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Abstract

MicroRNAs (miRNAs) are small non-coding single-stranded RNAs that are integral to a wide range of cellular processes mainly 

through the regulation of translation and mRNA stability of their target genes. The placenta is a transient organ that exists throughout 

gestation in mammals, facilitating nutrient and gas exchange and waste removal between the mother and the fetus. miRNAs are 

expressed in the placenta, and many studies have shown that miRNAs play an important role in regulating trophoblast differentiation, 

migration, invasion, proliferation, apoptosis, vasculogenesis/angiogenesis and cellular metabolism. In this review, we provide a brief 

overview of canonical and non-canonical pathways of miRNA biogenesis and mechanisms of miRNA actions. We highlight the current 

knowledge of the role of miRNAs in placental development. Finally, we point out several limitations of the current research and 

suggest future directions.
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Introduction

MicroRNAs (miRNAs) have been established as major 
regulators of gene expression and are involved in 
many biological processes (Vasudevan 2012, Jonas 
& Izaurralde 2015). Since their discovery in 1993, 
miRNAs have been of great interest to researchers and 
many new advances have been made in understanding 
their structure, regulation and mechanisms of action 
(Lee et al. 1993, Jonas & Izaurralde 2015). Most studies 
have shown that miRNAs suppress gene expression 
when bound to the 3′ untranslated region (UTR) of 
target mRNAs by inhibiting translation and reducing 
mRNA stability (Behm-Ansmant et al. 2006, Chen et al. 
2010, Miao et al. 2016). However, additional modes of 
action for miRNAs, such as transcriptional regulation 
and activation of gene expression, have also been 
reported (Benhamed  et  al. 2012, Vasudevan 2012, 
Catalanotto et al. 2016, Miao et al. 2016).

The placenta is a transient organ essential for the 
survival and development of mammalian embryos 
(Rossant & Cross 2001). This organ plays critical roles 
in mediating the exchange of respiratory gases, nutrients 
and waste products between the mother and the fetus 
(Rossant & Cross 2001, Regnault et al. 2002, Wooding 
& Burton 2008). In addition, the placenta also acts as 
an endocrine organ and produces many pregnancy-
associated hormones and growth factors that help in 
sustaining pregnancy, preventing fetus rejection by the 
mother’s immune system and regulating fetal growth 
(Rossant & Cross 2001, Fu et al. 2013a, Ji et al. 2013).

Placental development is a spatially and temporally 
regulated process. This allows for increasing oxygen 

and nutrient demands required by the growing fetus 
to be met throughout gestation (Wooding & Burton 
2008). Improper placental formation gives rise to many 
pregnancy-associated conditions such as preeclampsia 
and intrauterine growth restriction (Genbacev  et  al. 
1996, Rossant & Cross 2001, Fu et al. 2013a). In recent 
years, the role of miRNAs in placentation has been 
increasingly recognized. In this review, we aim to 
provide an updated summary of the role of miRNAs in 
regulating various trophoblast activities and placental 
development. Dysregulation of miRNAs and their 
potential involvement in pregnancy complications has 
been discussed recently (Fu et al. 2013a, Mouillet et al. 
2015, Escudero et al. 2016, Cai et al. 2017) and therefore 
will not be included in this review.

Overview of microRNAs

miRNAs are endogenous, small non-coding single-
stranded RNAs, on average 22 nt in length, and 
are involved in multiple modes of gene regulation 
(Truesdell  et  al. 2012, Vasudevan 2012, Havens  et  al. 
2014, Valinezhad Orang et al. 2014, Jonas & Izaurralde 
2015, Catalanotto  et  al. 2016, Xiao  et  al. 2016). 
miRNAs are processed post- or co-transcriptionally 
from RNA polymerase II/III transcripts (Ha & Kim 
2014). Approximately half of all known miRNA genes 
are intragenic, contained mostly within the introns and 
relatively few exons of protein coding genes (de Rie et al. 
2017). The remaining miRNA genes are transcribed 
independent of a host gene via their own promoters 
(Kim & Kim 2007, Fuziwara & Kimura 2015).
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The vast majority of miRNAs are processed through 
the canonical biogenesis pathway (Kim  et  al. 2016) 
(Fig.  1). Canonical miRNA biogenesis begins with the 

detection of the primary miRNA transcript (pri-miRNA), 
contained within nascent RNA, by DiGeorge Critical 
Region 8 (DGCR8) and associated proteins through 
recognition of the RNA N6-methyladenylated GGAC 
motif (Alarcon  et  al. 2015). In complex with DGCR8 
is the nuclear RNase III endonuclease Drosha which 
cleaves the pri-miRNA duplex proximal to the base of 
the characteristic hairpin structure of pri-miRNA. This 
produces the excised precursor (pre)-miRNA containing 
a 2 nucleotide 3′ overhang (Han et al. 2004). Together, 
Drosha and DGCR8 are termed the microprocessor 
complex (Denli et al. 2004).

Following pri-miRNA cleavage, the pre-miRNA 
is exported to the cytoplasm through an exportin 5 
(XPO5)/RanGTP complex and then processed by the 
predominantly cytoplasmic RNase III endonuclease 
Dicer (Denli et al. 2004, Doyle et al. 2013). This cleavage, 
which removes the terminal loop, produces the mature 
miRNA duplex from pre-miRNA (Zhang et al. 2004). The 
labeling of the two strands of the miRNA duplex is based 
on the directionality of the strand in the pre-miRNA. 
The 5′ end of the pre-miRNA hairpin contains the 5p 
strand and the 3′ end the 3p strand (previously miRNA 
and miRNA*). Either the 5p or 3p strand of the miRNA 
duplex can be loaded into the Argonaute (AGO) family 
of proteins (AGO1–4 in humans) in an ATP-dependent 
manner (Yoda et al. 2010, Ha & Kim 2014); the strand 
that is loaded into AGO is termed the guide strand.

