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Abstract 

Dysregulation of microRNAs (miRNAs) is involved in the initiation and progression of several 
human cancers, including breast cancer (BC), as strong evidence has been found that miRNAs can 
act as oncogenes or tumor suppressor genes. This review presents the state of the art on the role 
of miRNAs in the diagnosis, prognosis, and therapy of BC. Based on the results obtained in the last 
decade, some miRNAs are emerging as biomarkers of BC for diagnosis (i.e., miR-9, miR-10b, and 
miR-17-5p), prognosis (i.e., miR-148a and miR-335), and prediction of therapeutic outcomes (i.e., 
miR-30c, miR-187, and miR-339-5p) and have important roles in the control of BC hallmark func-
tions such as invasion, metastasis, proliferation, resting death, apoptosis, and genomic instability. 
Other miRNAs are of interest as new, easily accessible, affordable, non-invasive tools for the 
personalized management of patients with BC because they are circulating in body fluids (e.g., 
miR-155 and miR-210). In particular, circulating multiple miRNA profiles are showing better di-
agnostic and prognostic performance as well as better sensitivity than individual miRNAs in BC. 
New miRNA-based drugs are also promising therapy for BC (e.g., miR-9, miR-21, miR34a, miR145, 
and miR150), and other miRNAs are showing a fundamental role in modulation of the response to 
other non-miRNA treatments, being able to increase their efficacy (e.g., miR-21, miR34a, miR195, 
miR200c, and miR203 in combination with chemotherapy). 

Key words: Breast cancer, microRNA/miRNA, circulating biomarker, theranostic, diagnosis, prognosis, pre-
diction and therapy. 

1. Introduction 

In 1993, Lee et al. [1] described that a small 
non-coding RNA in Caenorhabditis elegans was able to 
regulate the expression and function of another pro-
tein-coding mRNA. The discovery of microRNAs 
(miRNAs or miRs) had a profound impact on the 
understanding of many gene regulation processes in 
the following years. Since they were first discovered, 
the physiological relevance of miRNAs in regulating 
plant and animal gene expression has been estab-
lished.  

The primary repository for miRNA sequences 

and annotations, miRBase (www.mirbase.org), de-
buted in 2006 with just 218 miRNA loci [2-4]. Since 
then, novel high-throughput sequencing techniques 
applied to miRNA analysis have allowed the discov-
ery of more than 28000 mature miRNAs (miRBase 
release June 21, 2014). MiRNAs participate in the 
post-transcriptional regulation of gene expression in 
almost all key cellular processes [5], such as regula-
tion of cell proliferation, differentiation, angiogenesis, 
migration, and apoptosis.  

Significant evidence has accumulated in the last 
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few years, showing a fundamental role of miRNAs in 
the development of many diseases [6-9]. In particular, 
in cancer, aberrations in miRNA expression levels 
have been linked to the onset and progression of var-
ious types of cancer [10].  

Breast cancer (BC) is the second most common 
cancer in the world, and by far, the most frequent 
cancer among women, contributing to an estimated 
25% of all new cancers or cases diagnosed in 2012 [11]. 
Several biological features are routinely used for the 
diagnosis and prognosis of patients with BC and for 
determining the therapy, e.g., histological grade [12], 
lymph node status, hormone receptor status, and 
human epidermal growth factor receptor type 2 
(HER2) status [13]. Some of these factors have been 
associated with the survival rate of patients and their 
clinical outcome after treatment [14]. However, some 
patients, with a similar combination of BC features, 
have been found to have different clinical outcomes. 
Thus, the role of these factors in determining diagno-
sis and prognosis and in predicting therapeutic out-
comes in BC remains limited [15].  

New affordable methods are therefore needed to 
help diagnosis and prognosis and to suggest the most 
appropriate treatment for patients with BC on an in-
dividual basis. As a solution, miRNAs have been 
proposed as promising biomarkers of BC because 
they can be readily detected in tumor biopsies 
(non-circulating miRNAs) [16, 17] and are also stably 
found in body fluids (circulating miRNAs), particu-
larly in blood, plasma, serum, and saliva [18, 19]. 
These circulating miRNAs are highly reliable and 
protected from endogenous RNAse activity, being 
bound to lipoproteins such as HDL, associated with 
Argonaute 2 (Ago2) protein [20], or packaged into 
microparticles (such as exosome-like particles, mi-
crovescicles, and apoptotic bodies.) [19, 20].  

Recently, miRNA profiling has been assessed to 
improve BC classification and to differentiate patients 
with BC as responding or not responding to therapies, 
with promising results [21]. It is now clear that these 
tools have the potential to provide new diagnostic, 
prognostic, and predictive biomarkers for BC, with a 
great impact on the clinical management of patients 
with BC [15]. 

In this review, we focused on the recent findings 
related to the role of miRNAs in BC and on how 
miRNAs have the potential to answer actual clinical 
needs, such as identification of biomarkers for early 
and differential diagnosis, prognosis, and prediction 
of response to specific therapies. New therapeutic 
strategies represented by miRNA-based theranostic 
approaches in BC are also introduced and could be-
come a starting point for the future development of 
novel therapeutic tools. 

2. miRNA biogenesis and mechanisms of 
action 

2a. miRNA biogenesis 

miRNAs are small, evolutionarily conserved, 
non-coding RNAs that are approximately 18–25 nu-
cleotides in length and constitute the dominating class 
of small RNAs in most somatic tissues. Other small 
RNAs in animals include silencing RNAs (siRNAs), 
PIWI-interacting RNAs (piRNAs), which are typical 
of germinal cells [22], and non-coding mitochondrial 
RNAs (ncmRNAs) [23]. Although many aspects of the 
miRNA biogenesis pathway and repressive mecha-
nisms are still obscure, the key processes have been 
fully characterized.  

miRNAs are transcribed from individual genes 
containing their own promoter, or intragenically from 
spliced portions of protein-coding genes [24]. Like 
protein-coding genes, miRNAs with their own pro-
moters are almost exclusively transcribed by RNA 
polymerase II in a primary transcript called 
pri-miRNA [24] (Figure 1). This long transcript con-
tains a 7-methylguanosine cap at the 5′ end, a 3′ 
poly-(A) tail, and sometimes also introns. To be pro-
cessed, pri-miRNAs are recognized by Drosha ribo-
nuclease and its partner, the double-stranded RNA 
binding protein DGCR8, through interaction with a 
stem–loop structure within the miRNA in which the 
sequences are not perfectly complementary [25, 26]. 
Processing of pri-miRNAs gives rise to precursor 
miRNAs (pre-miRNAs) of approximately 70 nucleo-
tides [24] (Figure 1). Some intronic miRNAs, called 
mirtrons, could bypass Drosha processing and use the 
splicing machinery to generate pre-miRNAs [24]. The 
generated pre-miRNAs are then exported from the 
nucleus to the cytoplasm by exportin 5 (XPO5) [27-29], 
where they are cleaved by the RNase III enzyme Dicer 
1 in union with transactivation-responsive 
RNA-binding protein 2 (TARBP2) and AGO2 (DICER 
complex). The processing generates a dou-
ble-stranded miRNA–miRNA* duplex [30]. The 2 
strands are then separated: the mature miRNA (the 
guide strand) is incorporated into the RNA-induced 
silencing complex (RISC), whereas the passage 
miRNA* strand can be loaded in the RISC as well or 
degraded [31-33]. The mature miRNA guides the 
AGO protein of the RISC to the complementary 
mRNA sequence on the target to repress its expres-
sion [24] (Figure 1).  

