
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Bikash R. Giri,
Tongji University, China

REVIEWED BY

Md. Aejazur Rahman,
Africa Health Research Institute (AHRI),
South Africa
Marta Alonso-Hearn,
Basque Research and Technology
Alliance (BRTA), Spain

*CORRESPONDENCE

Devendra S. Chauhan
604dks@gmail.com

SPECIALTY SECTION

This article was submitted to
Bacteria and Host,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

RECEIVED 02 August 2022
ACCEPTED 03 October 2022

PUBLISHED 27 October 2022

CITATION

Davuluri KS and Chauhan DS (2022)
microRNAs associated with the
pathogenesis and their role in
regulating various signaling
pathways during Mycobacterium
tuberculosis infection.
Front. Cell. Infect. Microbiol.
12:1009901.
doi: 10.3389/fcimb.2022.1009901

COPYRIGHT

© 2022 Davuluri and Chauhan. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 27 October 2022

DOI 10.3389/fcimb.2022.1009901
microRNAs associated with the
pathogenesis and their role in
regulating various signaling
pathways during Mycobacterium
tuberculosis infection

Kusuma Sai Davuluri and Devendra S. Chauhan*

Department of Microbiology and Molecular Biology, Indian Council of Medical Research-National
JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
Despite more than a decade of active study, tuberculosis (TB) remains a serious

health concern across the world, and it is still the biggest cause of mortality in

the human population. Pathogenic bacteria recognize host-induced responses

and adapt to those hostile circumstances. This high level of adaptability

necessitates a strong regulation of bacterial metabolic characteristics.

Furthermore, the immune reponse of the host virulence factors such as host

invasion, colonization, and survival must be properly coordinated by the

pathogen. This can only be accomplished by close synchronization of gene

expression. Understanding the molecular characteristics of mycobacterial

pathogenesis in order to discover therapies that prevent or resolve illness

relies on the bacterial capacity to adjust its metabolism and replication in

response to various environmental cues as necessary. An extensive literature

details the transcriptional alterations of host in response to in vitro

environmental stressors, macrophage infection, and human illness. Various

studies have recently revealed the finding of several microRNAs (miRNAs) that

are believed to play an important role in the regulatory networks responsible for

adaptability and virulence in Mycobacterium tuberculosis. We highlighted the

growing data on the existence and quantity of several forms of miRNAs in the

pathogenesis ofM. tuberculosis, considered their possible relevance to disease

etiology, and discussed how the miRNA-based signaling pathways regulate

bacterial virulence factors.
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Introduction

Non-coding RNAs are single-stranded transcripts that

regulate the mRNA (coding gene) expression by degrading

them. microRNAs (miRNAs) are small molecules of non-

coding RNA that contain 17–25 nucleotides and modulate

gene expression (Esteller, 2011). From the past few decades,

there is great progress in miRNA research, which is believed to

be important in regulating various pathological processes

(Aguilar et al., 2019). Over 20 years ago, the first miRNA

discovery made a mark in a molecular biology new era. Over

2,000 miRNAs have been identified in humans, and it is thought

that they collectively regulate one-third of the genes in the

genome. miRNAs have been linked to a variety of human

diseases and are being researched for use as clinical diagnostic

and therapeutic targets through biogenesis, involving the

multitude of mechanisms that inactive miRNA converts into

mature miRNA (Taneja and Dutta, 2019). Disruption in the

maturation process of miRNA, for example, miR-146a irregular

expression and impaired miRNA regulatory mechanisms, leads

to neoplasia, ischemic heart disease, neurodegenerative diseases,

etc. Yang et al., 2019 (Chen et al., 2019). miRNA formation

process occurs in the nucleus by RNA polymerase II. Initially,

the primary transcript with hair pin structure that encodes

miRNA sequences is regulated by RNA polymerase II

transcription factors, epigenetic and histone modifiers.

Primary miRNA goes through maturation processes by

cropping the loop end of pri-miRNA (pre-miRNA) in the

nucleus. Later, the resulting product is exported to the

cytoplasm by exportin-5 for further maturation steps. RNase,

Dicer crops the loop end one more time resulting in the small

RNA duplex (Bogerd et al., 2014). Only six nucleotides that

match are required to obtain functional miRNA (Bartel, 2009).

Recent research studies reveal the genesis and role of miRNA in

regulating several bacterial pathogenesis-associated signaling

pathways (Zhang et al., 2017b; Stutz et al., 2018). miRNAs can

be reliable in therapeutic settings. These factors became

important in screening the diseases with high specificity,

sensitivity, and accessibility (Walker and Harland., 2009 Ostrik

et al., 2021). Northern blotting, microarray analysis, and

quantitative polymerase chain reaction (qPCR) are traditional

methods for miRNA detection. To improve the sensitivity and

selectivity of miRNA detection, new technology methods always

rely on signal amplification strategies, such as nanoparticle-

based amplification, isothermal exponential amplification,

rolling circle amplification, hybridization chain reaction, and

combinations of these (Ye et al., 2019). Our literature review

reveals the role of miRNAs as modulators of signaling pathways

in tuberculosis (TB). miRNAs act as genetic switches that make

them regulators of cellular signaling pathways. We can predict

the targets of miRNA easily nowadays through the discovery of

high-throughput genomic screening methods. Understanding
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the role of miRNA in signaling pathways might lead to novel

therapies. New kinase inhibitors are being studied to treat many

diseases by detailed understanding of the role of miRNA in

regulating the kinase cascade pathways. We will indeed be able

to create new therapeutical platforms, such as locked genomic

technology, for synthesizing and providing efficient RNA-based

chemotherapeutic agents. miRNA expression patterns differ in

active TB, latent tuberculosis infection (LTBI), and healthy

individuals (Sabir et al., 2018). miRNA synthesis mainly

influences the action of various immune cells (Chandan et al.,

2020). We summarize some of them and discuss their benefits

and drawbacks for improving miRNA detection design.

Research studies found significant variations in miRNA

patterns that help in identifying LTBI and long-term TB

infection. Compared to LTBI, active tuberculosis shows

upregulation of miR-194-5p, miR-21, miR-29c-3, miR-150-5p,

miR-365a-3p, miR-223-3p, miR-451a-5p, miR-44-5p, and miR-

144-3p (Wang et al., 2011). Innate immune response: miR-146a

(IRAK)-1/ (TRAF)-6], miR-9 (NF-kB1), miR-125b (ERK)1

(Zhou et al., 2010), miR-26-5p (KLF4), miR-132-3p [(TLR)];

Regulation of inflammation: miR-21-5p (TLR4), miR-146a-5a

(TRAF-6), miR-20b-5p (NLRP3), miR-223-3p (NFIA), miR-

27b-3p (Bag2), miR-99b-5p [(TNF)-a and TNF receptor

superfamily (TNFRSF)-4], miR-125-5p (TNF-a), miR-142-

3pN (Wasp), miR-144(IFN-g and TNF-a), miR-27a (IRAK-4);

Autophagy: miR-155 (Rheb), miR-27a (Cacna2d3), miR-889

(TWEAK), miR-106a (ULK1, ATG7, ATG16L1) (Yang J et al.,

2019), miR-125 (DRAM2), miR-142-3p (ATG16L1) (Yang Y et

al., 2019), miR-17 (ATG7), miR-144-3p (ATG4a), miR-20a

(ATG7/ATG16L1) Cui et al., 2022a, miR-23a-5p (TLR2/

MyD88/NF-kB), miR-26a (KLF4); Apoptosis: miR-27a, miR-96

(FOXO3) (Guttilla and White, 2009), miR-20a-5p (JNK)2, miR-

27b (Bag2), miR-21 [PI3K/Akt NF-kB], Let-7e (Caspase-3),

miR-29a (Caspase-7) (Pattnaik et al., 2022). In this review, we

focused on the six main signaling pathways involved in the

major pathogenic mechanisms such as autophagy,

inflammation, and apoptosis. miRNAs that show strong

research evidence of regulation according to the target scan

and miRbase software were discussed. Finding out the function

of various miRNAs in the regulation of various pathogenic

signaling pathways may lead to identifying new therapeutic

targets. Inactive mRNA undergoes splicing/processing to

convert into mature mRNA. Mature mRNA then transported

from nucleus to cytosol where it is translated as shown in

Figure 1.
microRNAs in tuberculosis

miRNA expression patterns in patients with active TB were

shown to be distinct from those of individuals with LTBI or

healthy controls (Fu et al., 2011; Harapan et al., 2013; De Araujo
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et al., 2019). miRNA synthesis may influence the activation of

natural killer cells, macrophages, dendritic cells, and T cells (Xu

et al., 2019). To avoid the immune system, Mycobacterium

tuberculosis may either enhance or inhibit miRNA expression.

