conditions have

been shown in serum (118, 136). Also, a set of nine miRNAs were

found to be differentially expressed in serum between healthy,

COPD, and a migrant population with COPD, showing that
miRNAs may change with exposure to different environmental

factors (137).

Plasma levels of miR-106b are associated with COPD patients

versus normal smokers (86), and levels of seven miRNAs are

distinctive COPD biomarkers distinguishing from healthy

subjects and asthma patients, with miR-145-5p being related to

severity and miR-338-3p related to smoking COPD (131). Also,

in exhaled breath condensate has been described miRNA profiles

that are differential between COPD, healthy patients, and

asthmatics (100). Discriminating between COPD and similar

diseases has also implemented miRNA studies. Blood cell
miRNAs (a profile of 14 miRNAs) and clustered miRNAs from

BALF can be used as biomarkers for discrimination of COPD

against lung cancer (87, 175). Moreover, in blood, nine miRNAs

including members of the miR-320 family, which target mitogen-

activated protein kinase (MAPK) pathways, can be used for lung-

cancer prediction in COPD subjects (98). Finally, the combined
expression of hsa-miR-195 and hsa-miR-143, obtained from

databases, is able to identify lung cancer compared to disease-

free status, but cannot distinguish COPD from lung cancer (176).

From peripheral leucocytes, differential expression of miR-106b-

5p, miR-183-5p, miR-125a-5p, and miR-100-5p was found in

COPD compared to healthy controls, and miR-106b-5p was
directly correlated with disease severity alleviation (88). Several

studies have focused their interest on miRNAs from specific

immune system cells exploring the implication of these

structures in processes linked to asthma or COPD. For

example, miR-24 and miR-27 have implications for the type 2

response by regulating IL-4 production by T-cells (61). Other

miRNAs such as miR-17 and miR-19 have regulatory functions
on T cell proliferation and differentiation to Th1, Th17, and

regulatory T cells or by modulating type 2 immune response by

inducing PI3K, JAK-STAT, and NF-kb signaling pathways (177).
One of the most widely studied is miR-21. The first study that

demonstrated the implication of miR-21 in allergic airway

inflammation is by Lu et al. (66). The authors observed an
upregulation of miR-21 in transgenic mice with allergic

inflammation compared to controls. Through predictive

algorithms, they identified potential target genes such as IL-

12p35. This gene is implicated in type 1 immune response; thus,

high levels of miR-21 repress the expression of IL-12p35,

contributing to type 2 polarization characteristic of asthma and

other allergic diseases. In another experimental in vivo model of
asthma published in 2011, Lu et al. observed the preventive role

of miR-21 in the expression of IL-3, IL-5, and IL-12 (178). In

their study, the group observed that this miRNA may play a role

as regulator in type 1/type 2 immune response balance,

repressing cytokines of both types of response. In the same

way, other miRNAs have been associated with asthma response
in murine models, including miR-1, miR-145, miR-150, and

miR-155 (179). Also, the let-7 family comprises the most

abundant miRNAs in mouse lungs, playing a potent

proinflammatory role in asthma (60). In particular, let-7a is an

essential regulator of IL-13, which is a key cytokine that induces

airway hyperresponsiveness in the lung tissue of asthmatics.

Repression of this cytokine can alleviate allergic asthma
symptoms. However, mmu-let-7a is markedly suppressed in

Th2 cells, allowing IL-13 expression and stimulating the typical

type 2 response of asthma pathology.

T lymphocytes are crucial in asthma pathogenesis, specifically

orchestrating type 2 immune response. Naïve T cells turn into
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Th2 cells, releasing a set of cytokines (IL-4, IL-5, and IL-13),

which triggers the characteristic processes of asthma (180). In

this case, miRNAs related to T cells play an important role in

type 2 immune response and asthma pathology. One of these

miRNAs is miR-29b, which is involved in the development of

asthma. This miRNA indirectly affects to Th2 response by
regulating T-box transcription factors and IFN-g production in

T helper cells (181), so a lower expression of this miRNA in

asthmatic lung allows a higher production of IFN-g in order to

recover Th1/Th2 balance in asthmatic lungs (182). According to

miR-19a, Simpson et al. in 2014 showed that this miRNA is

expressed by T cells and promotes Th2 cytokine production by
simultaneously targeting inhibitors of the NF-kB, JAK-STAT,
and PI3K pathways (177). Also, they observed that miR-19a

had higher expression in human airway-infiltrating T cells in

asthma. MiR-19a promotes cytokine production, amplifying

inflammatory signaling by inhibiting PTEN, the signaling

inhibitor SOCS1, and the deubiquitinase A20. Another
important miRNA linked to T cells is miR-34a. This miRNA

has been found to be upregulated in lungs of ovalbumin-induced

asthmatic mice (183), modulating FOXP3, a master regulator of

regulatory T cells.