Several non-canonical miRNA biogenesis pathways 
have been elucidated (Ruby et al. 2007, Babiarz et al. 
2008, Yang & Lai 2011, Abdelfattah et al. 2014, Ha & 
Kim 2014) and grouped into two general categories: 
Drosha/DGCR8-independent and Dicer-independent. 
These non-canonical pathways take advantage of 
the cellular machinery already in place to produce 
canonical miRNA by producing Drosha, Dicer and 
Argonaute substrates from discrete RNA sources such 
as small hairpin RNAs (shRNA), small nucleolar RNAs 
and splicing products (Yang & Lai 2011, Castellano 
& Stebbing 2013, Abdelfattah  et  al. 2014). Drosha/
DGCR8-independent pre-miRNAs share a common 
trait in which separate processing mechanisms produce 
products which resemble Dicer substrates. For example, 
mirtrons encompass the group of pre-miRNAs produced 
from introns during mRNA splicing. Additionally, 
7-methylguanosine (m7G)-capped pre-miRNAs are 
transcribed such that the nascent RNA does not need 
Drosha cleavage and can be directly exported from the 
nucleus through exportin 1 (Xie et al. 2013). Moreover, 
the m7G cap is thought to be the cause of a strong 3p 
strand bias. Dicer-independent miRNAs are processed 
from endogenous shRNA transcripts by Drosha and may 
be unique in their requirement for AGO2 to complete 
their processing within the cytoplasm. This group of pre-
miRNAs is too short to be processed by Dicer, leading 
to the 5′ loading of the entire pre-miRNA into AGO2 
(Abdelfattah  et  al. 2014). Slicing of the 3p strand and 

Figure 1 Overview of canonical microRNA biogenesis and 
mechanism. Canonical miRNA biogenesis is both Drosha- and 
Dicer-dependent. Following transcription, the primary (pri-) miRNA is 
identified and cleaved by the endoribonuclease, Drosha, to produce 
the precursor (pre-) miRNA. Nuclear export of the pre-miRNA is 
facilitated by the Exportin 5/RanGTP transport system. Once in the 
cytoplasm, the pre-miRNA is subject to terminal loop cleavage by the 
endoribonuclease Dicer. After cleavage, the mature miRNA duplex is 
loaded into the Argonaute family of proteins and the passenger strand 
is degraded, forming the miRNA-induced silencing complex 
(miRISC). The gene regulatory power of cytoplasmic miRISC typically 
culminates in gene silencing by mediating induction of translation 
inhibition, mRNA poly(A) deadenylation and mRNA degradation via 
interaction at the 3′ untranslated region of target mRNA. After target 
association and following recruitment of GW182 and associated 
proteins into miRISC, translation initiation is inhibited, preventing 
nascent protein translation of the target mRNA molecule. It is 
hypothesized that miRISC-induced dissociation of the translation 
initiation complex, eIF4F, from the 5′ cap of mRNA and/or its 
functional disruption suppresses translation initiation. Interaction of 
GW182 with poly(A) binding proteins (PABPC) and poly(A) 
deadenylase complexes PAN2/3 and CCR4-NOT localizes the 3′ 
mRNA tail to the miRISC complex, promoting efficient target mRNA 
deadenylation. Complete poly(A) deadenylation leads to decapping-
protein 2 (DCP2)-mediated mRNA decapping, exposing the mRNA to 
5′–3′ degradation via the exoribonuclease XRN1.
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3′–5′ trimming creates a strong 5p strand bias. Although 
non-canonical miRNAs may elicit post-transcriptional 
silencing capabilities and undergo regulation 
independent of canonical miRNAs, the vast majority of 
miRNAs are processed through the canonical biogenesis 
pathway, requiring both Drosha and Dicer to complete 
their maturation (Kim et al. 2016). However, consistent 
with their canonical counterparts, these non-canonical 
miRNAs have been linked to various cellular programs 
such as proliferation, de/differentiation, immune 
response, neural development and cellular metabolism 
(Abdelfattah et al. 2014).

Once AGO proteins are loaded and the miRNA 
duplex unwound, they form the minimal miRNA-
induced silencing complex (miRISC) (Kawamata & 
Tomari 2010, Fabian & Sonenberg 2012). miRISC gains 
target specificity by recognition of miRNA response 
elements (MRE) on target RNA molecules, while 
the degree of complementarity determines, to some 
extent, the mode of regulation, i.e. direct or indirect 
gene silencing (Ameres et al. 2007, Jonas & Izaurralde 
2015). A fully complementary miRNA:MRE promotes 
AGO2 endonuclease activity and cleavage of the target 
RNA molecule (Ameres  et  al. 2007). In turn, this also 
has the consequence of decreased miRNA stability as 
exact matches promote not only target cleavage but 
also degradation of the guide miRNA, although the 
mechanism is not well understood (Ameres & Zamore 
2013). What is known is that the guide miRNA must 
first undergo the 3′ addition of adenosine or uracil 
which promotes 3′–5′ exonuclease activity, resulting 
in guide miRNA degradation (Krutzfeldt  et  al. 2005, 
Ameres et al. 2010).

