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Abstract

MicroRnas (miRnas) are 20-22 nucleotide non-coding Rnas that participate in gene regulation. 
They bind to 3’-untranslated regions of their mRNA targets, inhibiting the transcripts’ translation and/
or destabilizing them. Chronic drug abuse induces changes of miRNAs expression in the brain, which is 
thought to contribute to addictive behaviors. Lots of miRNAs have been identified to play critical roles in 
the development of drug addiction. Moreover, miRNAs have been shown to play critical roles in a broad 
array of biologic processes, including regulation of the cell cycle, oncogenic transformation, immune 
cell regeneration and differentiation, and psychiatry disorders. We hypothesized that chronic drug abuse 
leads to aberrant expression of several miRNAs, and then aberrant miRNAs influence the innate and 
adaptive immunity, especially differentiation and function of T cells and B cells, through down-regulated 
miRNAs’ target gene expression. Characterization of miRNA actions is important and has high potential 
effect for the management of drug addiction and immunity diseases. miRNAs are potential biomarkers, 
and the modulation of their expression can be used for therapeutic purposes.
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Introduction
In the year 2011 there were approximately 14.0 million 

drug users between the ages of 15 and 64 years, 1.6 million 
drug abusers with HIV and 0.2 million drug-related deaths 
[1]. It is important to note that most of the drug-related 
deaths were in young people and could have been prevent-
ed. Drug abuse is a chronic brain disease with severe so-
cial and economic consequences that are associated with 
significant mortality and morbidity [2]. Abuse substances, 
such as opiates, cocaine, marijuana, alcohol, and nicotine, 
all have been reported to impair the immune system and 
enhance or suppress immune response cell function [3-7]. 
Additionally, an increasing number of studies have focused 
on the associations between drug abuse and the immune 
system. More and more studies have focused on non-cod-
ing microRNAs (miRNAs) at the molecular level. 

miRNAs are 20-22 nucleotide non-coding RNAs that 
regulate gene expression by binding to the 3’-untranslat-
ed regions (3’-UTRs) of their mRNA targets. Because of 
this mechanism, miRNAs silence or prevent the transla-
tion of their target genes. Previous studies have shown that  
miRNAs are master regulators of genes and their networks. 
Aberrant miRNA expression has been closely linked to 
various diseases, including psychiatric disorders, neuronal 
development, and immune-related disorders [8-11]. 

Our goals in this review were to summarize the re-
search results of aberrant expression of miRNAs after 
chronic drug abuse and cite specific examples of how  
miRNAs affect the innate and adaptive immune systems. 
We concentrated on the intermediate effects of specific 
miRNAs involved in chronic drug abuse and immune sys-
tem diseases.

Chronic drug abuse changes the expression 
of microRNAs

Chronic drug abuse up-regulates or down-regulates 
the expression of related genes, that contribute to drug 
addiction behaviours such as craving and seeking. As de-
scribed in previous studies, a large number of genes, such 
as brain-derived neurotrophic factor (BDNF), cAMP re-
sponse element binding protein (CREB), and methyl CpG 
binding protein 2 (MeCP2), have been shown to play crit-
ical roles in the development of drug addiction. More im-
portantly, many of these genes require a complex network 
to exert their regulatory functions on drug abuse. If we 
were able to identify the master regulator of this network, 
we could provide insights into safe and effective therapies 
to treat drug addiction. Unfortunately, we do not complete-
ly understand this regulatory network and the master reg-
ulator remains unknown. 
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Table 1. miRNAs in drug abuse and immunity

Drug microRNA Regulation Reference Immunity Reference

Cocaine miR-212 Up Hollander et al. 2010 [13];
Im et al. 2010 [14]; Xu et al. 2013 [15]

Innate 
immunity

Wanet et al. 2012 [62]; 
Nahid et al. 2013 [63]

miR-132 Up Nudelman et al. 2010 [16] Innate 
immunity

Wanet et al. 2012 [62]; 
Nahid et al. 2013 [63]

miR-181a Up Chandrasekar et al. 2009 [18]; 
Chandrasekar et al. 2011 [19];
López-Bellido et al. 2012 [20]

miR-124 Down Chandrasekar et al. 2009 [18]; 
Chandrasekar et al. 2011 [19]

let-7d Down Chandrasekar et al. 2009 [18]; 
Chandrasekar et al. 2011 [19]

miR-133b Down Chen et al. 2013 [22]; 
Barreto-Valer et al. 2012 [23]

miR-134 Up Chen et al. 2013 [22]

miR-22 Up Chen et al. 2013 [22]