TNF-a and interferon (IFN)-g are the host cytokines associated
with autophagy during bacterial infection. Myeloid cells

triggered by TLR signaling have been demonstrated to be

negatively affected by higher levels of miRNA-146a-5p, miR-

21-5p, miR-155, miR-199b, and miR132-5p (Kim et al., 2017).

The overexpression of miR-27a-5p and miR-33 in M.

tuberculosis- infected cel ls inhibits the creat ion of

autophagosomes and the killing of M. tuberculosis by

macrophages (Liu et al., 2018). M. tuberculosis-infected

macrophages overexpress miRNAs that target IFN-g and TNF-

a, which suppress the immunological response against M.

tuberculosis (Chakrabarty et al., 2019). As an additional line of

defense against intracellular infections, host miRNAs such as

miR-325-3p and miR-20b-5p impact cell death and

inflammasome activation (Lou et al., 2017; Fu et al., 2020).

Host innate and adaptive immune systems, such as miR-155-5p

and let-7f, both have a role in the activation of miRNAs during

M. tuberculosis infection, which is necessary for the clearance of

pathogens (Rothchild et al., 2016). In cohorts that comprised

persons with LTBI, active TB, and healthy controls, researchers

have studied miRNA expression profiles in serum/plasma or
Frontiers in Cellular and Infection Microbiology 03
blood cells (Lyu et al., 2019). Compared to LTBI, the expression

of five miRNAs was higher in TB patient PBMCs (miR-365a-3p,

miR-223-3p, miR-451a-5p, miR-44-5p, and miR-144-3p), with

target predictions pointing to a possible role in TB patients’

hematopoiesis. According to another research, active TB

patients had an improved expression of miR-194-5p and other

miRNAs, including miR-21, miR-29c-3, and miR-150-5p.

Upregulation of miR-29a-3p was shown to be a helpful

prospective biomarker for qRT-PCR-based differentiation

among active TB and LTBI (Zhang et al., 2014; Kanniappan

et al., 2017). Individuals infected with HIV and those who were

not exhibited similar levels of miRNAs.

It was observed that miR-1246, miR-2110, miR370-3p, miR-

28-3p, and miR-193b-5p were overexpressed in active TB,

whereas miR-3675-5p was downregulated (Duffy et al., 2018).

There was no validity testing done on the patients in the second

cohort. Pathological Biomarkers for Tuberculosis Progression

and Therapy Response researchers want to find predictive

miRNA signatures for LTBI-to-TB progression and anti-TB

medication response. According on published data rather than

a screening in the lab, these miRNAs were selected. TB patients

who received successful TB treatment were shown to have lower

levels of other miRNAs than those who did not react to

treatment (Lyu et al., 2019). While the concept and

therapeutic regimen were the same, the screening method was
FIGURE 1

Maturation of microRNA (miRNA). RNA polymerase II or III modifies the primary miRNA into the cap structure through polyadenylation. The
Drosha complex crops the miRNA into a hairpin-shaped pre-miRNA during the initial processing of pri-miRNA in the nucleus. Immature miRNA
is exported to the cytoplasm by the exportin-5/Ran-GTP complex for Dicer processing. One of the miRNA duplex strands forms miRNA-RISC,
which engages on the target mRNA to mediate gene silencing via translational repression or mRNA degradation/deadenylation (detailed in
Figure 1). The epigenetic modifications during the transcription process render the miRNA unable to carry out its normal functions. Messenger
ribonucleic acid (mRNA); micro ribonucleic acid (miRNA); deoxyribo nucleic acid (DNA); RNA-induced silencing complex (RISAC).
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different in a Chinese study. Compared to miR-148b-3p, miR-

92a-3p, and miR-21-5p, miR-125a-5p was elevated in this case

(Zhao et al., 2013; Duffy et al., 2018). Due to discrepancies in

results, standardization of screening techniques is needed to

provide more accurate results. In patients with active TB, LTBI,

and isoniazide-treated LTBI, researchers found three miRNAs

(let-7a-5p, a small nucleolar RNA miR-196b-5p, and

SNORD104) as highly sensitive classifiers to distinguish TB

from non-TB group members using insignificant RNA

sequencing (RNA-seq) of whole blood (Barry et al., 2018).

Regardless of the prevalence of HIV-1 coinfection, small

RNA levels in plasma dropped dramatically before and after

therapy. Although miR-29a-3p, SNORD61, miR-17-3p, and

miR-133a levels were reduced among persons who reacted to

medicine compared to those who did not, no single miRNA or

combination of small RNAs was shown to be a significant

predictor of successful TB therapy (Wang et al., 2018). To

investigate whether there was a similar profile of differential

miRNA expression across trials from patients with active TB and

healthy controls, samples from patients with active TB were

compared to those of healthy controls. Since the past decade or

so, researchers have used this method to find miRNAmarkers in

serum/plasma and blood cells. miRNAs described employing

broad-spectrum unbiased procedures such as small RNA-seq

will likely provide new accurate results than researchers who just

concentrate on a few possible miRNAs. Because only a few

miRNAs are available in the signature revealed by two or more

studies, there is a lack of consistency in the outcomes of such

screenings. An array of patient demographics and different types

of RNA-seq and microarrays may be at fault. It is thought that

these miRNAs play an essential role in TB pathogenesis by

decreasing the host’s innate and acquired immune response to

intracellular infections, both directly and indirectly. Anti-

inflammatory miRNAs, such as miR-21-5p and miR-146a-5p,

may also be used to discriminate among active TB and LTBI or

an otherwise wholesome condition (Spinelli et al., 2013). As a

putative biomarker of active TB, the M. tuberculosis inducing

miR-155-5p, which is overexpressed in sufferers, plays a vital

part in host defense (Etna et al., 2018). Role of different miRNAs

in the pathogenesis of tuberculosis is tabulated in Table 1.
Adenosine monophosphate-
activated protein kinase/mammalian
target of rapamycin signaling
pathway

AMP-activated protein kinase (AMPK) is a crucial metabolic

sensor that responds to alternations in the cellular AMP/ATP

ratio following the activation of catabolic energy production. The

AMPK pathway is also activated in response to various bacterial
Frontiers in Cellular and Infection Microbiology 04
infections and inflammation. Various bacterial antigens activate

AMPK signaling cascades associated with host response

modulation that can either increase or decrease pathogen

survival (Grahame Hardie, 2016; Prantner et al., 2017). Previous

research has revealed a wide range of AMPK pathway functions,

including the regulation of host signaling and participation in

significant events. mTOR kinase phosphorylation was more

activated in macrophages than AMPK in a time-dependent

manner following M. tuberculosis infection (Yang et al., 2014).

There is evidence that cytosolic M. tuberculosis colocalizes with

p62 and LC3, which are autophagic machinery components.

Watson et al. 2012 found it in only 30% of total M. tuberculosis

phagosomes, providing evidence that the majority of intracellular

M. tuberculosis could inhibit xenophagy activation because of

TFEB nuclear translocation downregulation. Activation of mTOR

during. M. tuberculosis infection raises the levels of miRNA-33

and miRNA-33a (Oneyama et al., 2011). miR-124 reduces cell

proliferation through G1 phase cell cycle arrest (Gong et al., 2016;

He et al., 2020). Furthermore, overexpression of miR-124

overexpression reduces both cell growth and glucose

consumption in cells (Zhao et al., 2017), which is consistent

with AMPK downregulation. Increased levels of miR-101a and

miR-199a decrease AMPK signaling (Liu et al., 2016b) (Li et al.,

2020), and miR-101a can both directly and indirectly inactivate

AMPK (Li et al., 2018; Liu et al., 2018). miRNAs that were

downregulated during hypoxia are also involved in AMPK

signaling, which plays an important role in reducing oxidative

stress, autophagy, and apoptosis during hypoxia (Li et al., 2016;

Tran et al., 2017; da Cruz et al., 2018; Sun et al., 2018; Zhu et al.,

2018; Zhao T. et al., 2020). Starvation, genotoxic stress, hypoxia,

ER stress, and reactive oxygen species (ROS) all activate signaling

pathways that either initiate or regulate autophagy cascades.