In humans, the frequency of exact matches on target 
mRNA is rare (Jonas & Izaurralde 2015). The majority of 
validated MREs contain at least central mismatches to 
their guide miRNA, preventing AGO2 nuclease activity. 
As a consequence, AGO2 shifts from RNAi effector to 
mediator, and along with the non-endonucleolytic AGO 
family members act to recruit other proteins associated 
with mRNA stability. This has led to the detection of 
the miRNA seed region (nucleotides 2–8) that are 
crucial for many but not all miRNA:MRE interactions 
(Ellwanger et al. 2011, Xu et al. 2014, Miao et al. 2016). 
In most cases, miRNAs interact with the 3′ UTR of target 
mRNAs, resulting in translation inhibition and mRNA 
deadenylation and decapping (Huntzinger & Izaurralde 
2011, Fabian & Sonenberg 2012, Meijer  et  al. 2013, 
Ipsaro & Joshua-Tor 2015).

To form an miRISC complex capable of post-
transcriptional gene silencing, mRNA-bound miRISC 
recruits the GW182 family of proteins which acts as a 
scaffold to further recruit effector protein complexes 
(Behm-Ansmant  et  al. 2006). Both the PAN2–PAN3 
and CCR4–NOT deadenylase complexes are recruited 
through the unstructured, tryptophan (W) repeats 
of GW182 (Christie  et  al. 2013, Jonas & Izaurralde 

2015). PAN2–PAN3 initially catalyzes target mRNA 
poly(A) deadenylation which is promoted through the 
interaction of W-repeats to poly(A)-binding proteins 
(PABPC), bringing both the mRNA poly(A) tail and 
deadenylase into close proximity (Jonas & Izaurralde 
2015). The CCR4–NOT complex completes the 
deadenylation process and is followed by mRNA 
decapping facilitated by decapping protein 2 (DCP2) 
and associated proteins (Behm-Ansmant  et  al. 2006). 
Decapped and deadenylated mRNA are then degraded 
from the 5′ end by the 5′–3′ exoribonuclease 1 (XRN1) 
(Braun et al. 2012) (Fig. 1).

While most miRNA studies focus on how miRNAs 
target mRNAs by binding to MREs at the 3′ UTR to 
suppress their expression, MREs have also been reported 
in the 5′ UTR. miRISC interactions within the 5′ UTR have 
been shown to both promote and suppress translation 
through mRNA-specific mechanisms, discussed in 
detail in Vasudevan (2012) and Valinezhad Orang et al. 
(2014). Moreover, cell-state-specific miRNA-mediated 
translational activation has been observed in human 
quiescent cells where nuclear AGO2 complexes with 
Fragile-x-mental-retardation-related protein 1 (FXR1) 
instead of GW182 (Truesdell et al. 2012). This complex 
was found to interact with nuclear mRNA targets which 
in turn led to translational activation following export to 
the cytoplasm (Truesdell et al. 2012).

Overview of placental development

Soon after fertilization, asymmetric cell division of the 
blastomere gives rise to different cell populations, an 
outer cell layer surrounding an inner cell population 
(Johnson & Ziomek 1981, Viswanathan  et  al. 2009). 
The blastocyst is formed when the outer cell layer 
differentiates into a layer of trophoblasts termed the 
trophectoderm (TE) and the inner cell population 
differentiates into the inner cell mass (ICM). The TE will 
later give rise to the placenta, while the ICM will develop 
into the embryo and the visceral endoderm (yolk sac) 
(Viswanathan et al. 2009, Maltepe & Fisher 2015).

With the trophectoderm formed, the blastocyst is ready 
for implantation (Caniggia  et  al. 2000). Implantation 
starts with the adhesion of the TE onto the receptive 
decidualized endometrium through a complex network 
of cell–cell communication events (Red-Horse  et  al. 
2004). This leads to the invasion of the blastocyst 
through the extracellular matrix of the decidua by the 
proliferating and differentiating trophectoderm layer, 
embedding it deep into the uterine wall (Red-Horse et al. 
2004, Noris et al. 2005, Wooding & Burton 2008).

Once the blastocyst is embedded within the uterine 
wall, the process of placenta formation, termed 
placentation, begins with the differentiation of the 
TE cells into the different trophoblast lineages (Red-
Horse et al. 2004, Maltepe & Fisher 2015). Placentation 
in eutherian mammals is more complex compared to 
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marsupial mammals (Moffett & Loke 2006, Carter 2007, 
Maltepe & Fisher 2015). Moreover, among eutherian 
mammals, placentation varies considerably in the degree 
of trophoblast invasiveness from minimal invasion 
occurring in epitheliochorial placentation (e.g. pigs 
and sheep), intermediate invasion in endotheliochorial 
placentation (e.g. dogs and cats) and maximal invasion 
in hemochorial placentation (e.g. humans and rodents) 
(Moffett & Loke 2006, Carter 2007, Wooding & 
Burton 2008).

In humans, placentation consists, in part, of the 
differentiation and proliferation of the TE to form a 
branching network of villi that are in direct contact 
with the maternal circulation while simultaneously 
maintaining a barrier between the fetal and maternal 
blood (Kaufmann  et  al. 2004, Wooding & Burton 
2008, Schmidt et al. 2015). The villi are the functional 
units of the placenta. They facilitate and respond to 
the demands of the developing fetus by regulating the 
exchange of gases, nutrients and wastes through the 
villus core, which consists of the mesenchyme and fetal 
blood vessels (Kaufmann  et  al. 2004). The tips of the 
branching villous network that come into direct contact 
with the endometrium are termed the anchoring villi, 
while the remaining villi, which float freely in the blood-
filled intervillous space, are called the floating villi 
(Maltepe et al. 2010).