Nicotine miR-21 Up Huang and Li 2009 [25]; 
Zhang et al. 2014 [26]

Innate 
immunity

Sheedy et al. 2010 [65]

Down Maccani et al. 2010 [27]; 
Shan et al. 2009 [28]; 
Wang et al. 2014 [29]

Innate
 immunity

Chen 2011 [64]

miR-335 Up Huang and Li 2009 [25]

miR-146a Down Maccani et al. 2010 [27]; 
Shan et al. 2009 [28]; 
Wang et al. 2014 [29]

Innate 
immunity
Adaptive 
immunity

Taganov et al. 2006 [46]; 
Hou et al. 2009 [47]; 

Chassin et al. 2010 [48]; 
Pauley et al. 2011 [49]; 
Rebane et al. 2014 [50]; 
Schulte et al. 2013 [51]; 
Curtale et al. 2010 [77]; 

Lu et al. 2010 [78]; 
Rusca and Monticelli 2011 [79]

miR-133 Down Shan et al. 2009 [28]; 
Wang et al. 2014 [29]

Opiate let-7 Up Wu et al. 2009 [31]

miR-23b Up He et al. 2010 [32]

miR-190 Up Zheng et al. 2010 [33]

miR-133b Down Zheng et al. 2010 [33]

Amphetamine miR-29a Up Lippi 2011

miR-29b Up Lippi 2011

miR-182 Up Lippi 2011

miR-183 Up Lippi 2011

miR-181a Up Saba et al. 2012 [21] Adaptive 
immunity

Ebert et al. 2009 [66]; 
Li et al. 2007 [67]; 
Li et al. 2012 [68]

miR-9 Up Tatro et al. 2013 [34]

Alcohol miR-21 Down Sathyan et al. 2007 [35]

miR-335 Down Sathyan et al. 2007 [35]

miR-9 Down Sathyan et al. 2007 [35]

miR-153 Down Sathyan et al. 2007 [35]
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Interestingly, previous studies have shown that  
miRNAs are master gene regulators and play critical roles 
in the regulation of the cell cycle, immune cell regenera-
tion and differentiation, cancer, and psychiatry disorders. 
Consistent with these diverse roles, recent studies have 
detected many roles for miRNAs in chronic drug abuse. 

Cocaine

Cocaine is a central nervous system stimulant that ex-
erts widespread effects in the striatum [12]. Three studies 
have demonstrated that chronic cocaine administration in-
creases the expression of miR-212 in the dorsal striatum 
in rats [13-15]. Further results indicated that exogenous 
miR-212 in the striatum decreases addicted rat cocaine 
intake behaviours. Finally, Kenny’s group demonstrated 
that miR-212 controls drug intake by activating the CREB 
gene. Therefore, miR-212 maybe a protective factor for 
compulsive cocaine intake. The same study also illustrat-
ed that there is a homeostatic negative balance between  

miR-212 and MeCP2. More importantly, the interactive 
balance between miR-212 and MeCP2 coincided with 
cocaine sensitization reward effects [14]. Interestingly, 
chronic cocaine use also increased miR-132 expression 
in the striatum of rats [16]. miR-212 and miR-132 have 
overlapping seed regions, and a homeostatic relationship 
between miR-132 and MeCP2 was observed in brain cor-
tical neurons [17]. It is possible that miR-132 is also a pro-
tective factor for compulsive cocaine intake. 