AMPK-mTORC1 regulates autophagy by integrating multiple

stimuli and pathways into a signal for the ULK complex, which

is the starting point for autophagy. Several miRNAs have been

identified as regulators of AMPK-mTORC1. miRNAs acts as both

positive and negative regulators of the gene expression.

Upregulated miRNAs mainly target the signaling pathways

associated with pathogenesis during the infection. The miRNAs

targeting the various pathways are shown in the Figure 2.
Nuclear Factor-k b/Tumor necrosis
factor receptor associated factor 6
signaling pathway

The host component against pathogenic organisms is NF-

kB, which is a regulator of cell pro-inflammatory responses

(Zhang Q et al., 2017a). NF-kB has been linked to the emergence

of chronic inflammation and bacterial infections. Recent studies

have reported that several miRNAs have been associated with
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1009901
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Davuluri and Chauhan 10.3389/fcimb.2022.1009901
TABLE 1 Role of different miRNAs in the pathogenesis of tuberculosis.

miRNA Mode of
miRNA

expression

Function Regulated pathway References

miR-27b Downregulation Inflammatory responses and apoptosis TLR-2/MyD88/NF-kB signaling pathway,
p53-reactive oxygen species (ROS) signaling
pathway.

(Marcinowski et al.,
2012; Liu Y et al., 2016)
(Liang et al., 2018)

miR-125a-3p
(miR-125a)

Upregulation Inhibition of autophagy activation and phagosomal
maturation of Mycobacterium tuberculosis in the host
innate immune cells.

Inhibition of IFN-induced JAK-STAT
signaling

(Niu et al., 2018)
(Kim et al., 2015)
(Yang et al., 2022)

miR-155 and
miR-31

Upregulation Inhibits IFN-g-induced autophagy WNT and sonic hedgehog signaling (Yang et al., 2015)

miR-708-5p Downregulation Mycobacterial vitality and the secretion of inflammatory
factors.

Unknown (Li and Zhang, 2019)

miR-99b Upregulation Overexpression inhibited TNF-a and IL-6 production p38/miRNA/NF-kB pathway

miR-146a
and miR-
146a-5p

Downregulation Ameliorates inflammation represses Mycobacteria-induced
inflammatory response and facilitates bacterial
replication, protects against LPS-induced inflammatory
injury

TRAF6/NF-kB Pathway
Targeting IRAK-1 and TRAF-6

(Jieying et al., 2017)
(Chen et al., 2017,
Zhang C et al., 2017)
(He et al., 2018)
(Li et al., 2016)
(Zhang et al., 2019)
(Li et al., 2013)
(Chen et al., 2019)
(Wang et al., 2019)
(Sharma et al., 2015)

miR-194 Upregulation Lipopolysaccharide-
induced inflammatory response

Targeting TNF receptor-associated factor 6
(TRAF6)

(Kong et al., 2018)

miR-18b-5p Downregulation Downregulation favors Mycobacterium tuberculosis
clearance in macrophages via HIF-1a by promoting an
inflammatory response

phosphorylation of p38 MAPK and NF-kB
p65 was activated by the
miR-18b inhibitor.

(Zhu et al., 2021)

miR-21-5p Upregulation Regulates mycobacterial survival and
inflammatory responses

Targeting Bcl-2 and TLR4 signaling (Nara et al., 2019)

miR-223-3p Upregulation Promotes the production of pro-inflammatory cytokines,
interleukin (IL) 6, IL-1b, and tumor necrosis factor (TNF)-
a

Its downregulation resulted in the activation
of STAT3

(Lu et al., 2010; Wu M
et al., 2019; Wu J et al.,
2019)

miR-2909 Upregulation Promotes the production of pro-inflammatory cytokines,
interleukin (IL-6, IL-1b, and tumor necrosis factor (TNF)-
a

Toll-like receptor (TLR) 4/TLR2/nuclear
factor (NF)-kB/signal transducer and activator
of transcription (STAT) 3 signaling pathway

(Wu et al., 2019)

miR-125a Upregulation Enhances erythroid differentiation arrest Modulates NF-kB Activation (Kim et al., 2015; Wang
et al., 2020)
(Yang et al., 2022)

miR-26b Upregulation Inhibits the immune response to Mycobacterium
tuberculosis infection

targeting TGFb-activated kinase-1 (TAK1), a
promoter of the NF-kB pathway

(Zhao et al., 2014; Li
et al., 2018)

miR‐140 Downregulation Modulates the inflammatory responses targeting TRAF6 (Li et al., 2019)
(Huang et al., 2019)

miRNA-206 Upregulation Regulates the secretion of inflammatory cytokines TIMP3 (Fu et al., 2016)

miRNA-124 Upregulation Function as an inflammatory regulator
and drives the expression of MMP9

Negatively regulates TLR signaling (Lang and Ling 2012;
Ma et al., 2014)

miRNA-32-
5p

Upregulation Regulates mycobacterial survival
and inflammatory responses

TLR-4/miRNA-32-5p/FSTL1 signaling (Zhang et al., 2017)

miRNA-23a-
5p

Upregulation Modulates mycobacterial survival and autophagy during
Mycobacterium tuberculosis infection

TLR2/MyD88/NF-kB
pathway by targeting TLR2

(Chen et al., 2020)

miRNA-
1178

Upregulation Regulates mycobacterial survival and inflammatory
responses in Mycobacterium tuberculosis-infected
macrophages

Negatively regulated the expression of TLR4 (Shi et al., 2018)

miR-21 Upregulation Reported to induce anti‐inflammatory responses Downregulated
the Toll‐like receptor (TLR)/NF‐kB signaling
via reducing the expression of TNF
receptor‐associated factor 6 (TRAF6)

(Zhao et al., 2019)

(Continued)
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the inflammatory responses by regulating the M. tuberculosis

replication and induced pathogenesis by targeting the TRAF-6

signaling pathways (Cui et al., 2018). The detailed mechanisms

have to be illustrated further. TRAF-6 belongs to the TNF

receptor protein family, acts as an important regulator in

many cellular pathways and regulates signal transduction of

the TNF receptor superfamily (Chen et al., 2020). TRAF-6 also

acts as a link among IRAK-1/IRAK and NF-kB/IB kinase

signaling pathways in response to pro-inflammatory cytokines

by binding with TGF-b-activated kinase-1 (TAK1) and

supporting IkB kinase phosphorylation, ubiquitination, and

deterioration after the stimulation of many innate immunity-

associated genes (Li H. et al., 2018). During the M. tuberculosis

infection, upregulation of miRNA-125a in macrophages

depends on TLR4 signaling by targeting TRAF-6 and

modulating NF-kB (Cui J et al., 2022a; 2022b). This

mechanism leads to the attenuation of the immune response

and enhances the survival of mycobacteria. The NF-kB pathway

is associated with bacteria–host interactions (Westermann,

2018). By identifying the PI3K-AKT-mTOR signaling pathway

(PTEN), miR-26b tends to promote the LPS-induced NF-kB
signaling pathway and enhances the expression of pro-

inflammatory factors (Huang et al., 2012). Studies showed that

genetic disruption of the p50 subunit of NF-kB restricts the M.
Frontiers in Cellular and Infection Microbiology 06
tuberculosis infection. Pharmacologic regulation of NF-kB
activation decreases the viability of intracellular mycobacteria

(Liu et al., 2016a). NF-kB inhibition increases the apoptosis of

macrophages and autophagy, which is the established defense

mechanism (Bai et al., 2013). Inactivation of NF-kB
downregulates the expression of PTEN that regulates cellular

activities that may be crucial for pathogen resistance. PTEN

signaling regulates infection by affecting various intracellular

mycobacterial pathogens (Fang et al., 2016). PTEN deficiency

renders susceptibility to infection in multiple cells infected with

mycoplasma and Mycobacterium. PTEN’s lipid phosphatase

activity is critical for infection tolerance. Mycobacterium

infectious disease activates Akt phosphorylation, and

suppression of Akt or PI3K activity regulates cellular infection

(Huang et al., 2012). M. tuberculosis-infected macrophages

secrete cytokines, showing an effective defense mechanism

against the pathogen. NF-kB and mitogen-activated protein

kinase (MAPK) signaling pathways regulate the expression of

various cytokines (Gañán-Gómez et al., 2014). Cytokines such as

TNF-a, IL-6, and IL-1b are potent mediators showing immune

response against the M. tuberculosis bacilli (Cui et al., 2021).