The highly proliferative, undifferentiated 
cytotrophoblast (CTB) progenitor cells of the placental 
villi differentiate into two general pathways. CTBs 
can either fuse to form a multinucleated monolayer 
of syncytiotrophoblasts (STBs) that enclose the villous 
stroma, or differentiate into invasive extravillous 
trophoblasts (EVTs) that infiltrate the endometrium 
and a portion of the myometrium (Cartwright  et  al. 
2010). STBs function as a barrier, or more precisely, 
as an interface between fetal and maternal blood as 
well as in the production of pregnancy-associated 
hormones and growth factors important for placental 
and fetal development and growth (Fu et al. 2013a). The 
mechanisms that facilitate CTB fusion and production 
of the STB layer are still under investigation; however, 
formation of gap junctions, activation of apoptotic 
pathways and the expression of endogenous retroviral 
proteins such as syncytin appear to be key mechanisms 
(Wooding & Burton 2008).

In the EVT pathway, the proliferating CTBs of the 
anchoring villi form a column that attaches to the 
uterine epithelium and subsequently differentiates 
into interstitial EVTs (Anin  et  al. 2004, Ji  et  al. 2013). 
Interstitial EVTs (iEVTs) invade the decidua and one-
third of the myometrium where they further differentiate 
into the multinucleated placental bed giant cells 
(Fu et al. 2013a). Endovascular EVTs (enEVTs) acquire 
endothelial-like characteristics and invade the maternal 
spiral arteries to replace the endothelial cells. This results 
in the transformation of spiral arteries into distended, 

thin-walled vessels to ensure continuous maternal blood 
flow to the placenta and to maintain sufficient oxygen 
and nutrient supplies for the growing embryo (Anin et al. 
2004, Lyall et al. 2013). Recently, endoglandular EVTs 
(egEVT) have been identified as a potential third subtype 
of EVTs (Moser et al. 2010, 2015). Initial findings suggest 
that egEVT disintegrate uterine glands and open the 
gland lumen to the intervillous space releasing glandular 
secretions that may impact placentation (Burton  et  al. 
2007, Moser et al. 2015).

Many studies on human placental development, 
including the miRNAs work discussed in the following 
sections, have been carried out using in vitro models, 
such as immortalized trophoblast and choriocarcinoma 
cell lines, primary cultures of trophoblasts and/or 
villous explants from first trimester placenta. Rodents, 
especially mice, have also been used as a model. It is 
important to recognize that each of these models have 
pros and cons. Although cell lines are easy to work 
with, especially with respect to transient and stable 
transfection of genes, there are significant differences 
in gene expression signatures between cell lines and 
primary trophoblasts (Bilban et al. 2010). For example, 
chromosome 19 miRNA cluster (C19MC) members are 
not expressed in HTR8/SVneo cells, while chromosome 
14 miRNA cluster (C14MC) members cannot be detected 
in JEG-3 cells (Mouillet et al. 2011, Morales-Prieto et al. 
2014). Primary CTBs have been used mainly to study 
the differentiation of CTB to STB, but these cells have a 
limited life span and can only be used to study the short-
term effects of transiently transfected miRNAs. Villous 
explants maintain the cellular architecture and mimic 
more closely the in vivo environment (Miller  et  al. 
2005). However, only the short-term effect of miRNA 
overexpression or inhibition can be examined. The 
mouse model provides some insights into the in vivo 
functions of miRNAs, but it should be noted that there 
are significant differences between the mouse and 
human placentation that can affect the transferability of 
findings to humans (Wildman et al. 2006, Carter 2007, 
Maltepe & Fisher 2015, Schmidt  et  al. 2015, Grigsby 
2016). For example, trophoblast invasion during early 
mouse placentation is shallow as it only extends into 
the decidua, whereas in humans, it proceeds to the 
myometrium (Carter 2007, Maltepe & Fisher 2015, 
Schmidt et al. 2015). Also, mouse trophoblasts express 
major histocompatibility complex (MHC)-K, -D and -L, 
while human trophoblasts express human leukocyte 
antigen G (HLA-G) or HLA-C. This leads to different 
interaction dynamics between uterine immune cells 
and invading trophoblasts (Chaouat & Clark 2015, 
Schmidt  et  al. 2015). Importantly, there are different 
miRNA expression profiles between human and mouse 
placentas. Specifically, C19MC is expressed only in 
primates with no orthologs found in rodents (Morales-
Prieto et al. 2014), while miRNAs of the Sfmbt2 cluster 
are rodent-specific (Zheng  et  al. 2011, Schmidt  et  al. 
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2015, Inoue  et  al. 2017). Also, C14MC in humans 
shows a divergence in rodents where it is located on 
chromosome 12 and lacks multiple members found in 
humans (Seitz et al. 2004). Therefore, in the following 
discussion, we will point out which model(s) was used 
in each study.