Chronic cocaine exposure also increases miR-181a ex-
pression [18-20]. Aberrant expression of miR-181a, which 
binds to the 3’-UTR of the GluA2 subunit of the AMPA 
receptor (GRIA2), influences the function of the GABA 
system [21]. Chandrasekar and Dreyer et al. showed that 
chronic cocaine abuse decreases miR-124 and let-7d lev-
els. miR-124 and let-7d down-regulate the expression of 
BDNF and the dopamine receptor 3 (DRD3) gene, respec-
tively. When these miRNAs are over expressed in the NAc 
of rats, an intensive conditioned place preference (CPP) 

Drug microRNA Regulation Reference Immunity Reference

miR-382 Down Wang et al. 2009 [36]

miR-124a Down Bahi and Dreyer 2013 [37]

miR-29b Down Qi et al. 2014 [38]

miR-124 Down Mizuo et al. 2012 [39]

miR-9 Up Pietrzykowski et al. 2008 [40]

miR-124 Up Dong et al. 2014 [42]

miR-206 Up Tapocik et al. 2013 [41]

miR-181a Up Asquith et al. 2014 [44]

miR-221 Up Asquith et al. 2014 [44] Innate 
immunity

Lu et al. 2011 [59]

miR-155 Up Asquith et al. 2014 [44] Innate 
immunity
Adaptive 
immunity

Schulte et al. 2013 [51]; 
Curtis et al. 2015 [52]; 

Cai et al. 2012 [53]; 
Ghorpade et al. 2012 [54]; 

Koch et al. 2012 [55]; 
Cardoso et al. 2012 [56]; 
Wang et al. 2010 [57]; 

Richmond et al. 2015 [58]; 
Lu et al. 2011 [59]; 

Zhou et al. 2010 [60]; 
Martinez-Nunez et al. 2009 [61]; 

Vigorito et al. 2013 [69]; 
Blüml et al. 2010 [71]; 

O’Connell et al. 2010 [72]; 
Rodriguez et al. 2007 [73]; 

Thai et al. 2007 [74]; 
Cardoso et al. 2012 [75]; 

Lu et al. 2009 [78]; 
Zhang et al. 2012 [84]; 
Chen et al. 2014 [85]; 

Sandhu et al. 2012 [86]; 
Dorsett et al. 2008 [87]

Table 1. miRNAs in drug abuse and immunity
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for cocaine was observed [18, 19]. One Chinese study 
indicated that repeated cocaine exposure and subsequent 
abstinence change the expression of various miRNAs, in-
cluding miR-133b, miR-134, and miR-22 [22]. Another 
study demonstrated that chronic cocaine use led to abnor-
mal miR-133b expression [23]. 

Nicotine

To date, there have been few clinical studies published 
that have focused on the relationship between miRNA 
regulation and nicotine abuse [24]. Most studies suggest 
that chronic nicotine abuse up-regulates the expression of 
miR-21, which is a critical master regulator of the immune 
system. By culturing rodent neuronal cells, Huang and Li 
found that miR-21 and miR-335 were up-regulated by 
a 100-µM nicotine exposure [25]. Zhang et al. found that 
miR-21 was over-expressed in oesophageal tissue sam-
ples after smoking and that miR-21 up-regulation by nic-
otine was also detected in cell lines [26]. Notably, smok-
ing during pregnancy is correlated with aberrant miRNA 
expression and leads adverse pregnancy outcomes [27]. 
Using three immortalized placental cell lines, Maccani  
et al. found that miR-21 and miR-146a were significantly 
down-regulated in placentas exposed to cigarette smoke 
compared to controls [27]. Aside from miR-21 and miR-
146a, Shan et al. and Wang et al. showed that chronic nic-
otine abuse down-regulates miR-133 in a nicotine abuse 
model [28, 29]. The above results suggest that some miR-
NAs, such as miR-21, miR-146a, and miR-133, are sensi-
tive to nicotine exposure and that cigarette smoking may 
affect downstream signalling by changing the expression 
of miRNAs.

In a clinical study, Takahashi determined whether 
chronic cigarette abuse substantially alters the plasma 
miRNA levels via TaqMan microRNA array analysis [30]. 
They found that 43 miRNAs were significantly higher in 
the plasma of smokers compared with healthy individuals. 
Of the aberrant miRNAs, miR-21 displayed a 3-fold in-
crease in expression in smokers compared to non-smokers; 
miR-21 is known to be involved in the development of 
immune system disorders.