2b. miRNA mechanisms of action 

The major determinant for miRNA binding to its 
target mRNA is a 6–8-nucleotide sequence at the 5′ 
end of the miRNA, the “seed” sequence [24]. Any 
sequence complementarity between the loaded 
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miRNA and the seed region triggers a detectable de-
crease in target mRNA expression levels. Seed 
matches can occur in any region of the mRNA but are 
more likely to be present in the 3′ untranslated region 
(3′ UTR) of a mRNA [34, 35]. Several lines of evidence 
indicate that miRNAs can also bind to other regions in 
the target mRNA [36]. Depending on the degree of 
homology to the 3′ UTR target sequence, miRNAs can 
induce the translational repression or degradation of 
mRNAs. Given that each miRNA is capable of regu-
lating the expression of many genes, each miRNA can 
simultaneously regulate multiple cellular signaling 
pathways.  

Apart from the “traditional” mechanism of ac-
tion of miRNAs described above, other 
“non-canonical” mechanisms have been proposed 
recently. Some evidence indicates that miRNAs could 
increase the translation of a target mRNA by recruit-
ing protein complexes at the AU-rich region of the 
target mRNA or they could indirectly increase target 
mRNA levels by interacting and modulating re-
pressor proteins that block the translation of the target 
mRNA [37]. Other evidence suggests that miRNAs 
could enhance ribosome biogenesis, thereby modu-
lating protein synthesis, or skip cell cycle arrest, 
thereby activating target gene repression [34, 38]. 

3. Methods for miRNA target prediction 
and miRNA–target interaction validation 

3a. Methods for miRNA target prediction  

Uncovering of miRNA-regulated networks 
needs large-scale and unbiased methods for miRNA 
target identification. For instance, the differential ex-
pression of a single miRNA would be followed by 
downstream gene or proteome-wide analysis. A sin-
gle miRNA could regulate a set of genes responsible 
for a particular malignant phenotype. The silencing of 
that single miRNA can alter the entire set of genes.  

To overcome this complexity and to predict the 
target genes, several algorithms have been developed. 
The main difficulty in miRNA target prediction is to 
detect the specific sequences within genes where one 
miRNA is fully or partially complementary [39], con-
sidering the small size of miRNAs and their low 
specificity.  

A collection of tools is available, each with a dis-
tinct approach to miRNA target prediction and dif-
ferent features [40]. The suitable tool can be decided 
depending on the requirements [12].  

The major features of computational target pre-
diction are as follows: sequence composition (e.g., 
seed match), conservation, and thermodynamic sta-
bility (e.g., free energy). 

 
 

 
Figure 1: miRNA biogenesis process. A schematic representation of canonical miRNA biogenesis pathway. Each miRNA is transcribed by RNA polymerase II (pri-miRNA) 
from genomic DNA within the nucleus; pri-miRNA is recognized by Drosha-DGCR8 and processed to pre-miRNA. Pre-miRNA is exported to the cytoplasm by exportin 5 
(XPO5), where it is processed and cleaved by DICER complex to a double strand miRNA (miRNA*-miRNA). The duplex is cleaved, and only the mature miRNA is loaded into 
the RISC complex. The degree of homology of the miRNA “seed” to the 3′ UTR target sequence of the mRNA determines the mRNA translational repression or degradation.  
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i) Seed match is the start of many computational 
methods for miRNA target prediction. A seed match 
usually consists of Watson–Crick (WC) complemen-
tarity between the miRNA and miRNA target nucleo-
tides. WC complementarity occurs when adenosine 
(A) pairs with uracil (U) and guanine (G) pairs with 
cytosine (C). The seed is a sequence from the 1st to the 
8th nucleotide at the 5′ end of the miRNA. However, 
algorithms based only on WC complementarity show 
low accuracy and a high number of false-positive re-
sults [26]. 

Other sequence compositions can be used as 
features for miRNA target prediction tools. Bartel et 
al. [31] showed that the AU residues in target sites 
improve the accessibility of miRNAs to form duplex-
es. Recent studies have suggested that coding regions 
of mRNAs can also include target sites for miRNAs 
[41]. In addition, it has been demonstrated that a 
transcript can contain multiple target sites for a single 
miRNA; however, when the target sites show over-
lapping sequences, miRNA–mRNA pairing can be 
compromised [42]. 

ii) Conservation analysis was introduced in or-
der to reduce false-positive results. Conservation re-
fers to the maintenance of sequence homology across 
species [40]. In general, there is higher conservation in 
the miRNA seed region than in the non-seed region 
[43]. However, the limit of this approach was demon-
strated by Bentwich et al., who showed that several 
non-conserved miRNAs were missing [43]. 

 iii) Free energy (or Gibbs free energy) can be 
used as a feature for miRNA target prediction [44, 45]. 
The thermodynamic stability of the miRNA–mRNA 
duplex shows the strength of the binding between a 
miRNA and its target by predicting how the miRNA 
and its candidate target will hybridize. The free en-
ergy is related to duplex formation between the 
miRNA and its target site. In particular, pairing can be 
determined by removing existing secondary struc-
tures [46]. The free energy is established by the dif-
ference between the energy expended in opening the 
target site structure and that gained by forming the 
duplex [46, 47]. 

Many computational algorithms have been de-
veloped and implemented as software tools for 
miRNA target prediction using some of the described 
features. These packages are very useful to select pu-
tative miRNA targets for further biological validation. 
The most common classifiers are based on machine 
learning algorithms, e.g., support vector machine 
(SVM), neural networks, hidden Markov model 
(HMM), and Naive Bayes (NB). These machine 
learning methods are trained on a so-called “training” 
dataset that contains a set of known miRNA se-
quences (positive training dataset) and a set of se-

quences that do not contain miRNAs, such as 
mRNAs, tRNAs, and rRNAs (negative training da-
taset), which represent the limit of this approach [47]. 
Several studies have tried to overcome this problem 
with the use of only true/positive models [48-50]. 
However, the results are worse than those obtained 
with approaches that utilize both positive and nega-
tive training sets [49]. Many tools of machine learn-
ing-based approaches for miRNA target prediction 
are currently available, e.g., HHMMiR [51], PicTar 
[52], MiRFinder [53], RNAmicro [50, 54], ProMiR [55], 
MiRRim [56], BayesMiRNAFind [57], and SSCprofiler 
[58]. 

Other computational algorithms use approaches 
different from machine learning. The TargetScan al-
gorithm was the first miRNA target prediction tool for 
human genome [40]. It searches for perfect comple-
mentarity in the seed region, and all seed sequences 
outside complementarity are filtered out. Predictions 
are ranked by a combinatorial score on the basis of 
sequence composition (seed sequence), conservation, 
and thermodynamic stability (free energy). 

Diana-microT uses a larger frame for scanning 
complementarity. It focuses on orthologous human 
and mouse 3′ UTRs from the mRNA Reference Se-
quences (RefSeq) database and 94 miRNAs conserved 
in human and mouse. It applies a modified dynamic 
programming algorithm to calculate the minimum 
free energy for each segment with a miRNA [59]. 

The miRanda algorithm gives scores for seed 
complementary regions. The results are evaluated for 
free energy. Each target that has a predicted free en-
ergy below a threshold is then passed to the last step, 
i.e., conservation [60]. 

These algorithms are summarized in Table 1, 
together with their main characteristic approaches 
and features. 

3b. miRNA–target interaction validation 

Many experimental technologies for validating 
miRNA–mRNA interactions have been developed [61, 
62]. In general, the effects of differential miRNA ex-
pression on the target gene obtained through trans-
fection of miRNA mimic or miRNA inhibitor oligo-
nucleotides or constructs [63] are established at the 
protein level by western blotting and at the mRNA 
level by quantitative real-time PCR (qRT-PCR), with a 
specific probe for the target gene [61, 62]. The most 
important disadvantage of these techniques is that 
they are not able to distinguish between direct and 
secondary miRNA–target interactions.  