miRNAs in trophectoderm development 
and implantation

Many studies carried out in mice suggest that miRNAs 
play a role in trophectoderm development. Examination 
of mouse miRNA expression patterns during 
trophectoderm specification has revealed let-7, miR-21, 
miR-29c, miR-96, miR-125a, miR-214, miR-297, miR-
376a and miR-424 as candidates that may play a role in 
this process (Viswanathan et al. 2009, Nosi et al. 2017). 
In mouse embryonic stem cells (ESC), overexpression 
of miR-15b, miR-322 and miR-467 suppressed their 
embryonic fate and led to the induction of a trophoblast 
stem-cell (TSC)-like phenotype. Further analysis 
revealed that these miRNAs target transcription factors 
Sall1, Sall4, Pou5f1 and Nanog (Nosi et al. 2017), that 
are important for the maintenance of ESC self-renewal 
and pluripotency. In addition, the miR-302/367 cluster 
was found to promote TE differentiation in humans by 
targeting bone morphogenetic protein (BMP) inhibitors 
TOB2, DAZAP2 and SLAIN1 (Lipchina  et  al. 2011); 
BMP4 is a member of the transforming growth factor 
beta (TGFB) superfamily and is involved in promoting 
TE differentiation (Xu  et  al. 2002, Wu  et  al. 2008). In 
a human pulmonary artery cell line, miR-302 was also 
shown to target BMP4 receptor 2, while BMP signaling 
led to the transcriptional downregulation of the miRNA-
302/367 gene cluster (Kang et al. 2012), which if it also 
occurs in trophoblasts could create an interesting signal-
buffering dynamic.

Limited evidence obtained so far has suggested 
that miRNAs play a role in regulating implantation. 
First, studies in mice have shown that miRNAs are 
differentially expressed between implantation sites 
and inter-implantation sites in the endometrium 
(Chakrabarty  et  al. 2007, Hu  et  al. 2008, Geng  et  al. 
2014). Further studies revealed that overexpression of 
miR-145 impaired the attachment of mouse embryos 
to endometrial epithelial cells by targeting insulin-like 
growth factor 1 receptor (Igf1r) (Kang et al. 2015). Finally, 
Dicer knockdown in mouse blastocysts altered miRNAs 
expression and resulted in a lower implantation rate 
(Cheong et al. 2014). In humans, a number of miRNAs 
in the endometrium, including miR-145, were also 
found to be differentially expressed between women 
who repeatedly fail to have successful implantation and 
fertile women (Revel et al. 2011). These findings suggest 
a possible role of miRNAs in regulating implantation; 

however, more studies are required to understand the 
functions of miRNAs and their underlying mechanisms 
in this process.

Another important aspect of successful implantation 
is the interaction between the fetal blastocyst and the 
maternal immune cells. Early in pregnancy, maternal 
uterine natural killer (uNK) cells, T cells, B cells, 
macrophages and dendritic cells are recruited into the 
endometrium at the site of implantation to help regulate 
placental and fetal development (Szekeres-Bartho 2002, 
Bidarimath et al. 2014, Zhang et al. 2016a). As mentioned 
earlier, human EVT expresses a limited variety of MHC 
molecules, mostly HLA-G and HLA-C (Bidarimath et al. 
2014, Schmidt et al. 2015, Hackmon et al. 2017). HLA-G 
interacts with the maternal killer immunoglobulin-
like receptors expressed by uNK cells, resulting in 
the activation of uNK cytokine production but not its 
cytotoxicity response (Rajagopalan  et  al. 2006). This 
in turn promotes maternal immunological tolerance 
and placental development and vascularization 
(Bidarimath et al. 2014, Ratsep et al. 2015). Both miR-
148a and miR-152 were found to bind the 3′ UTR of 
HLA-G, amplified from the JEG-3 human trophoblast 
cell line, downregulating its expression and thereby 
reducing HLA-G mediated inhibition of natural killer 
cells cytotoxicity (Manaster et al. 2012). These findings 
suggest that miRNAs play a role in regulating maternal 
immunological tolerance to invading EVT. In addition, 
miRNAs have also been shown to help regulate 
other maternal immune cells such as macrophages, 
endometrial dendritic cells and T cells in the pregnant 
uterus and have been extensively reviewed in 
Robertson and Moldenhauer (2014), Mori et al. (2016), 
Schjenken et al. (2016) and Robertson et al. (2017).

Interestingly, miRNAs were also shown to promote 
antiviral immunity in both trophoblast and non-
trophoblast cells. In alignment with the role of placenta 
to protect the developing fetus, trophoblasts are the 
first line of defense against external factors that can 
impair fetal development. Therefore, it is not surprising 
that primary human trophoblasts are highly resistant 
to viral infection (Delorme-Axford  et  al. 2013). More 
importantly, they can confer this resistance to other types 
of cells when these cells uptake exosomes naturally 
secreted by primary trophoblasts; the exosomes were 
found to contain members of C19MC, miR-512-3p, 
miR-516b-5p and miR-517-3p (Bayer et al. 2015). These 
C19MC miRNAs initiated autophagy in recipient cells 
without leading to cell death which was suggested to 
impair viral replicability (Delorme-Axford  et  al. 2013, 
Bayer et al. 2015). Thus, miRNAs play a dynamic role to 
not only promote decidual immune tolerance in support 
of the growing fetus but also protect both mother 
and fetus from viral infection (Mouillet  et  al. 2014, 
Ouyang et al. 2014).
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miRNAs in trophoblast differentiation, migration 
and invasion