Opiates

Chronic morphine exposure led to the aberrant expres-
sion of let-7 and miR-23b. Using cells and a mouse mor-
phine abuse model, He et al. determined that morphine sig-
nificantly up-regulated let-7 expression. They also found 
that let-7 binds to the morphine receptor (MOR) mRNA 
3’-UTR and represses MOR expression. These results sug-
gest that let-7 plays a key role in morphine abuse [31]. 
Aside from let-7, Wu’s group demonstrated that long-term 
morphine treatment increases miR-23b expression [32] and 
that miR-23b binds to the OPRM1 mRNA and controls 
OPRM1 expression. 

Using microRNA microarray analysis, scientists deter-
mined that morphine and fentanyl induced similar changes 
in the expression of miR-224, miR-331, and miR-365 but 
also had an agonist effect on the expression of miR-20a, 
miR-184, miR-190, and miR-301 [33]. More important-
ly, they found that fentanyl, but not morphine, increased 
miR-190 levels. After validation of the microarray results 
by qPCR, researchers observed that the miR-133b levels 
were decreased in 24 hpf zebrafish embryos exposed to 
morphine.

Amphetamines

Researchers found consistent up-regulation of the 
miR-29a/b and miR-182/183 clusters in most brain regions 
when mice were exposed to 5 mg/kg amphetamine for  
5 days. Additionally, miR-181a is strongly enriched in the 
nucleus accumbens, suggesting that miR-181a might reg-
ulate the expression of synaptic proteins at this specific 
site [21]. There is only one study that focuses on miRNA 
expression in methamphetamine (MA) abusers [34]. By 
screening MA abuser and control frontal cortex autopsy 
tissues, the authors found that miR-9 expression was sig-
nificantly increased in MA abusers. To verify this result, 
SH-SY5Y cells were exposed to MA. Based on the q-PCR 
results, it is worth noting that miR-9 expression was re-
markably increased in the cells exposed to MA compared 
to the controls. Later, they found that miR-9 binds to the 
calcium-activated channel subfamily M alpha member 1 
(KCNMA1) and negatively regulates its expression. Their 
results suggest that elevated miR-9 expression, which is 
induced by MA, leads to the suppression of KCNMA1. 
As previous studies have reported, KCNMA1 may affect 
neurotransmitter release in dopaminergic neurons.

Alcohol

In addition to cocaine and other psychomotor stimu-
lants, chronic alcohol abuse has also been shown to regu-
late miRNA expression. A particularly intriguing example 
for the role of miRNAs in chronic alcohol abuse comes 
from a study by Sathyan et al. [35]. Using cell culture ex-
periments, Sathyan et al. identified the following miRNAs 
as being alcohol-sensitive: (1) miR-21, (2)  miR-335, (3) 
miR-9, and (4) miR-153. Alcohol significantly suppressed 
the expression of these four miRNAs. Wang also showed 
that chronic alcohol consumption decreased miR-382 
expression in the accumbens of rats [36]. They showed 
that miR-382 negatively regulates dopamine D1 receptor 
expression, which plays an important role in the reward 
system. Another study showed that chronic alcohol intake 
decreased miR-124a expression in the dorsolateral striatum 
of rats and that the over expression of miR-124a decreased 
alcohol-induced CPP and reduced alcohol consumption 
behaviours in rats [37]. Using a neuronal model, chron-
ic alcohol exposure suppressed miR-29b expression and 
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promoted neuronal apoptosis. When miR-29b was over 
expressed in the neuronal model, it protected the neurons 
against apoptosis [38]. When abstinence was examined in 
alcohol-addicted rodents and cells, withdrawal caused dy-
namic molecular and cellular changes. Mizuo et al. found 
that the miR-124 levels were reduced in the limbic fore-
brain following alcohol withdrawal [39].

In contrast to the studies mentioned above, chronic 
alcohol use has also been shown to elevate the levels of 
specific miRNAs, including miR-9, miR-124, miR-181a, 
and miR-155. Pietrzykowski et al. exposed rats to chronic 
intermittent amounts of alcohol and observed an increase 
in miR-9 expression. Up-regulation of miR-9 led to the 
degradation of BK splice variants [40]. Similarly, Tapocik 
et al. and Dong et al. have shown that escalating levels 
of alcohol intake can increase the expression of miR-206 
and miR-124, respectively [41, 42]. It should be noted that 
miR-206 negatively regulates the expression of brain-de-
rived neurotropic factor (BDNF), which is deemed to play 
a vital role in the motivational effects of alcohol and other 
addictive drugs [43]. Asquith revealed that chronic alcohol 
dependence up-regulated miR-181a and miR-221 in the 
peripheral blood mononuclear cell (PBMC) and miR-155 
in the colon of rats [44].