Macrophages are immune cells involved in a wide range of

functions related to innate and adaptive response, including

maintenance of tissues and homeostasis. An imbalance
between macrophages M1 (classically activated) and M2

(alternatively activated) phenotypes exists, and M2 polarization

has been associated with development of asthma (184).

Macrophages play a dual role in this disease, contributing to

the induction and progression of eosinophilic lung inflammation

and airway remodeling, and protecting against both
development of neutrophilic inflammation and more severe

airway hyperresponsiveness (185). This phenotype is induced

by Th2 cytokines (IL-4 and IL-13), upregulating several genes.

The role played by several miRNAs in macrophage polarization

and their influence in asthma have been established (186).

Several studies have demonstrated that miR-146a, miR-146b,

and miR-21 promote macrophage polarization toward the M2
phenotype or suppress M1 polarization (52, 53). According to

previous research, these miRNAs are upregulated in asthma (54).

They act by joining target genes (NOTCH1, IRF5, and CSF1R),

inhibiting the inflammatory response (67, 187, 188). In

macrophages from COPD patients, miR-344b-1-3p was

upregulated and controlled TLR2, TNF, and IL1b expression (83).
In order to analyze the effects of miRNAs on mechanism

associated to these pathologies, structural lung cells, including

ASMCs and airway epithelial cells, are implicated in the

pathologic mechanisms of asthma, and their miRNA content

have been studied. On the one hand, ASMCs play a critical role

in asthma pathogenesis due to their abilities related to

hypercontractility, proliferation, and secretion of inflammatory
mediators. Dileepan and collaborators showed that miR-708 and

miR-140-3p regulate the MAPK and PI3K signaling pathways

associated to asthma immune response in human ASMCs (46,

51, 189). Later, the same group showed that miR-708 and miR-

140-3p exert different effects in other proinflammatory genes,

including CCL2, CCL5, CCL11, CXCL8, CXCL10, and CXCL12

(47). Moreover, other miRNAs from ASMCs have been

described, such as miR-145, miR-146a-5p, and miR-638,

altering the functions of airway muscle cells (48–50).

On the other hand, airway epithelial cells are another cell type

implicated in several processes of asthmatic pathogenesis,
including airway remodeling, epithelial barrier repair, and

production of several proinflammatory mediators (190). In this

context, a number of miRNAs have been described in this cell

type, regulating their functions or other pathological processes of

asthma. In 2018, Zhang et al. investigated the role of miR-221 in

airway epithelial cell injury in asthma (65). This miRNA was
significantly increased in bronchial epithelial cells from

asthmatic subjects compared to healthy controls and was

implicated in epithelial cell injury in asthma by inhibiting

SIRT1 expression. However, there are several miRNAs that

mitigate inflammatory status. Lambert and co-workers showed

that miR-146a is released by airway epithelial cells in response to
inflammatory stimuli like TNF-a (55). This fact constitutes an

anti-inflammatory mechanism to enhance glucocorticoid effects.

In addition, this miRNA, in conjunction with miR-146b, has

been described as a negative regulator of inflammatory gene

expression (PTGS2 and IL1B) in lung epithelial and smooth

muscle cells (56).

Other studies set out to find miRNAs that can be used to
predict comorbidities; for instance, in blood, miR-210 expression

can differentiate subjects with COPD and ischemic stroke from

those with COPD or ischemia alone (191). MiR-1 reduction has

been related to quadriceps skeletal muscle dystrophy in COPD

(138). Plasma miRNAs can be used to identify patients with

acute exacerbations of COPD such as miR-125b (105). PBMC-
derived miRNAs are also differentially expressed in acute

exacerbations of COPD compared to stable COPD and can

differentiate between both conditions (129).