Several studies have suggested that miRNAs are important 
regulators of CTB to STB differentiation. Microarray 
analyses of miRNA expression profiles in primary 
trophoblast before and after their differentiation into STB 
have revealed that multiple members of C19MC such as 
miR-515-5p, miR-518f, miR-519c-3p and miR-519e-5p 
were significantly downregulated during CTB to STB 
differentiation (Zhang et al. 2016b). Further investigation 
showed that miR-515-5p targeted several genes that play 
critical roles in STB differentiation, including human 
glial cell missing-1 (GCM1) (Yu et al. 2002, Liang et al. 
2010, Wakeland  et  al. 2017) and frizzled 5 (FZD5) 
(Lu  et  al. 2013) and significantly reduced cell fusion 
(Zhang et al. 2016b). Another miRNA gene cluster is the 
miR-17–92 family that is located on chromosome 13 
and encodes six miRNAs (miR-17, miR-18a, miR-19a, 
miR-19b-1, miR-20a and miR-92a) (Concepcion  et  al. 
2012). Multiple members of the miRNA-17–92 cluster, 
and its paralog cluster miR-106a–363, have been 
found to silence GCM1 in primary cultures of human 
trophoblasts. These miRNAs are downregulated during 
CTB to STB differentiation, thereby promoting the 
differentiation process (Kumar et al. 2013). Studies from 
our laboratory have demonstrated that miR-378a-5p 
suppressed BeWo cell fusion and STB marker gene 
expression by targeting cyclin G2 (CCNG2), suggesting 
that it inhibits STB differentiation (Nadeem et al. 2014).

Many studies have reported that miRNAs regulate 
EVT differentiation, migration and invasion by targeting 
key pathways known to regulate these processes. Early 
placentation occurs in a hypoxic environment, and 
oxygen tension has been reported to regulate many 
cellular processes in the placenta, including proliferation, 
EVT differentiation and invasion (Chang  et  al. 2018). 
However, the precise role of oxygen tension in EVT 
differentiation and invasion is still not well understood. 
Earlier studies have suggested that hypoxic conditions 
during early pregnancy are in part responsible for the 
high rate of trophoblast proliferation and inhibition of 
EVT invasion (Red-Horse et al. 2004). As the trophoblasts 
invade deeper into the uterus, where oxygen levels are 
higher, they shift from a more proliferative phenotype to a 
more migratory and invasive phenotype (Genbacev et al. 
1997, Kaufmann & Castellucci 1997, Knofler 2010). 
However, hypoxia was recently found to promote EVT 
differentiation in a hypoxia-inducible factor (HIF)-
dependent manner while inhibiting STB differentiation 
in primary cultures of human CTB (Wakeland  et  al. 
2017). Thus, it is proposed that low oxygen induces the 
differentiation into immature EVT, but further maturation 
of EVT and invasion increase with rising oxygen tension 
(Chang et al. 2018).

Since hypoxia plays an important role in early 
placental development, studies have investigated its 

effects on miRNA expression and function (Donker et al. 
2007, Mouillet et al. 2010, Fu et al. 2013a). They have 
revealed a group of miRNAs that are upregulated under 
hypoxia, a subset of which, hypoxamirs, and are under 
direct regulation of hypoxia-induced transcription 
factors (Kulshreshtha et al. 2007). MiR-210 is the most 
well-studied example of hypoxamirs, upregulated 
directly by HIF1A (Camps  et  al. 2008); additionally, 
it is regulated by a hypoxia-responsive transcription 
factor, nuclear factor kappa-B subunit p50 (NFKB1), in 
primary human trophoblasts (Zhang et al. 2012). It was 
reported that miR-210 inhibited migration and invasion 
in primary CTBs (Zhang et al. 2012), HTR8/SVneo cell 
line (Luo  et  al. 2016), and primary ETVs (Anton  et  al. 
2013) by targeting ephrin-A3 (EFNA3), homeobox-A9 
(HOXA9) (Zhang  et  al. 2012), and thrombospondin 
type I domain containing 7A (THSD7A) (Luo  et  al. 
2016) or by activating the MAPK pathway (Anton et al. 
2013). However, knockout of mir-210 did not result in 
significant changes in fetal or placental weight and non-
severe hypoxia (12% O2) did not increase miR-210 in 
these mice, suggesting that miR-210 may be dispensable 
for fetal-placental development under normoxic and 
non-severe hypoxic conditions (Krawczynski  et  al. 
2016). Thus, the role of miR-210 in hypoxia-regulated 
placental development requires further investigation.

miRNAs also regulate EVT differentiation and invasion 
by modulating growth factor signaling. An important 
family of growth factors in placental development is 
the TGFB superfamily. Many miRNAs have been found 
to enhance EVT migration and invasion by targeting 
members of the TGFB family. For example, miR-376c 
targeted both activin receptor-like kinase 7 (ALK7) 
and ALK5 to impede TGFB/Nodal signaling (Fu  et  al. 
2013b), while miR-378a-5p targeted the ligand Nodal 
(Luo et al. 2012) to promote migration and invasion in 
HTR8/SVneo cells and EVT outgrowth in first trimester 
placental villous explants. Similarly, miR-195 enhanced 
trophoblast invasion by targeting activin receptor 
type-2B, a type II receptor for Nodal and activin, in 
HTR8/SVneo cells (Wu et al. 2016).