3b.1 Luciferase assay 

Reporter assays are commonly used to study 
gene expression coupled with other cellular events, 
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such as receptor activity or intracellular signal trans-
duction of protein–protein interactions. To analyze 
direct miRNA–mRNA interactions, the firefly lucif-
erase-based assay is widely used because the reporter 
activity is available immediately upon translation, the 
assay is very rapid and sensitive, and no background 
luminescence is found in the host cells (Figure 2). To 
be used as a reporter assay for validation of the in-
teraction of a miRNA with the 3′ UTR of a gene of 
interest (GOI), the luciferase-based assay needs clon-
ing of the 3′ UTR of the GOI, where the miR-
NA-recognized sequence is supposed to be present, 
downstream of the luciferase gene in the reporter 

vector (Figure 2). The cells are then transfected with 
this construct in the presence or absence of the miR-
NA mimic oligonucleotide. If the miRNA is able to 
recognize the seed in the 3′ UTR of the GOI, the level 
of luciferase expression is decreased, thus causing a 
diminished bioluminescence emission (Figure 2B); on 
the other hand, if the miRNA does not interact with 
the 3′ UTR, the emission of light is unaffected (Figure 
2A). The disadvantages of this type of reporter assays 
are that they are laborious, expensive, sensitive only 
for the 3′ UTR chosen for cloning, and difficult to use 
for transfection [62, 63]. 

 

Table 1. The main algorithms for computational miRNA-target prediction 

Algorithm Features Approach References 
HHMMiR Seed match, and conservation HMM [51] 
PicTar Seed match HMM [52] 
MiRFinder Seed match, and conservation SVM [53] 
RNAmicro Sequence composition, conservation, and thermodynamic stability SVM [54] 
ProMir Sequence composition, conservation and thermodynamic stability. HMM [55] 
MiRRim  Sequence composition, conservation, and free energy. HMM [56] 
BayesMiRNAFind Sequence composition and free energy. Naïve Bayes Classifier [57] 
SSCprofiler Sequence composition, conservation and free energy. HMM [58] 
Diana-microT Seed match, conservation, and free energy Dynamic programming algorithm [59] 
TargetScan Seed match, conservation, and free energy Combinatorial score [40] 
MiRanda Seed match, conservation, and free energy Score [60] 

 

 

 
Figure 2: In vitro validation of miRNA-target direct interaction. Cultured cell lines are transfected with a reporter vector containing firefly (FIR) luciferase gene and the 
3′ UTR of the gene of interest (GOI). The level of expression of FIR luciferase is measured in a luminometric assay. Cells are then exposed to the mimic miRNA, which is supposed 
to enter within the cell and to interact with the 3′ UTR of the GOI. If no interaction between miRNA and the 3′ UTR of GOI happens (a), we could observe no alteration in the 
level of expression of luciferase, thus no alteration in the emitted chemoluminescence, as FIR gene produced an active, luminescent protein. The complete interaction between 
the miRNA and the 3′ UTR of the GOI (b) leads to reduced FIR luciferase expression, with a decrease of luminescence levels. Other luminescent genes, such as Renilla (REN) 
luciferase, are usually used as reference genes for luminescence normalization.  
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3b.2 RISC immunoprecipitation 

Another biochemical method to identify and 
isolate direct miRNA–target complexes is based on 
the immunoprecipitation of RISC components (such 
as AGO and TNRC6). This method is able to capture 
low-abundant and transient miRNA–mRNA pairs. 
Target mRNAs undergoing direct miRNA regulation 
are co-immunoprecipitated along with the RISC and 
are identified by qRT-PCR, microarray, or deep se-
quencing [64]. The successful pull-down of the entire 
complex relies on the strong interaction between the 
miRNA–target complex and RISC and on the ability 
of the used antibody to precipitate AGO2, the core 
RISC protein usually used for complex immunopre-
cipitation. Some companies have developed a domi-
nant negative mutant of an RISC protein subunit to 
trap the miRNA–target complex into the RISC, thus 
limiting further processing [65]. This strategy allows 
the recovery of transient and low-abundance mRNA 
targets that would otherwise be lost. A FLAG epitope 
is then used for the capture of the entire complex [65]. 
qRT-PCR or next-generation sequencing techniques 
are used to confirm the interaction between the 
miRNA and the target mRNA. 

4. miRNAs and BC  

Advanced technologies, such as microarray ex-
pression data, have shown that aberrant miRNA ex-
pression is the rule rather than the exception in BC 
[66, 67]. The tight integration of miRNAs in physio-
logical circuits could become a problem, because the 
dysregulation of a small number of miRNAs could 
profoundly affect the expression profile of the cells, 
driving them toward transformation [68]. BC miR-
NAs, which have an important role in the patho-
physiology of the disease, facilitating invasion, me-
tastasis, epithelial to mesenchymal transition (EMT), 
and maintenance of BC stem cells, have become an 
interesting topic in BC management.  

 4a. Mechanisms altering miRNA expression 
levels  

Because of amplification, each miRNA can in-
crease the control over its target gene. If the target 
gene is an oncogene, the cancer does not develop 
(oncosuppressor-miRs); if the target gene is a tumor 
suppressor, the cancer develops (oncomiRs). Due to 
deletion, each miRNA can reduce the control over its 
target gene. If the target gene is an oncogene, the 
cancer develops (oncomiRs); if the target gene is a tu-
mor suppressor, the cancer does not develop (on-
cosuppressor-miRs). 

Several mechanisms can influence miRNA ex-
pression levels (Figure 3). Tumors often present al-
tered levels of mature miRNAs [101] as a consequence 
of the following: 

1. Epigenetic mechanisms (Figure 3, section 1). A 
large proportion of miRNA loci on the genome are 
associated with CpG islands, giving strong bases for 
their regulation by methylation (Figure 3, section 1) 
[69]. A recent critical review on aberrant DNA meth-
ylation of miRNAs in BC showed that although aber-
rant DNA methylation is a well-described mechanism 
for gene silencing, an actual demonstration of the link 
between miRNA expression and gene methylation 
was still missing in several of the analyzed studies 
[70]. However, Castilla et al. have clearly demon-
strated in 70 BC cases that a relationship exists be-
tween miR-200 family expression, gene methylation, 
and metastatic potential of the tumors [71]. A map-
ping-based study has identified miRNA promoters 
silenced in BC [72], and different patterns of methyla-
tion have been observed in the miR-200b cluster pro-
moter in different BC sub-types [72]. Aure et al., fo-
cusing their attention on let7e-3p miRNA, found that 
the genomic region that encodes for this miRNA be-
longs to a hypomethylated, and thus silenced, chro-
mosome [73]. The researchers have associated 
let-7e-3p downregulation with poorer BC prognosis 
[73]. Another epigenetic phenomenon altered in BC is 
histone acetylation. Studies with deacetylase inhibi-
tors have revealed that the reduction of acetylated 
histones could diminish the expression of an-
ti-oncogenic miRNAs [74, 75]. 