Targeting the cytokines and their regulatory pathways restricts

the host immune response. For example, M. tuberculosis

virulence protein PtpA arrests the NF-kB and JNK signaling
TABLE 1 Continued

miRNA Mode of
miRNA

expression

Function Regulated pathway References

miR-325-3p Upregulation Facilitates immune escape of Mycobacterium tuberculosis Targeting LNX1 via NEK6 accumulation
to promote antiapoptotic STAT3 signaling

(Fu et al., 2020)

miR-27a Upregulation Alleviates LPS-induced acute lung injury in mice via
inhibiting inflammation and apoptosis

Modulating TLR4/MyD88/NF-kB
pathway

(Zhu et al., 2018)

miR-148a Upregulation Upregulation of miR-148a inhibits mycobacterial
intracellular survival

TLR4/NF-kB signaling pathway, suppresses
tuberculous fibrosis by targeting NOX4 and
POLDIP2.

(Woo et al., 2022)

miR-194 Upregulation regulates palmitic acid-induced toll-like receptor 4
inflammatory responses

Activate TLR4 signal pathway (Kong et al., 2018)

miR-214 Upregulation Promotes the calcification
through the acceleration of inflammatory reactions

Activate MyD88/NF-kB signaling (Zheng et al., 2019;
Zhao L et al., 2019)

miR-3473 Upregulation Effect inflammatory reactions Enhances NF-kB via targeting TRAF3 (Fang et al., 2016)

miR-33 Upregulation Reprograms autophagy NF-kB (Ouimet et al., 2016)

miR-10b Upregulation Promotes apoptosis Via JNK pathway (Qin et al., 2018)

miR-125b Upregulation Blocks TNF synthesis Via MAPK-activated protein kinase 2 (Rajaram et al., 2011)

miR-138 Upregulation Induces apoptosis Regulates MLK3/NK/MAPK pathway (Ren et al., 2018)

miR-517 Upregulation Induces oxidative stress Inactivates JNK pathway (Yang et al., 2020)

miR-4268 Upregulation Inhibits cell proliferation Via AKT/JNK signaling by targeting Rab6B Zhao L et al., 2020

miR-378d Upregulation Clearance of mycobacterial infection Increases Rab10 expression Zhu et al., 2020
miRNAs role in the various pathogenesis pathways during tuberculosis infection: Tumor necrosis factor (TLR); Myeloid differentiation primary response protein-88 (MyD88); Nuclear
factor-kappa-beta (NF-kB); Interferon (IFN); Janus kinase/signal transducers and activators of transcription (JAK-STAT); Wingless-related integration site (WNT); Interleukin-1 receptor-
associated kinase (IRAK); Tumor necrosis factor receptor–associated factor (TRAF); Mitogen-activated protein kinase (MAPK); B-Cell Leukemia/Lymphoma 2 (Bcl2); Transforming
growth factor-b-activated kinase 1 (TAK-1); Follistatin-like 1 (FSTL1); Serine/threonine-protein kinase Nek6; E3 ubiquitin-protein ligase LNX; Nicotinamide adenine dinucleotide
phosphate oxidase (NOX); Mixed lineage kinase domain (MLK); protein kinase B (AKT); Member rat sarcoma family (Rab).
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pathways (Rothchild et al., 2016). Treatment of cells with early

secreted antigenic target-6 (ESAT-6) prevents TLR-associated

NF-kB activation (Yang et al., 2015). TAK is a serine/threonine

protein kinase associated with the activation of NF-kB pathway.

Studies show that miRNAs regulate TAK expression to promote

chemoresistance. Upregulation of miR-143 attenuates the

function of TAK. miR-146a and miR-26b also target the TAK

to promote apoptosis and are associated with the NF-kB
pathway inhibition. miR-143 and miR-146a inhibit the NF-kB
signaling pathway (Chen Y et al., 2016; Chen et al., 2019).
Frontiers in Cellular and Infection Microbiology 07
Toll-like receptor signaling

During theM. tuberculosis infection, TLR2-deficient animals

were more susceptible than control mice, but TLR2- and TLR4-

deficient mice were as vulnerable as control mice in a low-dose

M. tuberculosis challenge (Ju et al., 2018). Pattern recognition

receptors (PRRs) expressed on leukocytes activate phagocytosis

and host defense mechanisms through the promotion of

signaling cascades. TLRs and mannose receptors associated

with PRRs play a critical role in immune response and detect
FIGURE 2

Major miRNAs that regulate apoptosis effectors are shown in the diagram in the yellow box. FasR, Fas Receptor; FADD, Fas-associated death
domain protein. miRNAs regulate the major cascades of autophagy. The action of miRNAs involved in the regulation of key members of
autophagy cascades; repression/activation of mRNA are shown in the nucleus. mTORC1 induces and regulates the autophagy by miRNAs.
AMPK-mTORC1 lies at the heart of regulation of autophagy by integrating numerous stimuli and pathways into a signal for the starting point of
autophagy. In addition, ER stress and ROS regulate autophagy independently of the AMPK-mTORC1 pathway. In TNF-a-induced necroptosis,
the engagement of TNFR1 recruits Complex I (composed of TRADD, TRAF2). This complex promotes the NF-kB activation and promotes cell
survival and inhibits apoptosis. When growth factor receptors are activated, the class I PI3K complex and a small GTPase, Ras, are activated,
which activate the PI3K-PKD1-AKT and Ras-Raf-1-MEK1/2-ERK1/2 pathways, respectively. Both AKT and ERK1/2 phosphorylate and inhibit
tuberous sclerosis complex, thereby stabilizing Ras homolog, which activates mTORC1, resulting in autophagy inhibition. JNK1-mediated Bcl-2
phosphorylation reduces the binding activity of Bcl-2 and Bcl-xL to initiate autophagy, which promotes cell survival. TLR signaling and miRNAs
form a complex network. TLR recruits adaptor proteins and activates downstream signaling cascades that activate the NF-kB signaling pathway
and the MAPK signaling pathway in response to specific microbial recognition. This activation causes inflammatory mediators and miRNA genes
to be expressed.
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the pathogen-derived molecules. Most of the mycobacterial

antigens act as agonists for TLRs (Liu Y. et al., 2016).

Inoculation of BCG was believed to be dependent on TLR2

and TLR4. Most of the mycobacterial proteins and lipids are

associated with the TLR-dependent signaling cascades. TLR

regulates hundreds of the host genes that are associated with

signaling and acts against microbial antigens, so studying about

TLR molecular mechanisms has great importance (Shariq et al.,

2021). TLR signaling was negatively affected by higher levels of

miRNA-146a-5p, miR-21-5p, miR-99b-5p, and miR132-5p 9

(Wu et al., 2012). The overexpression of miR-27a-5p and miR-

33 in M. tuberculosis-infected cells inhibits the creation of

autophagosomes and the killing of M. tuberculosis by

macrophages (Marcinowski et al., 2012). As an additional line

of defense against intracellular infections, host miRNAs such as

miR-325-3p and miR-20b-5p impact cell death and

inflammasome activation (Kumar et al., 2015). miRNAs

associated with the host innate and adaptive immune systems,

such as miR-155-5p and let-7f, have a role in the activation of

signaling pathways during M. tuberculosis infection, which is

necessary for the clearance of pathogens (Iwai et al., 2015; Li

et al., 2016). Although miR-29a-3p, SNORD61, miR-17-3p, and

miR-133a levels were reduced among people who reacted to

medicine compared to those who did not, no single miRNA or

combination of small RNAs was shown to be a significant

predictor of successful TB therapy (Dersch et al., 2017). M.