As previously described, plasma and exhaled breath

condensate present differential miRNA profiles between

asthma and COPD, which may be used to differentiate these

diseases (100, 131). Nevertheless, having one of these respiratory
diseases does not protect an individual against the other, so they

may be present concomitantly. Asthma-COPD overlapping

(ACO) is a condition where subjects present characteristics of

both COPD and asthma, and it has been described in the Global

Initiative for Chronic Obstructive Lung Disease-ACO guidelines

(192). These subjects are normally defined as COPD subjects
with eosinophilia (blood eosinophil count ≥200 eosinophils/µL)

or asthmatics with chronic airway obstruction and smoking

habit (≥20 pack per year) (193). Some miRNAs have been

described as differentially expressed for ACO and can

distinguish between asthma, COPD, and ACO. MiR-619-5p is

downregulated in eosinophilic COPD subject serum compared

to smoking and non-smoking asthmatics and COPD, and miR-
4486 is differentially expressed in eosinophilic COPD when

compared to non-smoking asthmatics, showing that even

within the ACO group differences in miRNA expression can be

found. The targets of this set of miRNAs include epidermal

growth factors belonging to the ErbB signaling pathway
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associated to pathogenic inception of lung diseases and to the

metabolism of xenobiotics by cytochrome P450 signaling

pathways involved in ROS (194). Finally, our research group

has showed that combined expression of miR-185-5p, miR-320a,

and miR-21-5p was able to differentiate asthmatics from COPD

and ACO with high sensitivity and specificity. Like in the
previous article these deregulated miRNAs in asthma are able

to regulated genes belonging to Erb2, MAPK, AMPK, and PI3K/

AKT pathways that control cell proliferation and muscle

contraction, alongside other targeted pathways as T-cell

receptor, FoxO or TGF-b which are key in immune regulation.

The regulation of those pathways by asthma specific miRNAs
may account for the differences in asthma pathology compared

to those other respiratory diseases (145).

In sputum, expression of miR-338 is higher in subjects with

respiratory diseases (asthma, COPD, and ACO) compared to

healthy subjects; similarly, miR-338 is higher in asthma than in

COPD. The study by Lacedonia et al. also showed that miR-145
is increased in sputum supernatant of COPD and asthmatics

versus controls, and that serum miR-338 levels are lower in ACO

and COPD compared to healthy controls (70). Finally, miR-

146a-5p, miR-10a-5p, and miR-31-5p have been shown to play a

common role in both CRDs (94, 108).

Together, these works have demonstrated a variety of miRNAs

dysregulated in asthma and COPD in relation to healthy subjects
and promising results have been found, including the use of

miRNAs as biomarkers. However, this is a broad field of research

and many of the specific mechanisms and particular means of

miRNA regulation in these respiratory diseases remain to be

discovered, and systems biology can help to solve this enigma.

MiRNAs AND TREATMENTS IN
LUNG DISEASES

MiRNAs and Asthma Treatment
Glucocorticoids (GCs) remain the cornerstone of therapy for

treating the inflammatory component of asthma and preventing

asthma exacerbations. However, clinical response to GCs is

complex and varies among individuals, as well as within the
same individual, and some patients are resistant to this therapy.

Different factors belonging to microenvironment can alter the

canonical GC-induced signaling pathways, leading to reduced

efficacy, collectively termed as sub-sensitivity, which include the

entire spectrum of steroid-insensitivity and -resistance (195).

Steroid sensitivity has been associated with different mechanisms,
including dysregulated expression of GC receptor isoforms,

neutrophilic inflammation and TH17 cytokines, oxidative stress-

induced factors, and the downstream effect on histone deacetylase

(HDAC) activation and gene expression. Recently, a new factor

has been added in order to explain this phenomenon: the

alterations in the expression of key transcription elements like

miRNAs. Several studies conducted in this area, suggesting that
circulating miRNAsmay be useful potential biomarkers of asthma

status or response to therapy (179).

In this sense, miR-155 has been the focus of different studies.