In addition to identifying changes in the miRNA levels 
after alcohol treatment in animal models and cell lines, Le-
wohl analysed post-mortem brains from 14 alcoholics and 
13 matched healthy controls. Approximately 35 miRNAs 
were markedly up-regulated in the alcoholics compared to 
the controls [45]. Notably, miR-146a, which is associated 
with immunity disorders, was up-regulated in the frontal 
cortex of alcoholics [46]. 

Altogether, the examined studies illustrate that miRNA- 
mediated gene regulation plays a critical role in the compli-
cated interactions involved in chronic exposure to addictive 
drugs. We hypothesize that chronic drug abuse leads to the 
aberrant expression of several miRNAs. These aberrantly 
expressed miRNAs influence innate and adaptive immu-
nity, specifically the differentiation and function of T and 
B cells, by down-regulating the expression of the miRNA 
target genes.

miRNAs in immunity
The human body has two main defence systems 

against foreign invaders, the innate and adaptive immune 
systems. The innate immune system, also known as the 
non-specific immune system, is a natural immune defence 
system, which was formed during the development and 
evolution of the body, that has nonspecific defence func-
tions immediately after birth. The following are types of 
innate immune cells: (1) phagocytes, (2) dendritic cells 
(DCs), (3) NK cells, (4) NKT cells. In contrast, the adap-
tive immune system, also called the acquired immune 
system, is developed through asymptomatic infection or 

artificial inoculation and prepares the body to fight infec-
tion. T and B lymphocytes are essential to the adaptive 
immune system.

Generally, miRNAs can affect immune system func-
tion in two ways. miRNAs can control differentiation of 
innate and adaptive immune responses in the mammalian 
immune system. In the bone marrow and thymus, miRNAs 
are involved in cell function and differentiation, specifical-
ly for T and B lymphocytes.

miRNAs in innate immunity

The innate immune system is characterized by rapid 
responses to pathogens. Emerging data have identified the 
important contribution of miRNAs to the development and 
function of innate immune cells. Among the miRNAs that 
influence the innate immune system, miR-146a, miR-155, 
and miR-132 have been the most intensively studied.

miR-146a is located on chromosomes 5 and ex-
tensively expressed in the hematopoietic system. Ta-
ganov first reported that miR-146a might be involved 
in the innate immune response [46]. miR-146a is an 
NF-kB-dependent miRNA that targets the NF-kB 
pathway, which is the central pathway in innate im-
munity. Studies reported that miR-146a directly tar-
gets and represses several downstream signalling mol-
ecules, including IL-1 receptor associated kinase 1 
(IRAK1), IL-1 receptor associated kinase 2 (IRAK2), and 
TNF receptor-associated factor 6 (TRAF6) [47]. Both of 
these genes encode key adaptor molecules downstream of 
Toll-like and cytokine receptors. Chassin demonstrated 
that miR-146a repressed IRAK1, and induced intestinal 
epithelial innate immune tolerance which will be protect-
ed neonates from bacteria-induced epithelial damage [48]. 
Based on the results of Sjögren’s syndrome patients and 
mouse model, Pauley revealed miR-146a had a role in 
increasing phagocytic activity and suppress inflammato-
ry cytokine production in human monocytic THP-1 cells 
[49]. With tissue culture and in vivo experiments, Rebane 
demonstrated that miR-146a-mediated repression in aller-
gic skin inflammation occurs partially through direct tar-
geting IRAK1 [50].