tuberculosis-mediated TLR2/1 signaling increases the expression

of the vitamin D receptor and the vitamin D hydroxylase,

resulting in enhanced production of antimicrobial peptides (Lv

et al., 2017). TLR4 may contribute to M. tuberculosis resistance;

however, no agreement has been achieved at this point. TLR4

has a protective role in adaptive immunity against pulmonary

TB in vivo; the non-functional TLR4 causes high mortality and

increased bacterial burden in the lungs. miR-146a-5p, miR-21-

5p, miR-99b-5p, and miR-132-5p are highly expressed in TB

patients and adversely regulate host signaling cytokines in

myeloid cells triggered by TLR signaling, promoting M.

tuberculosis survival (He et al., 2018). Other miRNAs that are

upregulated in M. tuberculosis-infected macrophages, such as

miR-27a-5p, miR-33, miR-125-5p, and miR-144-5p, inhibit

autophagy formation and M. tuberculosis killing by

macrophages. Both miR-29a-3p and miR-125-5p are

upregulated in infected macrophages and directly target IFN

and TNF, thereby reducing the immune reaction to intracellular

M. tuberculosis (Stepanov et al., 2015). Cell necrosis and

inflammasome formation are two other mechanisms of

defensive strategy against intracellular pathogens that are

controlled by M. tuberculosis-induced host miRNAs such as

miR-325-3p and miR-20b-5p. However, some miRNAs that are

influenced during M. tuberculosis infection, such as miR-155-5p

and let-7f, play a crucial role in the activation of host innate and

adaptive immunity, as well as microbial clearance (Sinigaglia

et al., 2020).
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Interleukin-1 receptor-associated
kinase-1 family pathway

Ligand identification activates the TIR-containing adaptor

receptor MyD88, which further binds to IRAK-1 and IRAK-4 (Li

et al., 2013; Gu et al., 2017). IRAK has a destruction domain and a

serine/threonine kinase domain, and there are four members of the

IRAK family: IRAK-1, IRAK-2, IRAK-M, and IRAK-4 (Li et al.,

2002). Studies have revealed that IRAK-4 functions upstream of

IRAK-1 in the TLR complex (Zhang et al., 2019). Mutations in the

IRAK-4 gene have been linked to a higher sensitivity to bacterial

infection in patients with Mendelian susceptibility to mycobacterial

disease, and M. tuberculosis-infected patients are resistant to TLR

ligands (Cui et al., 2018). Moreover, NF-kB essential modulator

(NEMO) and IRAK-4 were revealed to be important in IL-12

formation and increased IFN-g production in humans and mice,

which would be vital to creating protective immune responses

against mycobacterial infection (Wu et al., 2019). In response to

TLR stimulation, IRAK-4 associates with IRAK-1, and the

emergence of a dominant negative form of IRAK-4 negative

regulator IRAK-1 activation (Li S et al., 2002). IRAK-deficient

mice secrete more cytokines in response to TLR ligands (Lomaga

et al., 1999). IRAK-M is the negative regulator of the TLR signaling

that shows the important role of this protein in suppressing

mycobacteria-induced inflammasome activation and TLR

signaling pathways. The MAPK pathways are triggered by

primary stimulations such as mycobacterial products or whole

mycobacteria, resulting in the stimulation of transcription factors

such as NF-kB and activator protein-1 (AP-1) (Wang et al., 2001).

miRNAs regulating the IRAK signaling pathway were shown

in Table 2.
Fas-associated death domain-
containing protein signaling

Death ligands such as Fas ligand (FasL) bind to death receptors

in the FasR receptor. Following this interaction, the death-inducing

signaling complex (DISC) is formed, which includes the Fas-

associated death domain-containing protein (FADD) and

procaspase-8/10. RNAi-mediated FADD knockdown in cells

reduced NF-kB signaling. Exogenous FADD expression prevented

NF-kB signaling (Dockrell, 2003). FADD loss-of-function

mutations in the death effector inhibited the caspase-8 and NF-

kB activation that promotes apoptosis. Caspase-8 deficiency

inhibited TNF-related apoptosis-inducing ligand (TRAIL)-

induced NF-kB activation. These findings reveal a mechanism for

TRAIL-induced NF-kB activation that involves the TRAIL

receptors DD, FADD, and caspase-8. These proteins play an

important role in apoptosis signaling and are the mediators of

non-apoptotic CD95 signaling during T-cell proliferation (Welz

et al., 2011). FADD-deficient T cells show reduced proliferation,
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TABLE 2 miRNAs associated with regulating the various signaling pathways (Source miRbase software).

miRNA P-Value Targets

hsa-miR-146a-5p Experimental (any) 5.53E-06 FADD,IL6,IRAK1,IRAK2,ITGB2,NFKB1,
RHOA,STAT1,TGFB1,TLR2,TLR4,TRAF6

hsa-miR-451a Experimental (any) 7.44E-05 AKT1,BCL2,IL6,MAPK1,RAB5A

hsa-miR-34a-5p Experimental (any) 1.60E-04 AKT1,APAF1,BAX,BCL10,BCL2,CASP10,
CASP3,CASP8,CASP9,CYCS,IFNB1,IL10,
MAPK3,NFKB1,PPP3R1,RIPK2,SRC,
STAT1,TNF,TNFRSF1A

hsa-miR-21-5p Experimental (any) 7.89E-04 AKT2,APAF1,ARHGEF12,BCL10,BCL2,CASP8,
CEBPB,IL12A,IL1B,IRAK1,LAMP2,MALT1,
MYD88,NFKB1,TGFB1,TGFB2,TLR4

hsa-miR-203a-3p Experimental (any) 0.001 AKT2,CREB1,IL6,MAPK8,MAPK9,MYD88,
NFYA,SRC,STAT1,SYK,TNF

hsa-miR-143-3p Experimental (any) 0.001 AKT1,AKT2,BCL2,CALM3,IL10RB,
MAPK1,NFYB,TLR2,TNF

hsa-miR-146b-5p Experimental (any) 0.002 AKT3,IL6,IRAK1,NFKB1,RHOA,TLR4,TRAF6

hsa-miR-29b-3p Experimental (any) 0.003 AKT2,AKT3,BCL2,CALM3,CASP8,
IFNG,TGFB1,TGFB2,TGFB3

hsa-miR-125b-5p Experimental (any) 0.015 AKT1,BCL2,CEBPG,CREBBP,HSPD1,JAK2,
MAPK14,RAF1,SPHK1,TNF,VDR

hsa-miR-125a-5p Experimental (any) 0.015 AKT1,BCL2,IFNG,JAK2,MAPK14,
MAPK8,RAF1,TRAF6

hsa-miR-7-5p Experimental (any) 0.016 AKT3,ARHGEF12,BAX,BCL2, CALM3,CAMK2D,CASP9,FADD,
MAPK9,NFYA,RAF1,RELA,TLR4

hsa-miR-126-3p Experimental (any) 0.016 AKT1,AKT2,BCL2

hsa-miR-2861 Experimental (any) 0.017 AKT2,APAF1,CYCS,VDR

hsa-miR-155-5p Experimental (any) 0.024 AKT1,APAF1,ATP6V1H,CASP3,CEBPB,
FADD,HLADPA1,IFNGR1,IL6,MAPK13,
MAPK14,MYD88,NFKB1,NFYC, RAB5C,RHOA,STAT1

hsa-miR-422a Experimental (any) 0.024 AKT1,TGFB1,TGFB2

hsa-miR-184 Experimental (any) 0.025 AKT1,AKT2,BCL2

hsa-miR-668-3p Experimental (any) 0.027 MALT1,MAPK1,MAPK14

hsa-miR-601 Experimental (any) 0.03 ATP6AP1,CREBBP

hsa-miR-196b-5p Experimental (any) 0.033 AKT1,BCL2,CALM1,CALM3,MAPK1

hsa-miR-221-3p Experimental (any) 0.037 AKT3,APAF1,CASP3,CORO1A,MAPK10,
NFYA,NFYC,RAB5C,RHOA

hsa-miR-9-3p Experimental (any) 0.038 MAPK1,MAPK3,NFKB1,PPP3R1

hsa-miR-574-3p Experimental (any) 0.039 EP300,TGFB1

hsa-miR-204-5p Experimental (any) 0.041 BCL2,BID,CAMK2G,CREB1,
HLA-DRB1,HLA-DRB5,IL1B,JAK2,PPP3R1,RAB5B

hsa-miR-135a-5p Experimental (any) 0.042 BCL2,JAK2,SRC,TRAF6

hsa-miR-185-5p Experimental (any) 0.048 AKT1,ATP6AP1,CALM3,CAMK2D,CEBPB,
IL10RA,RAB5B,RHOA,TGFB1