2. A genetic alteration (Figure 3, sections 1 and 
2), i.e., frameshift mutations resulting from microsat-
ellite instability. Such genetic alternations can affect 
the expression of several mRNAs, e.g., the mRNA of 
TARBP2 (Figure 3, section 5), the Dicer stabilizing 
protein. This has been found, for example, in colorec-
tal and gastric cancer [76] and in BC [77]. Moreover, 
more than half of the known miRNAs are located in 
cancer-associated region, such as fragile sites, mini-
mal regions of loss of heterozygosity, minimal regions 
of amplification (minimal amplicons), or common 
breakpoint regions [78]. In the literature, some miR-
NA families emerge to be overall more involved in 
tumor development [79], such as the let-7 miRNA 
family. In BC, several let-7 family members, together 
with miR-125b, miR100, and miR34a, have been found 
to be located at fragile sites of human chromosomes 
(11q23–q24D), potentially contributing to aberrant 
miRNA expression [78]. 
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Figure 3: Altered steps in miRNA biogenesis lead to cancer. A schematic representation of altered steps of the miRNA biogenesis pathway, commonly deregulated in 
cancer: 1. miRNA genes contain upstream regulator elements (enhancers/repressors) and promoter regions, indicating that miRNAs are subjected to CpG methylation (CpG 
promoter met); 2. The alteration in the copy number of miRNA (due to genomic amplification or deletion, activating or repressing mutation, loss of epigenetic silencing and 
transcriptional activation) could increase the oncogenic miRNAs or decrease the tumor suppressor miRNAs; 3. Alteration in the miRNA processing machinery, i.e. downreg-
ulation of Drosha, could decrease the cropping of pri-miR to pre-miR; 4. XPO5 mutation could prevent pre-miR export to the cytoplasm; 5. Mutation of TARBP2 or down-
regulation of DICER1 decrease mature miRNA levels, causing finally a loss on tumor suppressor miRNAs; 6 and 7. Accumulation of oncogenic miRNAs or loss of tumor 
suppressor miRNAs could finally lead to cancer development. 

 

3. Defects in the miRNA biogenesis pathway 
(Figure 3, sections 3–5): each step of miRNA biogene-
sis could be affected, thus altering miRNA expression 
levels and making the cell suitable for oncogenic 
changes. Reduced Dicer and Drosha expression (Fig-
ure 3, sections 3 and 5) have been associated with 
high-grade BC and shorter metastasis-free survival or 
with higher-grade BC and shorter disease-free sur-
vival [80-83]. Reduced Dicer expression (Figure 3, 
section 5) has been also found in many other human 
tumors [84], e.g., in prostate [85], gastric [86], or 
squamous cell carcinoma [87]. In BC, reduced Dicer 
expression has been associated with the tri-
ple-negative phenotype [83, 88]. Moreover, in BC, 
nucleolin (NCL), a component of the Drosha/DGCR8 
microprocessor complex, has been demonstrated to 
promote the maturation of a set of metasta-
sis-promoting miRNAs (miR-221/222 cluster, miR-21, 
miR-103, and miR-15a/16) [89, 90]. Furthermore, XPO5, 
a key protein for pre-miRNA export to the cytosol, has 
been suggested as a possible prognostic biomarker for 
BC [91] (Figure 3, section 4). 

4. Transcriptional repression by other upstream 
proteins (Figure 4). A plethora of transcription factors 
can influence the expression levels of a single miRNA. 
Several lines of evidence suggest that miRNAs and 
transcription factors work cooperatively. miRNAs are 

involved in the functional feedback loop, in which 
transcription factors influence miRNA expression 
levels and vice versa [92-94]. Thus, tumorigenic 
miRNA expression alterations could be due to the 
activity of tumor-related transcription factors, such as 
SMAD [90, 95], p53 protein family (p53, p63, and p73) 
[96], ataxia telangiectasia mutated (ATM) [97], and 

Myc [98]. In BC, the BC 1, early onset (BRCA1) tran-
scription factor [99] and the epidermal growth factor 
receptor (EGFR/HER1), a hypoxic transcription factor 
involved in the regulation of the RISC [100], are able 
to inhibit miRNA maturation, thus enhancing cell 
survival and invasiveness.  

4b. miRNAs and BC progression models  

Modeling cancer disease is not easy, because 
cancer encompasses several histopathologies, in-
volving genetic and genomic variations, and distinct 
clinical outcomes. A major challenge in advancing the 
knowledge of cancer is the availability of a single ex-
perimental model system that recapitulates the com-
plex biology of the disease. Because of this complexi-
ty, no single model would be expected to mimic all 
features of the disease. The existing experimental 
models include two-dimensional (2D) and 
three-dimensional (3D) cell line cultures, xenografted 
mice, and engineered mice.  
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Figure 4: Contribution of transcription to miRNA level alteration in cancer. Several transcription factors are able to control the level of expression of miRNAs. In 
particular, as described in the text, SMAD, Myc, ATM, BRCA1/2 and p53 influence miRNA transcription. P53 can regulate onco-suppressor miRNAs, which are involved in the 
control of p53 turnover. SMAD, ATM, BRCA1/2 and Myc could influence the transcription levels of miRNAs involved in cell plasticity, cell proliferation and survival, and cell 
invasion control. Moreover, SMAD is also involved in miRNA processing, by Drosha expression levels control. Ex: example of miRNA regulated by transcription factors. 

 
1. 2D cell culture. 2D cell culture studies in the 

oncogenic field have played a pivotal role in further-
ing our understanding of the disease mechanisms and 
drug discovery. The majority of scientific studies on 
miRNAs use 2D cell cultures for modulation of single 
miRNA expression and validation of the interaction 
between a single miRNA and its predicted targets via 
protein or gene expression analyses. This culture 
condition is easy to be manipulated, less expensive 
than the other approaches, and particularly suitable 
when a small number of miRNAs have to be studied. 

Recently, particular attention has been given to 
emerging inadequacies associated with 2D culture 
systems, such as their inability to fully emulate in vivo 
tumor growth conditions and to provide physiologi-
cal relevance. In fact, in the body, nearly all cells re-
side in an extracellular matrix (ECM) consisting of a 
complex 3D architecture, and interact with neighbor-
ing cells through biochemical and mechanical cues. 
These features cannot be obtained in 2D culture con-
ditions. Cell–cell and cell–ECM interactions establish 
a 3D communication network that maintains the 
specificity and homeostasis of the tissue and influ-
ences tumor growth and its interaction with the whole 
organ. This approach has been extensively used in 
many works on the assessment of miRNAs in BC 
[101-103]. 

2. 3D cell culture. To overcome some shortcom-
ings of 2D cultures, 3D cell cultures have been de-
veloped, with the use of specific matrix (such as nat-
ural ECM-based hydrogels, 3D spheroids, and 

trans-well inserts) that are able to support the growth 
of tumor cells for the establishment of physiological 
cell–cell and cell–ECM interactions of the native tis-
sues. These matrix supports can mimic the environ-
mental conditions in which the tumor cells grow with 
greater physiological relevance than conventional 2D 
cultures. The development of new biological supports 
is further fueled by the optimism that 3D models may 
significantly accelerate translational research in can-
cer biology. For example, use of 3D tumor cell culture 
is emerging as an important tool to characterize the 
morphogenesis of mammary epithelial cells and to 
elucidate the tumor-modulating actions of ECM. Fo-
cusing on miRNAs, the comparative analysis of 2D 
and 3D cell cultures has revealed a profound differ-
ence in miRNA profiles between the 2 culture condi-
tions, particularly for BC cells and lung adenocarci-
noma [104, 105]. In particular, the miRNA profiles in 
2D and 3D cultures of 2 BC cell lines were compared. 
The findings revealed that the 3D culture exhibited a 
greater discrimination between the miRNA profiles 
than the 2D culture [105]. For example, the lower ex-
pression of miR-429 was highlighted in the 3D cul-
ture-specific miRNA profile better than that in the 2D 
culture-specific profile, correlating with the 3D inva-
sive capacity of the MDA-MB-231 BC cell line. 