miR-155 is another key miRNA that plays a role in the 
innate immune system [51, 52]. miR-155 has been shown 
to greatly influence macrophage and DC functions [53,54]. 
In macrophages, a number of stimuli, such as chronic al-
cohol abuse, enhance miR-155 expression via NF-kB; 
miR-155 is involved in macrophage polarization and the 
regulation of apoptosis [55]. From Wang’s research, the 
expression of miR-155 was markedly up-regulated in 
macrophages infected with vesicular stomatitis virus. In 
subsequent studies, scientists demonstrated that miR-155 
positively regulates the host antiviral innate immune re-
sponse through its target suppressor of cytokine signalling 
1 (SOCS1) [56, 57]. When mouse macrophages were ex-
posed to lipopolysaccharide (LPS), the expression of miR-
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155 was increased, which then down-regulated tumour-sup-
pressor gene QKI expression [58]. miR-155 also plays a key 
role in regulating DC activation [59]. Zhou found that after 
Toll-like receptor 7 (TLR7) stimulation, miR-155 was high-
ly expressed in plasmacytoid dendritic cells [60]. A study 
by Martinez-Nunez showed that miR-155 down-regulates 
DC-specific intercellular adhesion molecule-3 grabbing 
non-integrin (DC-SIGN), which directly affects the matura-
tion of human DCs [61]. In conclusion, miR-155 can either 
strengthen or suppress innate immune responses in macro-
phages and DCs depending on the type of stimulation.

Like miR-155, miR-132 is up-regulated in response 
to LPS [46]. Previous studies have shown that miR-132 
and miR-212 have similar gene structures and belong to 
the same miRNA family [62]. Recent studies have demon-
strated that miR-132 targets cyclic AMP-responsive el-
ement-binding protein (CREB) [16]. In monocytes and 
primary macrophages, the expression of miR-132 and 
miR-212 was up-regulated rapidly [63]. The rapid increase 
in miR-132 expression induces tolerance to subsequent 
stimulation in monocytes by directly targeting interleu-
kin-1 receptor-associated kinase 4 (IRAK4).

Besides miR-146a, miR-155 and miR-132, miR-21 
also controls innate immune responses [64]. In human 
peripheral blood mononuclear cells, LPS stimulation 
down-regulated the expression of programmed cell death 4 
(PDCD4). This down-regulation was due to the induction 
of miR-21 through the adaptors MyD88 and NF-kB. When 
the miR-21 precursor was transfected into cells, miR-21 
blocked NF-kB pathway activity and increased the pro-
duction of interleukin-10 (IL-10). Thus, miR-21 regulates 
PDCD4 expression following LPS stimulation [65]. 

The studies described above clearly suggest that specific 
miRNAs, such as miR-146a, miR-155, miR-132/miR-212, 
and miR-21, play an important role in the regulation of 
innate immunity. This mechanism includes suppressing 
the expression of the positive signalling proteins, while 
down-regulating numerous miRNAs during innate immune 
cell activation. All of these mechanisms are important for 
host defences and are helpful for initiating antigen-specific 
responses by adaptive immune system cells.

miRNAs in adaptive immunity
The adaptive immune system mainly consists of T and 

B lymphocytes. miRNAs are emerging as critical regulators 
in the development and function of the adaptive immuni-
ty system. The contribution of specific miRNAs, such as 
miR-181a, miR-155, and miR-146, to the adaptive immune 
response is remarkable during the differentiation and func-
tional processing of T and B lymphocytes.

miR-181a is widely expressed during the T cell dif-
ferentiation process. This miRNA specifically modulates 
T cell antigen receptor (TCR) response [66]. Li and col-
leagues indicated that enhanced expression of miR-181a 
augmented the sensitivity to peptide antigens in mature  

T cells, and vice versa [67]. When inhibited miR-181a lev-
el reduced sensitivity, and then impairs both positive and 
negative selection of T cells. Interestingly, in immature  
T cells, higher miR-181a level means greater T cell sensi-
tivity. Based on the results, we concluded that miR-181a 
acts as a regulator of T cell antigen sensitivity. Similar to 
this research results, another group found that decline in 
miR-181a expression impaired T cell receptor sensitivity, 
respectively [68]. 