Using HTR8/SVneo, JEG-3 or BeWo trophoblast 
cell lines, several studies have suggested that miRNAs 
also regulate EVT motility by targeting other genes 
involved in regulating cell invasion. Both miR-346 
and miR-582-3p targeted endocrine-gland-derived 
vascular endothelial growth factor (EG-VEGF) as well 
as matrix metalloproteinase 2 (MMP2) and MMP9, and 
strongly inhibited the migratory and invasive abilities of 
trophoblasts (Su et al. 2017). Similarly, miR-93 (Pan et al. 
2017) and miR-204 (Yu  et  al. 2015), which targeted 
MMP2 and MMP9, respectively, inhibit cell invasion. 
Members of the C19MC, miR-519d-3p (Ding  et  al. 
2015) and miR-520g (Jiang  et  al. 2017a) also targeted 
MMP2 and inhibited migration and invasion, while miR-
520c-3p inhibited invasion by suppressing CD44, which 
is needed for the interaction between EVTs and decidual 
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extracellular matrix (Takahashi  et  al. 2017). On the 
other hand, miR-21 promoted not only migration and 
invasion but also cell proliferation (Chaiwangyen et al. 
2015). Among its targets is phosphatase and tensin 
homolog (PTEN), a known inhibitor of the AKT pathway. 
PTEN dephosphorylates phosphatidylinositol-3,4,5-
trisphosphate (PI(3,4,5)P3), leading to inactivation of 
AKT which is involved in trophoblast cell motility 
(Chaiwangyen et al. 2015). MiR-34a inhibited invasion 
by targeting MYC (Sun et al. 2015). MiR-20a is another 
such miRNA where it inhibited not only trophoblast 
motility but also cell proliferation by targeting forkhead 
box protein A1 (FOXA1) (Wang et al. 2014). As all these 
studies were only done in cell lines, the significance 
of these miRNAs in EVT differentiation and invasion 
requires validation using additional model systems.

miRNAs in trophoblast proliferation and apoptosis

Proliferation and apoptosis are important mechanisms 
of proper placental development; disruption of the 
equilibrium between cell division and death impairs 
placental function (Levy  et  al. 2000). A recent in vivo 
study in mice has demonstrated the critical role of 
the miR-290 cluster in placental cell proliferation 
and placental growth; deletion of the miR-290 cluster 
resulted in the reduction of trophoblast progenitor cell 
proliferation and placental size (Paikari et al. 2017). In 
addition, many in vitro studies have shown that miRNAs 
regulate trophoblast proliferation and apoptosis. For 
example, miR-378a-5p (Luo et al. 2012) and miR-376c 
(Fu et al. 2013b) enhanced HTR8/SVneo cell proliferation 
and survival and EVT outgrowth in villous explants by 
inhibiting Nodal/TGFB signaling. On the other hand, 
miR-195 inhibited apoptosis through targeting of 
inducible nitric oxide synthase (iNOS) in HTR8/SVneo 
cells (Wang  et  al. 2017). Furthermore, overexpression 
of miR-377 and let-7a, which are upregulated in 
term placenta samples versus first trimester samples, 
decreased trophoblast proliferation by reducing ERK 
and/or MYC expression in first trimester placental 
explants (Farrokhnia et al. 2014). Together, these studies 
suggest a potential regulatory link between miRNAs and 
proliferation in human trophoblasts.

Studies using multiple human trophoblast cell 
lines suggested a role of miRNAs in the regulation of 
apoptosis. The miR-29 family (miR-29a/b/c) promoted 
apoptosis by targeting myeloid cell leukemia-1 (MCL1), 
an apoptosis regulator and a member of the BLC2 family 
(Li et al. 2013, Gu et al. 2016). Overexpression of miR-
18a increased apoptosis by inducing the expression of 
estrogen receptor alpha (ESR1) (Zhu et al. 2015), while 
miR-128a induced apoptosis via the mitochondrial 
pathway by downregulating BAX (Ding et al. 2016) and 
miR-30a-3p by inhibiting IGF1 (Niu et al. 2018). On the 
other hand, miR-101 targeted endoplasmic reticulum 
protein 44 (ERP44) to suppress ER-stress-induced 

apoptosis (Zou et al. 2014). Again, as majority of these 
studies were carried out using only cell lines, more 
studies are required to confirm the involvement of these 
miRNAs in trophoblast cell proliferation and apoptosis.

miRNAs in placental vascular development

Placenta vascularization is essential to meet the 
metabolic demands of the rapidly growing fetus. Delayed 
or reduced vascular development of the placenta 
can result in compromised pregnancies (Reynolds & 
Redmer 2001). Placental vascular formation includes 
vasculogenesis, the de novo synthesis of vessels within 
the villi core and angiogenesis, the formation of new 
vessels from preexisting ones (Huppertz & Peeters 2005, 
Demir  et  al. 2007). Recently, deletion of the miR-290 
cluster in mice has been reported to cause disorganization 
of the vasculature in the labyrinth (Paikari et al. 2017), 
providing strong evidence that miRNAs are important 
regulators of placenta vascular development.

Several miRNAs have also been suggested to play a 
role in vasculogenesis and angiogenesis. It was reported 
that miR-126 promotes proliferation, differentiation 
and migration of human endothelial progenitor cells by 
targeting an anti-angiogenic factor PIK3R2 (Yan  et  al. 
2013). Also, in pregnant rats, miR-126 was found to 
increase vascular sprouting, as well as placental and fetal 
weights (Yan et al. 2013). The importance of miR-126 in 
placenta vascular development is further supported by 
the finding that downregulation of miR-126 contributes 
to endothelial dysfunction (Yan et al. 2013).