3. Xenografted mouse models. This approach 
takes advantage of the injection of cancer cells from 
human immortalized cancer cell lines or tumor cells 
from patients into mouse tissue to study the devel-
opment of the tumor in its native environment. This 
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method can be used to obtain a miRNA profile during 
ongoing tumor development. Otherwise, tu-
mor-xenografted mice are used for the therapeutic 
study of miRNA modulation. In fact, several reports 
have examined the effect of miRNA modulation by 
treating xenografted animals with oligonucleotides 
that increase (miRNA mimic) or decrease (antagomiR) 
the expression levels of a specific, single miRNA or by 
using an expression vector for miRNA level modula-
tion [106]. Thus, the effects of miRNA modulation are 
analyzed by measuring the growth of the tumor, its 
invasive capacity, presence of metastatic masses, and 
vascularization of the tumor [107]. 

Several models to study miRNA involvement in 
BC progression are based on BC cell lines or patient 
specimens implanted into mouse mammary fat pads. 
For example, use of the triple-negative MDA-MB-231 
BC cell line to generate a xenografted BC model al-
lows identification of miR-124 as the key regulator of 
the myc/p27/phospho-Rb pathway, which is usually 
altered in BC and ovarian cancer [108]. Another BC 
model, obtained by the orthotopic implantation of 
xenografted human BC specimens into NOD/SCID 
mouse mammary fat pads (called patient-derived 
human-in-mouse breast tumor xenograft model or 
PDX model), was used to study the spontaneous 
generation of BC-derived lung cancer metastasis. 
With a combined approach of gene expression arrays 
and global miRNA analysis, miR-138 was demon-
strated to be a key regulator of tumor invasion in 
lung, targeting the EMT process of BC cells [109]. 
Another xenografted mouse model was used to 
demonstrate the anti-metastatic potential of the pep-
tide nucleic acid (PNA)-modified antagomiR-21 oli-
gonucleotide on BC cells. Yan et al. [110] demon-
strated that use of the antagomiR-21 oligonucleotide 
is able to block proliferation, cell migration, and in 
vivo tumor growth of 2 BC cell lines (MCF7 and 
MDA-MB-231) implanted in BALB/c-nude mice, 
proposing the use of this oligonucleotide for potential 
therapeutic applications in BC treatment.  

4. Engineered mouse models have been widely 
used. These models could be of 2 types. The first type, 
the genetically engineered mouse model, obtained by 
oncogene amplification or tumor suppressor gene 
deletion to characterize a specific cancer, is used to 
generate an expression profile of miRNAs to clarify 
which miRNAs are involved in the development of 
that specific tumor. In BC, this model has been used to 
identify a miRNA profile associated with 8 different 
mammary-engineered mouse models [111]. In the 
second type, knocking-in or -out of specific miRNAs 
in the mouse germline allows to study the influence of 
miRNAs on tumor progression [112]. This approach 
also involves using genetic constructs to induce 

miRNA overexpression or downregulation in a par-
ticular tissue, at a particular development stage, or 
under pharmacological control. For example, several 
strains of mice lacking or overexpressing can-
cer-associated miRNAs have been developed and 
characterized. These include germline transgenic or 
knockout mice for the following: miR-155, which, if 
overexpressed in B cell lineage, induces B cell malig-
nancy [113]; miR-21, which leads to lung tumorigene-
sis if ubiquitously deleted [114]; miR-17-92 and its 
paralogs, whose overexpression in lymphocytes in-
duces lymphoproliferative disease and autoimmunity 
[115]; miR-15 and miR-16, whose deletion induces 
lymphoproliferative disorders [116]; miR-146, which 
causes myeloid sarcomas and lymphomas when de-
leted [117]; and miR-29, whose deletion causes B-cell 
lymphoma [118]. 

To our knowledge, no germline transgenic 
miRNA-engineered mouse models have been pro-
posed yet to study BC onset and development. 

5. miRNAs and cancer stem cells (CSCs) 

5a. miRNAs involved in CSCs  

The most recent definition of CSCs or tu-
mor-initiating cells (TICs) identifies these cells as “a 
small subset of the cancerous population responsible 
for tumor initiation and growth, which also possesses 
the characteristic properties of quiescence, indefinite 
self-renewal, intrinsic resistance to chemotherapy and 
radiotherapy, and the capability to give rise to dif-
ferentiated progeny” [119]. Chemotherapeutic agents 
kill differentiated tumor cells, but CSCs are generally 
unharmed. The existence of CSCs propels resistance 
to chemotherapy, disease progression, and disease 
relapse. The origin of CSCs is still an ambiguous issue. 
The main hypotheses regarding the origin of CSCs 
include the following: i) malignant transformation of 
normal stem cells, ii) de-differentiation of mature 
cancer cells through EMT, and iii) induction of plu-
ripotent cancer cells. Leukemia stem cells (LSCs) in 
acute myeloid leukemia (AML) are the first and best 
characterized CSCs, often providing a working tem-
plate for other types of cancers [120]. Similar to nor-
mal hematopoietic stem cells (HSCs), LSCs have ex-
tensive self-renewal property and are responsible for 
the maintenance of the bulk of leukemia blasts [120]. 
The somatic stem cell hypothesis describes the process 
where a dormant stem cell present in the adult or-
ganism could be transformed to a CSC because of a 
mutation or inappropriate regulation of stem cell 
pathways. The transformation of an adult stem cell 
(ASC) into a CSC could be due to epigenetic repro-
gramming processes (alteration in the DNA methyla-
tion of CpG islands, leading to the expression or si-
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lencing of specific genomic regions; alteration in 
chromatin remodeling, which controls the accessibil-
ity of chromatin to transcription factors; and alteration 
in specific miRNA expression levels) [121]. 

The miRNA profile of CSCs is remarkably dif-
ferent from that of non-stem cancer cells, and many 
miRNAs have been shown to regulate the 
self-renewal and differentiation properties of CSCs 
[122, 123], such as the let-7 miRNA family [124]. Being 
a tumor suppressor, the tumorigenic potential of the 
let-7 family is due to its downregulation in many tu-
mors, such as lung cancer or BC [125]. Cancer initia-
tion, progression, and aggressiveness are driven by 
CSCs [126-128]. The let-7 miRNA family appears to 
play a substantial role in the CSC phenotype. In fact, it 
seems that each tumor, being either hematologic or 
solid, includes a minor population of CSCs, capable of 
tumor initiation [129]. These TICs have downregu-
lated let-7 expression and, having tumor stem cell 
properties, can also undergo asymmetric division, 
thereby sustaining differentiated tumor proliferation 
[130]. In BC, let-7 is found to be downregulated. In 
normal tissue, it plays the role of a regulator of 
self-renewal, acting as a pro-differentiation miRNA, 
whereas in BC it is repressed by the Wnt/β-catenin 
pathway [124]. Thus, its loss in BC leads to an increase 
in the CSC population. 

In addition to let-7, miR-34 has been described as 
a regulator of the Notch signaling pathway, necessary 
for stem cell maintenance, in colon CSCs [131]. 
Asymmetric cell division, a characteristic of CSCs 
required for self-renewal, is directed toward sym-
metry by the presence of miR-146a, which targets 

Numb to stabilize β-catenin expression and leads to 
symmetrical division [132]. In BC, expression of 
miR-34 leads to cell cycle arrest [133], whereas its 
downregulation increases the invasive capacity and 
metastatic potential of BC cell lines in vitro and in vivo 
[134]. All the discussed miRNA as summarized in 
Table 2. 