hsa-miR-3134 Experimental (any) 0.048 MAPK13,RAF1,RELA

hsa-miR-23a-5p Experimental (strong) 3.72E-05 APAF1,LAMP1,TGFB2,TLR2

hsa-miR-146a-5p Experimental (strong) 5.12E-05 FADD,IL6,IRAK1,IRAK2,NFKB1,RHOA,
STAT1,TGFB1,TLR2,TLR4,TRAF6

hsa-miR-146b-5p Experimental (strong) 6.39E-04 IL6,IRAK1,NFKB1,TLR4,TRAF6

hsa-miR-550a-3p Experimental (strong) 0.001 MAPK1,MAPK3

hsa-miR-125a-5p Experimental (strong) 0.002 AKT1,BCL2,IFNG,JAK2,
MAPK14,RAF1,TRAF6

hsa-miR-451a Experimental (strong) 0.003 AKT1,BCL2,IL6,MAPK1,RAB5A

hsa-miR-582-5p Experimental (strong) 0.004 CASP3,CASP9,CREB1

hsa-miR-365a-3p Experimental (strong) 0.006 BAX,BCL2,IL6

(Continued)
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implying that FADD plays an important role in proliferation

signaling. FADD can be regulated transcriptionally by miR-155

(Wang et al., 2011) or miR-128a. miR-128a ectopic expression

conferred Fas resistance in cells by directly targeting FADD, but

antagonizing miR-128a function made cells susceptible to Fas-

mediated apoptosis (Yamada et al., 2014).
Janus kinase/signal transducers and
activators of transcription signaling

Following the binding of activated calcium ions to cAMP, they

activate small Ras-like GTPases like Ras-proximate-1 (Rap1), which

is primarily involved in cell adhesion and junction formation during

cell proliferation. cAMP is also known to increase ERK1/2

phosphorylation via ROS-dependent activation of Ras. Through

the negative feedback regulation, miR-146 plays an important role

in the control of TLRs and cytokine signaling (Brooks et al., 2014).

miRNAs have the ability to regulate the levels of molecules by being

involved in the negative feedback of PRR-induced signaling (Mao

et al., 2005). miR-124 was discovered to be a negative regulator of

inflammation by targeting several pathways, including signal

transducer and activator of transcription (STAT) and TLRs
Frontiers in Cellular and Infection Microbiology 10
(O’Shea et al., 2013). miR-124 inhibits intestinal inflammation by

attenuating the production of IL-6 and TNF-a via targeting STAT3,

a major factor in inflammatory response, and acetylcholinesterase, a

negative regulator of the cholinergic anti-inflammatory signal. Sun

et al. (2018) reported that miR-124 inhibits STAT3 to reduce IL-6

production and TNF-a-converting enzyme to inhibit TNF-a
release in response to LPS. Lower levels of miR-124 and higher

levels of STAT3 promote inflammation and disease pathogenesis.

miR-124 expression is increased in pulmonary TB patients. miR-

124 negatively regulates multiple TLR signaling components,

including TLR6, MyD88, TNF-a, and TRAF6, implying an

underlying negative feedback loop between miR-124 and TLR

signaling to prevent excessive inflammation (Wang S. et al.,

2018). In both calves and humans, a decrease in miR-124

expression contributes to high proliferation and pulmonary

inflammation.
Myeloid differentiation primary
response protein (MyD88) signaling

MyD88 is an intracellular molecule connected to IRAK and

TLRs to transduce signals. MyD88 activates MAPK, PI3K, NF-
TABLE 2 Continued

miRNA P-Value Targets

hsa-miR-15b-5p Experimental (strong) 0.009 AKT3,BAX,BCL2,IFNG,TGFB1

hsa-miR-136-5p Experimental (strong) 0.012 BCL2,IL6

hsa-miR-143-3p Experimental (strong) 0.017 AKT1,AKT2,BCL2,TLR2,TNF

hsa-miR-21-5p Experimental (strong) 0.019 AKT2,APAF1,BCL10,BCL2,CASP8,CEBPB,
IL12A,IL1B,IRAK1,MYD88,TGFB2

hsa-miR-181d-5p Experimental (strong) 0.02 BCL2,MALT1

hsa-miR-33b-5p Experimental (strong) 0.023 BCL2,CREB1,SRC

hsa-miR-203a-3p Experimental (strong) 0.024 AKT2,CREB1,MYD88,SRC,STAT1,TNF

hsa-miR-184 Experimental (strong) 0.025 AKT1,AKT2,BCL2

hsa-let-7c-5p Experimental (strong) 0.027 CASP3,CEBPB,IL10,IL6

hsa-miR-29b-3p Experimental (strong) 0.027 AKT2,AKT3,BCL2,IFNG,
TGFB1,TGFB2,TGFB3

hsa-miR-574-3p Experimental (strong) 0.028 EP300,TGFB1

hsa-miR-483-5p Experimental (strong) 0.029 MAPK3,RHOA

hsa-miR-708-5p Experimental (strong) 0.031 AKT1,AKT2,BCL2

hsa-miR-105-5p Experimental (strong) 0.033 AKT1,TLR2

hsa-miR-9-3p Experimental (strong) 0.033 MAPK1,MAPK3,NFKB1

hsa-miR-29b-1-5p Experimental (strong) 0.034 AKT3,TGFB1

hsa-miR-130a-3p Experimental (strong) 0.041 IL18,RAB5A,TGFB1,TNF

hsa-miR-378a-3p Experimental (strong) 0.043 KSR1,MAPK1,TGFB2

hsa-miR-146a-5p Experimental (any) 7.13e-4 IFIT1,IFIT3,IFITM1,STAT1

hsa-miR-381-5p Experimental (any) 0.006 IFNAR1,IFNAR2

hsa-miR-503-3p Experimental (any) 0.008 IFITM1,SOCS1

hsa-miR-373-3p Experimental (strong) 0.019 IRF9,JAK1

hsa-miR-1183 Experimental (any) 0.026 PIAS1,STAT1
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kB, and IRAK following the initiation of the signal cascade.

MyD88 deficiency impairs the macrophage response to bacterial

antigens and makes the individual susceptible to infection.

However, macrophages activate antibacterial immunity

through MyD88-independent mechanisms (Cervantes, 2017).

MyD88 deficiency improved resistance to polymicrobial sepsis,

indicating that both MyD88-dependent and MyD88-

independent antibacterial mechanisms exist. Many studies that

showed the regulation of individual genes in macrophages by

subcellular microbial products through the TLR/MyD88 signal

transduction pathway have been conducted (Huang et al., 2019).

However, there appears to be no study showing the role of

MyD88 in macrophage activation showing antimicrobial

activity. Three unexpected findings emerged in MyD88-

deficient mice, implying that the current understanding of

macrophage activation needs to be revised. Macrophages

undergo active self-priming activation, which is dependent on

MyD88. MyD88 is not involved in the IFN-g signaling pathway;
however, the expression of many genes in macrophages in

response to IFN-g is mostly dependent on MyD88. The

majority of transcriptional responses of macrophages against

M. tuberculosis do not require MyD88. This suggests that TLRs

are not the primary receptors for recognizing M. tuberculosis or

that TLR-dependent responses are mediated by MyD88-

independent signaling pathways (O’Connell et al., 2010;

Sharbati et al., 2011). miR-155 modulates the production of

inflammatory mediators in response to microbial stimuli by

negatively regulating the expression of an important TAK1- and

TRAF6-binding protein 2 (TAB2) (Ceppi et al., 2009).