Another miRNA, miR-155, is also widely expressed 
in immune cells [69]. There are reports that miR-155 is 
involved in disparate facets of the adaptive immune system 
[70]. In a study of miR-155 deficiency mice, the genera-
tion of pathogenic autoreactive T cells was greatly reduced 
compared with controls [71]. In the hematopoietic system, 
miR-155 promote the development of manifold T cells, 
such as the T helper 17 (Th17) cell and Th1 cell subsets 
[72]. In addition, according to studies by Rodriguez et al. 
and Thai et al, miR-155 is essential for Th2 differentiation 
[73, 74]. The above results support miR-155 as having 
a critical role in the inflammatory response pathway. No-
tably, miR-155 is also associated with regulatory T (Treg) 
cell function. Indeed, miR-155 sustains Treg cell prolif-
eration and homeostasis and down-regulates suppressor 
of cytokine signalling 1 (SOCS1) [56, 75, 76]. Therefore, 
miR-155 appears to regulate T cell (and B cell, see below) 
differentiation and function.

Additional Treg function to regulate microRNA is 
provided by miR-146a. miR-146a is low in naive human  
T cells, but is enhanced expression in human memory  
T cells [77]. Results from miR-146a-deficient mice 
showed an increase in the percentage of INFg-producing 
T-cell subset with absence of miR-146a [78]. More im-
portantly, Lu’s group reported that miR-146a is critical 
for Treg suppressor functions among the miRNAs prev-
alently expressed in Treg cells. miR-146a targets signal 
transducer and activator transcription 1 (Stat1) in Treg 
cells. Aberrant expression of this miRNA enhances Stat1 
expression and activation. Aberrant expression of miR-
146a also breaks down immunological tolerance, which 
has been shown to manifest as fatal IFNg-dependent im-
mune-mediated lesions [46, 79].

A number of miRNAs, including miR-181, miR-150, 
and miR-34a, have been reported to control B lymphocyte 
differentiation, from pre-B to mature-B, and the function 
of mature B lymphocytes. miR-150 expression is enhanced 
in the lymph nodes and spleen during T and B cell matu-
ration [80]. Zhou et al. illustrated that abnormal miR-150 
expression in hematopoietic stem cells deeply impaired 
the formation of mature B cells [81]. Chen et al. found 
that miR-181 was expressed in mouse marrow and that 
abnormal miR-181 expression led to an increased fraction 
of B lymphocytes in adult mice [82]. Recently, miR-34a 
has been shown to regulate B cell development in murine 
bone marrow [83]. A study by Rao showed that miR-34a 
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blocked the transition from pro-B cell to pre-B cell and 
reduced the maturation rate of B cells by targeting Foxp1.

miR-155 regulates the activation and function of  
B cells [84]. Chronic lymphocytic leukemia (CLL) cells 
with enhanced miR-155 expression silenced Src homology 
2 domains containing inositol polyphosphate phosphatase 
1 (SHIP-1) protein, which activated in response to B-cell 
receptor (BCR) ligation [85]. Conversely, transfection 
miR-155 inhibitor to CLL cells had the opposite effects. 
Based on ectopic miR-155 expression transgenic mouse 
model, Sandhu indicated that miR-155 can targets histone 
deacetylase 4 (HDAC4) and impairs transcriptional ac-
tivity of B-cell lymphoma 6 (BCL6) [86]. miR-155 has 
been shown to target the transcription factors PU.1 and 
AID, which are regulators of Ig diversification [87]. An-
other study demonstrated that miR-181b directly targeted 
AID [88]. In other words, miR-155 and miR-181b regulate 
the activation of B cells by specifically targeting the tran-
scription factor AID. In summary, the above-mentioned 
studies show that specific miRNAs are critical for the de-
velopment a function of B cells. These miRNAs bind to 
key target genes that are mainly involved in transcriptional 
regulation and cell death pathways.

Conclusions
There is an elevated incidence of immune diseases in 

drug abusers. The role of miRNA in the immune system 
and drug abuse represents a rapidly developing area of re-
search. The function of most miRNAs in relation to drug 
abuse and immune diseases is still not clearly understood. 
Most of the studies detected abnormal miRNA expression 
in chronic drug abuse and aberrant miRNA expression that 
affected the immune system. Unfortunately, the molecular 
mechanisms regarding how drug abuse changes miRNA 
expression levels and leads to immune system diseases is 
poorly understood. We aim to develop additional studies 
to understand the specific mechanisms. When we clearly 
understand the mechanisms, miRNAs can be used as po-
tential non-invasive biomarkers with therapeutic aims to 
treat the immunity diseases of drug abusers. 
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