5b. miRNAs and EMT 

 Emerging evidence demonstrates that miRNAs 
play an essential role in controlling stem cell proper-

ties, such as self-renewal and differentiation, by reg-
ulating the expression of certain key stem cell regu-
latory genes [135-137] and by regulating EMT [138, 
139]. EMT refers to the process in which tumor epi-
thelial cells acquire mesenchymal features, with high 
invasiveness and metastatic abilities. In fact, EMT is 
associated with the loss of intracellular junctions and 
epithelial polarity and increase in cell motility, which 
are fundamental characteristics for tumorigenesis, 
invasion, and metastasis that allow cancer cells to 
infiltrate adjacent stroma and metastasize to distant 
sites. These phenotypic changes appear to be induced 
by several miRNAs, such as let-7, miR-10, miR-34, 
miR-200, and miR-205 [139]. In BC, miR-155 and 
miR-21, described as oncomiRs, are implicated in 
EMT, cell migration, and invasion control. A 
well-known target of miR-21 is PTEN, a tumor sup-
pressor, which negatively regulates the PI3K pathway 
[133, 140]. Growing evidence suggests that BC cell 
plasticity, necessary for the spread of a tumor, arises 
because of partial reactivation of EMT in a mature 

cancer cell in order to give the cell pluripotency and a 
stem-like phenotype. 

 All the discussed miRNAs are summarized in 
Table 2. 

6. Potential of miRNAs as BC biomarkers 

BC is a heterogeneous disease with several 
morphological appearances, molecular features, be-
haviors, and response to therapy [143, 144]. Thera-
peutic management of BC is based on the availability 
of strong diagnostic, prognostic, and predictive fac-
tors to guide the decision and the choice of different 
treatment options [145-147]. 

The current in vivo diagnostic tools for BC, e.g., 
mammography and ultrasound, are used for the de-
tection of early-stage BC. However, several technical 
limitations exist for these techniques, such as breast 
density or calcification detection. Other imaging mo-
dalities, e.g., magnetic resonance imaging (MRI), have 
been proposed as complementary diagnostic modali-
ties, with limited sensitivity. 

 
 

Table 2. Examples of miRNAs involved in CSC phenotype, and EMT process. This table focuses on few examples of miRNAs described 
in the text, with a particular attention on their function and the type of cancer where they have been found. 

miRNA annotation Function Tumor Ref. 
let-7 Regulator of self-renewal, cell proliferation and EMT Lung, BC [124] 
miR-34, miR-146a Symmetric and asymmetric division of CSCs colon [132] 
miR-34, Cell cycle control, invasion capacity and metastatic potential BC [133, 134] 
let-7, miR-10, miR-34, miR-200, miR-205; miR-30  Stemness and EMT regulation BC [139, 141, 142] 
miR-155, miR-21 EMT, cell migration and invasion control BC [133, 140] 
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Some proteins have been associated with BC by 
the analysis of expression levels of specific mRNAs, 
e.g., carcinoembryonic antigen (CEA) and CA-125 
[148]. For BC diagnosis and prognosis, several 
mRNA-based genetic tests are currently available, 
such as the PAM50 assay (based on the NanoString 
technology), MammaTyper assay (based on the 
qRT-PCR technology), MammaPrint test (based on the 
microarray technology), Oncotype DX test (based on 
the qRT-PCR technology), Endopredict (based on the 
qRT-PCR technology), and Genomic Grade Index 
(based on the microarray technology) [149]. Use of 
independent cores for gene expression testing in BC, 
coming from different gene signatures, may be a suc-
cessful strategy to overcome tumor heterogeneity and 
sampling error.  

Although direct measurements of tissue gene 
biomarkers have greatly improved BC diagnosis, the 
invasive and unpleasant nature of the diagnostic 
procedures limits their application. Isolation and 
subsequent characterization of circulating miRNAs 
provide the opportunity to bypass the problems as-
sociated with tissue biopsy, which is required as per 
the currently available genetic tests. In fact, circulating 
miRNAs are small molecules, found in body fluids 
(blood, plasma, serum, saliva, urine…). Being im-
portant regulators of gene expression and being 
dysregulated in several types of cancer diseases [150], 
circulating miRNAs have become interesting in new 
cancer biomarker research. They have been found to 
be stably and specifically expressed in mammary tis-
sues and in body fluids when the disease is ongoing 
[151, 152]. These features enable them to respond to 
the current clinical needs, allowing them to be used as 
easy, affordable, and clinically accessible molecular 
biomarkers in the retrospective analysis of large tissue 
collections and for diagnosis, prognosis, and predic-
tion of therapeutic outcomes in BC. 

6a. miRNAs dysregulated in BC 

Several studies have looked at possible specific 
miRNAs dysregulated in BC with a diagnostic pur-
pose [153, 154]. Dysregulated miRNAs could be di-
vided into 2 groups, being either upregulated or 
downregulated (Table 3). 

Increased expression of miR-21 has been found in 
vitro in human BC cell lines and tissues, playing a key 
role in all phases of BC pathogenesis [141, 155], alt-
hough it also appears to be able to monitor early BC 
onset [156]. miR-21 activity controls cell proliferation, 
G2/M check point, and metastasis diffusion [157-159] 
and the expression of many anti-oncogenes, including 
TPM1, programmed cell death 4, maspin, and Bcl-2, to 
support the metastasis and hyperplasia of BC cells 
[160].  

Several other miRNAs have been validated to be 
overexpressed in BC; these include the miR-221/222 
cluster [161], miR-9, miR10b, miR-29a, miR-96, 
miR-146a, miR-181, miR-373, miR-375, miR-520c, and 
miR589 [162], highlighting their potential use for BC 
diagnosis, prognosis, and therapeutic studies [80, 137, 
163-165].  

Some upregulated miRNAs could cooperate in 
controlling a network of functional genes to help tu-
mor development or metastasis. Figure 5 shows ex-
amples of miRNA regulatory networks in BC that 
promote metastasis through their ability to coordi-
nately target multiple genes [166]. Ma et al. [167] 
proved the role of miR-10b as a driver of metastasis: 
miR-10b, under the control of the TWIST transcription 
factor, binds HOXD10 gene, enhancing cell migration 
and invasion. HOXD10, in turn, inhibits the Ras 
homolog gene family, member C (RHOC) protein, 
favoring metastatic diffusion of the tumor (Figure 
5A). The miR-10b locus also encodes for 
miR-10b*/miR10b-3p. miR-10b*, although considered 
functionally irrelevant, was very recently demon-
strated to be important for BC insurgence and devel-
opment [168]. Hence, if miR-10b-5p upregulation leads 
to the induction of ECM remodeling factors for meta-
static invasion, miR-10b-3p downregulation is in-
volved in primary BC onset and development, as its 
overexpression inhibits the proliferation of BC cell 
lines by targeting cell cycle regulator proteins (BUB1, 
PLK1, and CCNA2) [168, 169] (Figure 5A). 