Zhou et al. proposed that GCs may affect the inflammatory

response by suppressing miR-155; these authors found that GCs

attenuate lipopolysaccharide-induced inflammation and sepsis

via downregulation of miR-155 expression (196), and forced

miR-155 expression reverts the anti-inflammatory role of GCs
(197, 198). In addition, miR-155-5p and miR-532-5p were

identified as significantly associated with changes in

dexamethasone-induced transrepression of NF-kb. Authors
identified these two functional circulating miRNAs predictive

of asthma ICS treatment response over time, with an AUC of

0.86 (199).
Another miRNA that has been widely studied is miR-21. The

study of Hammad et al. revealed a negative association between

miR-21 and FEV1 post ICS treatment, which highlights the role

in ICS treatment outcome as FEV1 reflects the grade of airway

obstruction after ICS treatment (95). Elbehidy et al. found that

miR-21 could be a novel predictor of ICS response, which
helps in decision-making and identifying patients who

are likely or unlikely to benefit from ICS therapy reducing the

risk of side effects and sparing patients from the disappointment

of treatment failure. MiR-21 had a predictive value in

differentiating steroid-sensitive from steroid-resistant patients

with an AUC value of 0.99 (200). Similar results were

described by Wu et al. in 2014, who found that miR-21
expression was up-regulated in asthmatic adult bronchial

epithelial cells regardless of treatment (201), but expression

levels were decreased following ICS therapy (202).

Also, Kim et al. found that miR-21 drives severe, steroid-

insensitive experimental asthma by amplifying PI3K-mediated

suppression of HDAC2; thus, inhibition of increased miR-21 or
PI3K responses suppresses disease and restores steroid-

sensitivity (119).

Other studies investigating the expression profiles of 579

miRNAs in transgenic mice revealed that miRNAs were

differentially expressed upon induction of experimental asthma

following treatment with doxycycline and additionally suggested

that miR-21 was the most up-regulated miRNA (66, 203).
Other authors reported an increase in infection-induced miR-

9 in the airways of a mouse model and a similar increase in miR-

9 in the sputum of neutrophilic asthmatics. These researchers

therefore propose that miR-9 regulates glucocorticoid receptor

signaling and steroid-resistance by reducing protein phosphatase

2A activity. Thus, blocking miR-9 function restores steroid
sensitivity and suggests that this might serve as a novel

approach for the treatment of steroid-resistant AHR (204).

One of the most important challenges may be to find

biomarkers predicting treatment outcomes, and for this reason

McGeachie et al. in 2017 investigated serum expression of 738

miRNAs in 160 children with asthma aged 5–12 years in search

of predictors of asthma remission at the age of 14. The model,
which was based on 12 variables including different miRNAs

(miR-146b-5p, miR-106a, miR-126, and miR-30a), allowed

prediction of remission with a sensitivity of 84% and a

specificity of 70%. Thus, they hypothesize that miRNAs are

potentially predictive biomarkers for treatment outcome (205).
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However, not all authors agree on the role of miRNAs as

regulators of GC treatment. Williams et al. sustain that changes

in miRNA expression do not appear to be involved in the anti-

inflammatory action of the corticosteroid budesonide (206). This

discrepancy may be explained by the fact that the inflammatory

changes were too mild, and by the degree of cellular heterogeneity
in airway biopsies.

MiRNAs and COPD Treatment
The main goal of pharmacologic COPD therapy is to treat the

symptoms, reduce the frequency and severity of exacerbations,

and improve tolerance and health status (207).

The main types of drugs normally used to treat COPD include
long-acting b2-agonists, long-acting muscarinic antagonists, and

ICS, which are the most widely used treatment as anti-

inflammatory agents in COPD. However, a high percentage of

COPD patients show a poor response to this therapy (208). It has

now been recognized that current COPD treatments such as

corticosteroids work, in part, through epigenetic mechanisms

(209) and miRNAs is one of them (37).
In a recent manuscript authored by Faiz et al. (144) four miRNAs

with changed expression after 6- and 30-month treatment with ICS

compared with basal status (without any treatment) were identified.

MiR-708 andmiR-155 were downregulated andmiR-320d andmiR-

339-3p were upregulated in both periods of time after treatment (6

and 30 months). Moreover, three were also altered in the same
direction by ICS plus long-acting b2-agonists compared to placebo at

6 months of therapy: miR-320d, miR-339-3p, and miR-708; in vitro,

these data were confirmed for miR-320d. Overexpression of miR-

320d significantly reduced the IL-1b-induced activation of NF-kB
signaling compared to miRNA negative control. Thus, the negatively

correlated predicted targets of miR-320d are diminished by ICS

treatment. So, this study identified four miRNAs affected by short-
and long-term treatment with ICS compared to placebo in patients

with moderate to severe COPD (144) andmiRNAs associated with

ICS therapy and inflammation provide relevant candidates as

potential therapeutic targets in chronic inflammatory diseases.