VEGF is a highly regulated pro-angiogenic factor 
known to initiate vasculogenesis in the placenta, induce 
endothelial cell proliferation and migration and inhibit 
apoptosis (Wang & Zhao 2010). Several miRNAs have 
been reported to target VEGF. For example, miR-16 
directly targeted VEGF to inhibit HUVEC proliferation, 
migration and tube formation (Zhu  et  al. 2016). Also, 
overexpressing miR-16 in mice placentas decreased 
placental and fetal weights and inhibited the total 
placental vasculature and capillary number (Zhu et al. 
2016). Similarly, miR-136 (Ji  et  al. 2017), miR-200c, 
-20a and -20b (Hu et al. 2016) also targeted VEGF, and 
may exert inhibitory effects on angiogenesis. However, 
whether these miRNAs affect placental vascular 
development has not been investigated. In CD34+ 
endothelial cells isolated from human umbilical cord 
blood, miR-210 was induced by VEGF and exerted 
proangiogenic effects (Alaiti et al. 2012), suggesting that 
miR-210 may play a role in placental angiogenesis.

miRNAs in trophoblast cellular metabolism

Early in pregnancy, and before spiral artery plug 
dissolution, placental and fetal nutrients and oxygen 
supply is dependent on endometrial secretions and 
maternal plasma (Murray 2012). As a consequence, 
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first trimester placenta has a relatively low oxygen 
concentration (1–3%) (Pringle  et  al. 2010, Murray 
2012) and placental cells use glycolysis and lactic acid 
fermentation for ATP synthesis as their primary metabolic 
fuel source to conserve oxygen supplies for fetal tissues 
(Murray 2012, Kolahi  et  al. 2017). Moreover, HIF1A 
downregulates mitochondrial oxygen consumption 
(Papandreou  et  al. 2006) to reduce ROS production 
at complex 3 of the electron transport chain (ETC) in 
the mitochondria (Colleoni  et  al. 2013). The hypoxia-
induced miR-210 has been reported to regulate cellular 
metabolism. Using primary human trophoblasts, it 
was found that overexpression of miR-210 reduced, 
while inhibition of miR-210 increased, mitochondrial 
respiration (Muralimanoharan  et  al. 2012). Iron-sulfur 
complex assembly proteins (ISCU) and cytochrome-c 
oxidase assembly protein (COX10), which play important 
roles in the mitochondria ETC and tricarboxylic acid 
cycle, have been shown to be targeted by miR-210 in 
human endothelial and cancer cell lines (Chan  et  al. 
2009, Chen et al. 2010). In trophoblasts, miR-210 was 
also found to directly target ISCU and to reduce the 
expression of ISCU and COX10 (Muralimanoharan et al. 
2012, Colleoni  et  al. 2013), suggesting that these 
genes are involved in miR-210-regulated trophoblast 
mitochondrial adaptation to low oxygen.

In addition to miR-210, several other miRNAs are 
also involved in mitochondrial biogenesis and function. 
For example, miR-130b-3p was found to decrease 
signals for mitochondrial biogenesis and adaptation 
to oxidative stress through targeting of peroxisome 
proliferator-activated receptor gamma coactivator 
1-alpha (PGC1A), a major regulator of mitochondrial 

biogenesis and energy metabolism (Jiang et al. 2017b). 
Also, miR-143 overexpression in primary human 
trophoblasts upregulated mitochondrial complexes 1, 2 
and 3 but not 4 and 5 (Muralimanoharan et al. 2016), 
thus improving mitochondrial function. It also targeted 
hexokinase-2, a rate-limiting enzyme of glycolysis, and 
as a result reduced the glycolysis rate in trophoblasts 
(Muralimanoharan et al. 2016). Together, these miRNAs 
may help regulate trophoblast metabolic adaptation to 
change in oxygen levels throughout gestation.

Concluding remarks

The placenta is an essential organ for pregnancy. 
The proper development of placenta requires precise 
regulation by many signaling molecules, including 
miRNAs. Increasing evidence suggests that miRNAs 
play important roles in regulating many key processes 
in placental development, such as trophoblast 
differentiation, migration, invasion, proliferation, 
apoptosis, vasculogenesis/angiogenesis and cellular 
metabolism (Fig.  2). Although several recent in vivo 
studies in animal models have provided strong 
evidence that miRNAs are critical regulators of 
placental development (Ito et al. 2015, Zhu et al. 2016, 
Paikari  et  al. 2017), there are differences in placental 
development and placental miRNA expression profiles 
between mice and humans. Therefore, applications 
of findings from different animal models into humans 
should be treated with caution. Furthermore, most 
reported miRNA studies in placenta were performed 
using human cell lines derived from immortalized first 
trimester trophoblasts or choriocarcinoma, while only a 

Figure 2 MicroRNAs involved in placental 
development. Proper development and 
functioning of the placenta requires precise 
control of trophoblast proliferation, apoptosis, 
differentiation, cellular metabolism, as well as 
vasculogenesis/angiogenesis. Many miRNAs 
have been suggested to play a regulatory role 
in one or more of these processes and are 
listed in this Venn diagram.
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smaller proportion of studies used primary cultures of 
trophoblasts, placental explants and/or clinical samples. 
There are also reports of differential miRNA expression 
patterns between primary cells and immortalized 
trophoblast cell lines. Therefore, the use of multiple 
model systems should be emphasized.

Most studies conducted today focus on one or a few 
target genes. Since miRNAs target many genes, the use 
of multi-omics approaches to investigate gene networks 
responsible for the regulatory functions of miRNAs 
in the placenta will provide a better understanding 
of how miRNAs are involved in regulating placental 
development. Finally, all miRNA studies in placenta 
focused on canonical 3′ UTR-mediated gene silencing. 
As our understanding of the different miRNA biogenesis 
pathways and modes of miRNA action continues to 
expand, their novel contributions to modulating cellular 
activities during pregnancy should also be investigated.
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