Among the downregulated miRNAs, miR-30a, 
miR-31, miR34, miR-93, miR-125, miR-126, mR-146a, 
miR-195, miR-200, miR-205, miR-206, miR-503, and 
let-7 [170-174] have been shown to have a role in BC 
pathogenesis through the loss of their tumor sup-
pressor properties. Overall, the main mechanisms 
affected by downregulated miRNAs are cell cycle, 
proliferation, and metastasis diffusion. Among all, the 
aforementioned members of the let-7 family are par-
ticularly relevant for BC development, as they func-
tion physiologically as tumor suppressors and are 
often inactivated in cancer [175, 176]. let-7 miRNAs 
have been demonstrated to regulate multiple onco-
genes, such as RAS, high-mobility group AT-hook 2 
(HMGA2), c-Myc, and caspase-3 [177-180], and sev-
eral genes involved in the maintenance of stem cell 
phenotype [181]. Thus, downregulation of let-7 family 
members could be one of the key events in the initia-
tion of cancer owing to the acquisition of stem cell-like 
properties [182]. Members of the let-7 family are 
among the more reproduced biomarkers identified in 
the in silico research of a miRNA BC signature. In fact, 
the let-7 family is present in several miRNA expres-
sion signatures of BC tissues [183, 184] and also in 
other types of tumor [183, 185, 186]. In our recent 
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publication, we proposed let-7c as a possible bi-
omarker of a 4-miRNA signature, capable of distin-
guishing between grade 1 and grade 3 BC samples 
[21].  

miR-92a is another possibly downregulated 
miRNA. This miRNA belongs to the miR-17-92 family, 
which can promote tumor proliferation by controlling 
the PI3K/Akt/mTOR pathway [187]. Moreover, this 
miRNA has Bcl-2 interacting mediator of cell death 
(Bim) and p53 proteins as targets, thus inhibiting tu-
mor cell apoptosis and cell cycle arrest and promoting 
tumorigenesis [98, 188, 189]. In addition, it is involved 
in promoting tumor invasion and metastasis by 

modulating the TGF-β signaling pathway [190, 191].  
Another downregulated miRNA, miR-206, has 

been found to be underexpressed in estrogen receptor 

(ER)α-positive BC, both in patient samples and BC 
cell lines [192, 193], and in lymph node metastatic BC 
[194, 195]. With regard to its functions, it has been 
recently demonstrated to regulate the 3′ UTR of cyclin 
D1, inducing G1 arrest and a decrease in cell prolifer-
ation in BC cells [196], suggesting a potential role as a 
tumor suppressor. It has been shown that miR-206 
regulates ERα via interaction with its 3′ UTR [193], 
demonstrating a specific role in most aggressive types 

of BC. 
Other downregulated miRNAs, typical of BC 

tissues, are a group of miRNAs usually expressed in 
stem cells. This group includes the miR-200 family 
[197], miR-15/16, miR-103/107, miR-128b, miR-145, and 
miR-335 [137]. All these miRNAs are downregulated 
in CSCs, targeting common genes (Bmi1 and Suz12 
component, Zeb1/2, and Klf4), all belonging to a reg-
ulatory circuit that sustains the breast CSC state [137].  

6b. miRNAs as biomarkers of diagnosis, 
prognosis, and therapy prediction in BC  

Several attempts have been made to identify af-
fordable BC signatures for diagnosis, prognosis, and 
prediction of the therapeutic response (Table 4). 

With respect to diagnosis, Iorio et al. [164] iden-
tified a 13-miRNA signature that could differentiate 
BC from normal breast tissues with 100% accuracy. 
Blenkiron et al. [202] identified 133 miRNAs that dis-
played aberrant expression levels in breast tumor 
tissues compared with normal breast tissues. Despite 
the identification of miRNA with aberrant expression 
in BC tissues, there remain discrepancies among the 
different reported miRNA signatures. This is proba-
bly because of the intrinsic heterogeneity in BC and 

because of clinicopathological 
variables such as the tumor 
stage, vascular invasion, prolif-
eration index, and expression of 
HER2, ER, or progesterone re-
ceptor (PR). Thus, an attempt 
has been made to develop a 
miRNA signature that reflects 
the histopathological features of 
the tumor. At the simplest level, 
BC comprises 3 different histo-
logical subtypes: hormone re-
ceptor-positive (ER+, PR+) tu-
mors, which cover approxi-
mately 60%–70% of diagnosed 
BCs; HER2+ tumors, which cov-
er 15%–20% of diagnosed BCs; 
and triple-negative (ER−, PR−, 
HER2−) tumors [66]. Genomic 
mRNA profiling has subdivided 
BC into 4 different classes: lu-
minal A (ER+ and low grade), 
luminal B (ER+ and high grade), 
HER2+, and basal like (mainly 
triple negative) [202].  

 
 

 
 

 
Figure 5: Examples of miRNA regulatory networks in BC that promote metastasis. A) Two examples of the 
role of miR-10b/10b* in the regulation of either migration and invasion (left side) or cell cycle and proliferation (right 
side) processes. B) Example of let-7 regulatory role in the pro-invasive gene network control. 
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Table 3. BC deregulated miRNAs: an overview. 

 miRNA annotations Samples type Ref. 

Up-regulated miRNAs 
 

miR-21 BC cell lines [141, 155-157, 163] 

miR-221/222 cluster BC cell lines [161] 

miR-9, miR10b, miR-29a, miR-96, miR-146a, miR-181, miR-373, 
miR-375, miR-520c, miR589 

BC cell lines [162-165, 167, 198, 
199]  

miR-10b BC cell lines [167] 

miR-155 BC cell lines [158, 163, 200]  

miR-210 BC cell lines [197] 

Down-regulated miR-
NAs 
 
 

miR-30, miR-31, miR-34, miR-93, miR-126, miR-146a, miR-195, 
miR-205, miR-206, miR-503 

BC cell line; 
TNBC cell lines 

[163, 170-175, 201]  

let-7 family BC cell lines [163, 175, 182] 

miR-92a cluster BC cell lines; TNBC cell lines [187-191]  

miR-200 family BC cell lines [163, 197]  

miR-15/16 cluster, miR-103/107, miR-145, miR-335, miR-128b BC cell lines [137] 

miR-10b* BC cell lines and xenografted tumor  [168, 169] 

TNBC= triple negative BC. 

 

Table 4. Circulating and non-circulating miRNAs as BC biomarkers. All the reported miRNAs have been validated on BC patients. For 
each miRNA, we indicated whether they have a role in diagnosis, prognosis or in prediction of therapy response in BC. For all groups we 
indicated the biological samples used for the validation, the validation assay, the cohort of data, the main results and the references. This 
table focused on few examples of single miRNA or miRNA signatures described in the text. GGI=gene expression grade index: 
TAM=tamoxifen; H= herceptin; N= normal tissue; T= tumor tissues; TNBC= triple negative breast cancer. 

Type of miRNAs miRNA annotation Role Biological 
Samples  

Technique/ 
cohort 

Results Ref. 

Non-circulating 
miRNAs 

13 miRNAs (miR-9-1, miR-10b, 
miR-21, miR-34, miR-29b/102, 
miR126, miR125a/b1/b2, miR-140as, 
miR-145, miR-155, miR-194, miR-204, 
miR-213) 

Diagnosis Tissue Microarray and north-
ern blot/  
76 BC vs 10 N 

4/13 are downregulated (5 miR-
NAs are the most constantly de-
regulated in BC) 

[164] 

133 miRNAs  Diagnosis Tissue Microarray / 99 BC vs 
5 N and 33 BC cell lines 

31 miRNAs are associated with 
tumor subtype or clinical patho-
logical fators 

[202] 
 

15 miRNAs 
miR-342, miR-299, miR-217, miR-190, 
miR-135b, miR-218.; 
miR-520g, miR-377, miR-527-518a, 
miR-520f-520c;  
miR-520d, miR-181c, miR-302c, 
miR-376b, miR-30e 

Diagnosis  Tissue Microarray / 95 BC vs 
17 N 

ER+; PR+; HER2/neu+:  [203] 

6 BC-miRNAs signature 
miR-21 
miR-17-5p 
miR-29b-2 
miR-146 
miR-155 
miR-181b-1 

Diagnosis  Tissue Microarray/ 363 T vs 
177 N 

31% of the total miRNAs varied 
among T and N tissues; they iden-
tified the most commontly altered 
miRNAs in solid tumors 