Additionally, miR-146a inhibits TLR signaling, thereby

inhibiting the production of inflammatory mediators (Taganov

et al., 2006; Chen et al., 2007). When PAMPs are recognized,

TLR signaling is activated, which leads to the transcriptional

activation of genes encoding pro-inflammatory mediators

following the activation of antigen-specific adaptive immune

response via a MyD88-dependent or -independent pathway

(Medzhitov et al., 1998). Various signalling pathways are

regulated by more than one miRNAs. The miRNAs that

regulate the various signalling pathway during the tuberculosis

infection are shown in the Table 2.
B-Cell Leukemia/Lymphoma 2
pathway

The Bcl-2 family members that promote and prevent

apoptosis are controlled differently by M. tuberculosis. The

prototypical antiapoptotic protein Bcl-2 has homologs in the

Bcl-2 family (Klingler et al., 1997). The antiapoptotic family

member bfl-1 is upregulated in macrophages during the

Mycobacterium bovis BCG infection (Perskvist et al., 2002). An

antiapoptotic gene called Bcl-xL was upregulated during M.
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tuberculosis infection after Bcl-2 was downregulated (Mogga

et al., 2002). Infection withM. tuberculosis causes neutrophils to

produce more of the proapoptotic family protein Bcl-2-

associated X-protein (Bax) and less of the antiapoptotic family

protein Bcl-xL (Harris and Thompson, 2000). Bcl-2 was

upregulated and Bax was downregulated in animal models of

TB. By reducing neutrophil levels and increasing B-cell levels, a

number of miRNAs have been linked to the regulation of the

apoptotic pathway (van Rensburg et al., 2018). miR-365, which

is highly expressed in cells, directly targets the proapoptotic

protein Bax, and these interactions are linked to drug resistance

in pancreatic cancer cells. By inhibiting Bax expression, miR-

125b conferred drug resistance in breast cancer cells (Zhou et al.,

2010). By specifically targeting Bcl-xL and inducing apoptosis,

miR-491 reduces the viability of cells. Treatment with miR-491

prevents tumor growth in naive mice in vivo (Nakano et al.,

2010). Downregulation of miR-133a has been linked to tumor

development and prognosis. Restoration of miR-133a inhibits

cell division and triggers apoptosis. Bcl-xL regulation by miR-

608 has also been demonstrated (Zhang et al., 2014). The

expression of Bcl-2 was discovered to be inversely correlated

with miR-15a and miR-16-1 (Cimmino et al., 2005). These two

miRNAs directly inhibit Bcl-2 at the posttranscriptional level,

according to a subsequent study, and also cause apoptosis

(Zhang Y. et al., 2014). Bcl-2 protein signaling was elevated

when miR-204 was downregulated. MiR-148a and miR-24-2c

also directly inhibit Bcl-2 expression (Srivastava et al., 2011;

Zhang et al., 2011). Apoptosis is regulated by the endogenous

miR-23a/b and miR-27a/b inhibitors of apoptotic peptidase-

activating factor (Apaf)-1 expression. It has been demonstrated

that miR-133 and miR-24a directly repress caspase-9 to regulate

cell fate (Xu et al., 2007; Walker and Harland, 2009; Ji et al.,

2013; Chen et al., 2014).
Caspase pathway

Caspases play an important role in classical apoptosis

(Kroemer and Martin., 2005). Caspase activation is not

necessarily important in all types of apoptosis. Apoptosis can

be triggered by the extrinsic pathway and the intrinsic pathway

involving ligation of cell surface death receptors through

respective ligands and regulating the Bcl-2 family of pro- and

antiapoptotic proteins, respectively. Suppression of caspase

activity is cytoprotective when cells are stimulated to undergo

apoptosis via death receptor ligation (Maquarre et al., 2005).

Caspases, on the other hand, are terminal effectors of the

mitochondrial pathway, and this type of cell death is mostly

caspase independent (Jäättelä, 2001; Hudson et al., 2013). Few

studies suggest that apoptotic cell death can occur in the absence

of caspases or in the presence of both caspase and non-caspase

protease activity (Sacconi et al., 2012). TNF-a activates caspases
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and can initiate several cell death pathways, including lysosomal

permeabilizationmediated by cathepsin B release, which activates

the mitochondrial apoptosis pathway (Guicciardi et al., 2000).

Although these caspase-independent pathways have not been

fully characterized, calpains and serine proteases have been

implicated as cell death mediators (Zhang L. et al., 2012; Guo

et al., 2013). Overexpression of miR-337-3p and miR-17-5p/miR-

132-3p/-212-3p, respectively, can regulate executioner caspase-3

and caspase-7. Furthermore, miRNA overexpression, particularly

miR-337-3p, reduces TRAIL cytotoxicity.
c-Jun N-terminal kinase/mitogen-
activated protein kinase pathways

MAPK-regulated ERK, JNK, and p38 groups alter gene

expression. MAPK signaling pathways are activated during

mycobacterial infection and are related to mycobacterial

pathogenesis (Song et al., 2003; Pasquinelli et al., 2013; Guo

et al., 2019). The p38 MAPK pathway is associated with

mycobacteria-induced IL-10, and other cytokines such as TNF-

a/IL-4/IFN-g are produced (Bachstetter and Van Eldik, 2010; de

Souza et al., 2014). TNF-a expression in human macrophages is

increased by ERK1/2 signaling (Surewicz et al., 2004). MAPK

signaling pathways are involved in the regulation of

antimycobacterial pathways such as phagosome acidification,

apoptosis, and antigen presentation via MHC class II

expression. Previous research indicates that the p38 MAPK

pathway could serve as a means for mycobacteria to be

suppressed. Suppression of p38 MAPK activity increases

phagosome acidification. Inactivation of the p38 MAPK

pathway causes an increase in phagosome acidification and a

significant increase in monocytes’ ability to kill mycobacteria

(Klug et al., 2011). Synthesis of TNF in human macrophages is

inhibited by lipomannan from virulentM. tuberculosis, but not by

avirulentMyocobacterium smegmatis. This variation in response is

due to TB and lipomannan induces the stimulation causing TNF

mRNA transcripts to destabilize following the reduced expression

of TNF protein.Mycobacterium smegmatis Lipomannan increases

MAPK-activated protein kinase 2 (MK2) phosphorylation, which

is important for maintaining TNFmRNA stability by contributing

miRNAs. miR-125b binds to the 3’ UTR region of TNF mRNA

and destabilizes the transcript, whereas miR-155 increases TNF

production by increasing TNF mRNA half-life and reducing the

expression of SHIP1, which is the negative regulator of the PI3K/

Akt pathway (Rajaram et al., 2011). Signaling via ERK1/2 and p38

inhibits a well-known mycobacterial TLR2 agonist. Thus, the p38

MAPK and ERK1/2 pathways regulate macrophage antimicrobial

function and antigen presentation by infected macrophages,

potentially contributing to host immune evasion (Liu P et al.,

2016; Liu P et al., 2016; Hölscher et al., 2020). TNF mRNA is

stabilized by activated MK2 (Campbell et al., 2014). Non-

phosphorylated TTP Tristetraprolin binds to the Adenine/
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Guanine rich elements ARE region of target mRNAs and causes

rapid degradation via a variety of mechanisms (Chen et al., 2013).

During the Mycobacterium infection, TLR2-dependent MAPK

p38 and the PI3K/Akt pathway stimulates an increase in TNF

mRNA expression. Mycobacteria cause the activation and

expression of MK2, miR125b, and miR-155 to differ. TNF

expression in mycobacteria-infected macrophages is significantly

influenced by MAPK p38 and Akt activation. miR-125b inhibits

TNF production by targeting the 3′ UTR of the TNF transcript. It

also increases the stability of B-Ras2, an inhibitor of NF-kB
signaling in human macrophages, lowering the inflammatory

response (Niu et al., 2018). TNF production is regulated by hsa-

miR-155, which targets the inositol phosphatase for degradation

via its 3′ UTR interaction (Yang et al., 2015). Mycobacteria cause

differential expression of miRNAs, which are involved in mRNA

signal transduction in humanmacrophages (Schifano et al., 2017).

The JNK signaling pathway is important in many biological

processes, including embryogenesis. These kinases regulate the

expression of host genes involved with apoptotic cell death

pathways and carcinogenesis, thereby controlling the functions

of neurons and the immune system. Several miRNAs and long

noncoding RNAs (lncRNAs) are functionally related to JNKs

(Ghafouri-Fard et al., 2021). miR-138 targets mixed-lineage

kinase-3 (MLK3), an important component of the JNK/

mitogen-activated kinase pathway. miR-138 upregulation

diminished proapoptosis factors and apoptosis rate.