In addition, the increase of HDAC2 could reduce GC

insensitivity in some patients. Leuenberger et al. (110) showed
that HDAC2 is directly targeted by miR-223 by binding to seed

matches located in the 3’UTR of this mRNA transcript; in

addition, the activity of total HDAC and HDAC2 in pulmonary

endothelial cells is repressed in response tomiR-223 overexpression.

The reduced activity of this histone has been classically described in

COPD patients and a significant inverse correlation between

HDAC2 and miR-223 level has been observed in this COPD
population (110). Therefore, this miR-223, through regulation of

another epigenetic factor as the HDAC2, could interfere with

treatment efficacy in COPD disease.

As commented previously, miR-146a has been described as

an enhancer of the anti-inflammatory effects of GCs (55) and is

negatively correlated with inflammation and Global Initiative for
Chronic Obstructive Lung Disease stage in both stable and acute

exacerbation COPD patients (210). COPD patients show an

increased secretion of PGE2, which results in collagen

overproduction and finally reduces lung capacity. In this sense,

miR-146a expression is reduced in COPD patients and its target,

COX-2, is simultaneously increased with a consequent increase

of PGE2 levels (89). As COX-2 is sensitive to steroids and miR-

146a target, this miRNA could contribute to the anti-

inflammatory effect of this drug to reduce the increase of

mucus and worsening of COPD evolution.
Moreover, as we have previously commented, COPD could

have different etiologies such as tobacco or biomass smoke

exposure. A recent manuscript from Velasco-Torres et al. on

COPD due to biomass smoke exposure reported downregulation

of miR-34a which implicates an activation of Notch 1 signaling.

This finding is relevant because Notch 1 could represent an
important target for therapy in these phenotypes of COPD (117).

Though the list is still small, several miRNAs have been

modified by classical COPD treatments and, likewise,

these miRNAs act over therapy targets and could contribute in

different ways to treatment response in this respiratory pathology.

CLINICAL ADVANCES IN THE
USE OF MiRNAs

Finally, miRNA-based treatment has emerged as a potential
approach for clinical intervention in some respiratory

diseases such as asthma and COPD. It is based on miRNAs

delivery in the specific site of action which constitutes one of

the main aspects of development in relation to miRNA like

therapeutic approach. A long list of miRNAs has been found

to be linked to initiation, progression, or exacerbations in
both respiratory diseases, especially in COPD. However,

some have been studied more in depth, showing a high

potential as future therapeutic tools through their up- or

downregulation. In this sense, miR-146a (79, 89), miR-21

(113, 116), miR-150 (109), miR-145-5p (131, 148), miR-320d

(132, 144), miR-155 (62) miR-223 (211), or miR-3162-3p

(212) seem to hold promise as future elements in the
therapeutic repertoire for COPD and asthma, respectively,

some of which are common for both pathologies such as miR-

146a (213–215) or miR-21 (54, 62).

All these examples show the never-ending list of miRNAs

that, in the future, could potentially be a therapeutic approach

in respiratory diseases. However, although the knowledge of
miRNAs has grown exponentially in recent years, these data

demonstrate that more studies are necessary before miRNAs

can be employed as therapeutic tools. Currently, the idea of

precision and personalized medicine is the objective for the

near future, though this is a long and arduous path; thus,

classical treatments continue to be the basis of therapy in

asthma and COPD.

CONCLUDING REMARKS

This review summarizes the previous knowledge about miRNAs

in chronic respiratory diseases as asthma and COPD, trying to be

the first step forward for the compilation and application of

systems biology approaches for understanding their roles. Many
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miRNAs present differential expression in diverse samples, and

are known for their capability of being biomarkers or for having

a specific role in the pathogenesis of these diseases, but the

current approaches are unsuited for giving a systemic level view

for data interpretation.

For overcoming this issue, systems biology may be the
optimal tool. By the combination of data-driven model

elaboration and model-driven experimental design, researchers

might be able to elucidate how miRNAs work together in disease

pathogenesis and diagnosis, giving the full picture view of

miRNA regulatory system.
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