Upregulation of miR-138 decreased the expression of JNK,

phosphorylated JNK (p-JNK), c-jun, p38 MAPK, p-p38 MAPK,

iNOS, and COX-2 (Ghafouri-Fard et al., 2021). Low

concentrations of MLK3 proteins and inhibition of the JNK/

MAPK signaling pathways provide protection. miRNA-363-3p

transcriptional regulation is mediated by DNA methylation. The

dual-specificity phosphatase 10 targets miRNA-363-3p, and its

inhibition promotes JNK phosphorylation. The miRNA-363-3p/

DUSP10/JNK axis was linked to the inhibition of homologous

recombination and DNA repair pathways. An innovative therapy

is thought to be the miRNA-363-3p/DUSP10/JNK axis (Zhou

et al., 2022). miR-517a controls oxidative stress. miR-517a

suppression enhances cleaved caspase-3 expression, Bax/Bcl-2

ratio, ROS and MDA levels, and cell apoptosis while decreasing

ERK1/2 phosphorylation, T-AOC levels, SOD activity, cell

proliferation, and mitochondrial membrane potential. Lower

levels of miR-517a result in the inactivation of the JNK

signaling pathway. As a result, melanoma cells experience

increased oxidative stress (Tofannin et al., 2011). miR-221

demonstrates the impact of cyclin-dependent kinase inhibitor

on the occurrence and progression of cell cycle progression

(Sun et al., 2011). miRNA-31 identifies the cell division cycle

protein 42 and forms a negative feedback chain for JNK

inactivation upon the formation of miR-31/Cdc42/

phosphorylated MLK3 (p-MLK3). miR-31 and p-JNK were

found in high concentrations in the liver tissues of Drug

induced lung injury patients with various causes. miR-31 can
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inhibit the overactivation of the ROS/JNK/mitochondrial diseased

death loop in Acetaminophen-induced DILI hepatocytes,

suggesting a new therapeutic potential for JNK overactivation-

based liver injury. The triggering of apoptosis was mediated.

Lower levels of miR-517a result in the inactivation of the JNK

signaling pathway. As a result, melanoma cells experience

increased oxidative stress (Tofannin et al., 2011). miR-221

demonstrates the impact of cyclin-dependent kinase inhibitor

on the occurrence and progression of cell cycle progression

(Sun et al., 2011). miRNA-31 identifies the cell division cycle

protein 42 and forms a negative feedback chain for JNK

inactivation upon the formation of miR-31/Cdc42/p-MLK3.

miR-31 and p-JNK were found in high concentrations in the

liver tissues of DILI patients with various causes. miR-31 can

inhibit the overactivation of the ROS/JNK/mitochondrial diseased

death loop in APAP-induced DILI hepatocytes, suggesting a new

therapeutic potential for JNK overactivation-based liver injury.

The triggering of apoptosis was mediated. Apoptosis was induced

by activating the JNK pathway and using a JNK specific inhibitor,

which was found to entirely inhibit miR-10b-induced apoptosis.
Conclusion

In this review, we narrated the upregulation and

downregulation of miRNAs that target the components of six

signaling pathways activated in TB infection. After a careful

review of the bibliography, we observed the upregulation and

downregulation of miRNAs, playing an important role in the

pathways. Most of the signaling pathways remain active during

the TB infection. We mentioned the important roles of pathways

and their regulating miRNAs. These miRNAs can be considered

as therapeutic targets. Therefore, targeting their expression can

modulate the activity of signaling pathways. We reviewed the

importance of miRNAs, posttranscriptional regulators that
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control mRNA stability in signaling pathways. miRNAs can

multiply and regulate cellular outcomes in response to various

extracellular signals by acting as genetic switches or fine-tuners.

Signaling networks, on the other hand, control the stability,

biogenesis, and abundance of miRNAs over time by regulating

layers of the miRNA biogenesis pathway. The detailed study of

the miRNAs regulating the immune-associated pathways is

useful for the development of miRNA mimetic/inhibitor

molecules. Immune effects induced by miRNA drugs are

currently the major challenges of miRNA therapeutics.
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FADD Fas-associated death domain

IL interleukin

IRAK interleukin-1 receptor-associated kinase

ITGB integrin subunit beta

NF-kB nuclear factor kappa B

RHOA Ras homolog family member A

STAT signal transducer and activator of transcription

TGF-b transforming growth factor beta

TLR Toll-like receptor

TRAF tumor necrosis factor receptor-associated factor

AKT Akt serine/threonine kinase family

BCL B-cell lymphoma

MAPK mitogen-activated protein kinase

RAB5A Ras-related protein Rab-5A

APAF apoptotic peptidase-activating factor

Bax Bcl-2-associated X-protein

CASP Caspase

CYCS cytochrome C somatic

IFNB1 interferon

MAPK mitogen-activated protein kinase

PPP3R protein phosphatase 3 regulatory subunit B, alpha

RIPK receptor interacting serine/threonine kinase

SRC proto-oncogene tyrosine-protein kinase Src

STAT signal transducer and activator of transcription

TNF tumor necrosis factor

TNFRSF1A tumor necrosis factor receptor superfamily member 1A

APAF apoptotic peptidase-activating factor

ARHGEF12 Rho guanine nucleotide exchange factor

CEBPB CCAAT enhancer binding protein beta

MALT mucosa-associated lymphoid tissue lymphoma translocation
protein

MYD88 myeloid differentiation primary response 88

TGFB1 transforming growth factor-B

TLR4 Toll-like receptor-4

CREB CAMP responsive element binding protein

NFYA nuclear transcription factor Y subunit alpha

SYK spleen-associated tyrosine kinase

CALM calmodulin

RHOA Ras homolog family member A (RhoA)

CEBPG CCAAT enhancer binding protein beta

CREBBP CREB binding protein

HSPD heat shock protein D

JAK Janus kinase

RAF RAF proto-oncogene serine/threonine-protein kinase

SPHK sphingosine kinase

EP300 E1A-associated protein p300

KSR kinase suppressor of Ras

IFIT interferon-induced protein with tetratricopeptide repeats

(Continued)
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IFITM interferon-induced transmembrane protein

IFNAR interferon alpha and beta receptor subunit

IFITM interferon-induced transmembrane protein

SOCS suppressor of cytokine signaling

IRF interferon-regulatory factor

PIAS protein inhibitor of activated STAT

ARHGEF12 Rho guanine nucleotide exchange factor 12

NFYA nuclear transcription factor Y subunit alpha

RELA REL-associated protein

VDR vitamin D receptor

ATP6V1H ATPase H+ transporting V1 subunit H

CEBPB CCAAT enhancer-binding protein beta

HLADPA1 major histocompatibility complex, Class II, DP alpha 1

MyD88 myeloid differentiation primary response 88

NFYC nuclear transcription factor Y subunit gamma

CORO1 coronin

PPP3R1 protein phosphatase 3 regulatory subunit B, alpha

EP300 E1A-associated protein p300

BID BH3-interacting domain death agonist

CAMK2G calcium/calmodulin dependent protein kinase II gamma

RHOA Ras homolog family member A

LAMP lysosomal associated membrane protein

KLF4 Kruppel like factor-4

NLRP3 NLR family pyrin domain containing 3

NLR Nucleotide-binding domain and leucine rich repeat containing

NF1A Nuclear factor 1 alpha

Bag2 Bcl2 associated athanogene 2

FOXO3 Forkhead box O3

PI3K Phosphoinositide-3-Kinase

mTOR Mammalian target of rapamycin

TFEB Transcription factor EB

ER Endoplasmic Reticulum

ULK Unc-51 like autophagy activating kinase

Unc-51 Serine/threonine-protein kinase

RNAi Ribonucleic Acid interference

LPS Lipopolysaccharide

PTEN Phosphatase and TENsin homolog deleted on chromosome 10

IkB Inhibitor of kappa-beta

BCG Bacille Calmette-Guerin

TIR Toll/interleukin-1 receptor-like proteindILI

PAMP Pathogen‐associated molecular pattern molecules

MHC Major Histocompatibility Complex

COX2 cyclooxygenase-2

iNOS Inducible nitric oxide synthase

(SHIP1) Src homology 2 (SH2) domain containing inositol polyphosphate
5-phosphatase 1

SOD Superoxide dismutase

APAP Acetaminophen

T-AOC Total antioxidant capacity

AMPK Adenosine monophosphate activated protein kinase

EGF Epidermal growth factor
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Fas Member of subgroup of a member of a subgroup of the tumour
necrosis factor receptor superfamily

FasR Fas-receptor
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