[184] 

miR-7,  
miR-128a, miR-210, and miR-516–3p; 
miR-210 

Diagnosis  Tissue TaqMan / 
185 ER+ vs 114 ER- BC  

4-miRNA signature associated 
with tumor aggressiveness in ER+ 
BC and miR-210 associated with 
early relapse in ER- 

[204] 

let-7c, miR320dmiR567, miR139-5p Diagnosis  Tissue Microarray / 
42 BC G1 vs 42 BC G3 

4 miRNA signature [21] 

let-7a 
miR-335 

Diagnosis and 
prognosis 

Tissue TaqMan/  
60 BC vs 60 N 

Both miRNAs are decreased in 
BRCA mutant; miR-335 could be 
used as prognostic marker 

[66] 

miR-155, miR-493, miR-30e, miR-27a Diagnosis and 
prognosis 

Tissue Microarray/ 80 high 
risk vs 80 low risk 

2 upregulated, ‘protective’ miR-
NAs (miR-155, miR-493); 2 down-
regulated risk-associated miRNAs 
(miR-30e , miR-27a ) 

[205] 

miR-210 
miR-148a 

Prognosis 
 

Tissue qRT-PCR/  
89 ER+ BC +TAM vs 56 
N 

miR-210 and miR-148a are associ-
ated with relapse free survival;  

[206] 

miR-190b 
miR-339-5p  
miR-520c-3p /g/h 
miR-139-3p  
miR-204 miR-502-5p 
miR-365 miR-363 
miR-7 

Prediction of 
therapy re-
sponse (TAM) 

Tissue Microarray/ 
26 patients with re-
currence vs 26 patients 
without recurrence 

miR-7 correlates with tumor grade [212] 

miR-30c 
miR-422a 
miR-30a-3p 
miR-187 

Prediction of 
therapy re-
sponse (TAM) 

Tissue qRT-PCR/  
38 ER+ BC vs 15 
BC+TAM 

Higher miR-30a-3p, miR-30c, and 
miR-182 are associated with treat-
ment benefits 

[213] 
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miR-182 
miR-21,  
miR-181b, 
miR-26a/26b, miR-27b miR-23b, 
let-7 family, 
miR-125a-5p/b-5p 

Prediction of 
therapy re-
sponse (TAM) 
 

Cell lines 
and tissue 

qRT-PCR/  
i) BC cell lines ± ER 
activation 
 ii) 15 ER+ BC + ex-
emestane and TAM 

All miRNAs are upregulated upon 
anti-estrogen treatment 

[214] 

miR-26a, miR-30b, let-7 family, 
miR-125a/b 

Prediction of 
therapy re-
sponse (H) 

Tissue Microarray/ 83 BC + H 
vs adiacent stromal 
microdissected cells 

With SVM technique, they devel-
oped a 35 miRNA signature for H 
treatment response 

[216] 

Circulating 
miRNAs 

miR-155 Diagnosis Serum qRT-PCR/ 
89 BC vs 29 N 

miR-155 is increased, both in pri-
mary and metastatic BC 

[208] 

miR-195 Diagnosis Blood qRT-PCR/  
83 BC patients vs 44 N 

miR-195 is increased +19.25 fold [209] 

miR-29a 
miR-21 

Diagnosis and 
prognosis 

Serum qRT-PCR/ 
20 BC sera vs 20 N 

both miRNAs are increased; 
miR29a correlates with tumor stage 

[210] 

miR-16 
miR-25 
miR-222 
miR-324-3 p 

Diagnosis and 
prognosis 

Serum TaqMan / 
48 BC vs 48 N 

All are increased in high risk pa-
tients  

[211] 

let-7 
miR-21 
miR-202 

Diagnosis and 
prognosis 

Blood and 
serum 

RT-PCR/  
136 BC vs 60 non BC 

 All miRNAs are increased in BC 
patients;  

[224] 

miR-18b miR-103 miR-107 
miR-652 

Diagnosis, 
prognosis 

Serum  RT-PCR/ 33 primary 
TNBC vs 33 N  

4 miRNA signature predict tumor 
relapse and overall survival 

[225] 

miR-210 Prediction of 
therapy re-
sponse (H) 

Plasma  TaqMan / 
18 BC+ H vs 11 not 
responding BC  

miR-210 is higher in patients with 
residual BC (+2 fold) 

[222] 

miR-155 Prediction of 
therapy re-
sponse (taxane) 

Serum RT-PCR/  
103 BC+taxane vs 55 N 

miR-155 expression correlates with 
the treatment course  

[223] 

 

 
Blenkiron et al. [202] tried to associate a miRNA 

profile with each of these genomic classes. Among the 
309 miRNAs identified in 93 BCs, 9 miRNAs (miR-15b, 
miR-99a, miR-100, miR-103, miR-107, miR-126*, 
miR-130a, miR-136, and miR-146b) could discriminate 
luminal A from luminal B BC [202].  

Subsequently, Lowery et al. [203] identified a 
15-miRNA predictive signature corresponding to the 
expression of ER (miR-135b, miR-190, miR-217, 
miR-218, miR-299, and miR-342), PR (miR-377, 
miR-520f, miR-520g, and miR-527-518a,), and the HER2 
receptor (miR-30e, miR-181c, miR-320c, miR-376b, and 
miR-520d). The same approach was used by Volinia et 
al. [184], corresponding to the identification of a 
17-miRNA signature for the status of ER (miR-30d and 
miR-30e), PR (miR-19a, miR-29c, miR-30a-5p, and 
miR-106b), HER2+ (let-7f, let-7g, miR-10b, miR-107, 
miR-126, miR-154, and miR-159), and ER/PR (miR-25, 
miR-142-5p, miR-200a, and miR-205,).  

Finally, Foekens et al. [204] described a subset of 
miRNAs significantly associated with an ER+ luminal 
signature, identifying particularly 4 miRNAs associ-
ated with BC aggressiveness. The discrepancies 
among the different miRNA signature studies could 
result from the fact that miRNAs identified in each 
study were not examined in the others, besides other 
variables such as clinicopathological parameters of 
the tumor (tumor size, grade, etc.) or the use of dif-
ferent detection platforms (RT-PCR, next generation 
sequencing, etc.).  

Hence, in our recent publication, starting from 
public BC databases containing gene expression pro-

files, copy number information, and miRNA profiles, 
we have described new 4 miRNA-based signatures, 
identifying a small group of miRNAs typical of BC, 
which could distinguish BC with different grades [21]. 

Several other small signatures or single miRNAs 
have been proposed with a diagnostic or prognostic 
aim [66, 205, 206].  

All the described miRNAs are summarized in 
Table 4, section “Non-circulating miRNAs.” 

The observation that miRNAs could be secreted 
by a solid tumor into the surrounding environment 
and that they are stable in body fluids make miRNAs 
promising targets easily found in blood, plasma, and 
serum [207]. Some attempts have been made to iden-
tify single circulating miRNA or small circulating 
miRNA signatures with a diagnostic or prognostic 
purpose (Table 4, section “Circulating miRNAs”). 
Few examples of single circulating miRNAs proposed 
as diagnostic or prognostic tools have been suggested 
by Roth et al. [208], who found miR-155 in the serum 
of patients with BC and not in healthy controls, and 
by Heneghan et al. [209] who found elevated miR-195 
expression in the blood of only patients with BC. 
Other miRNAs have been detected in the serum of 
patients with BC, such as miR-29a and miR-21 [210] or 
the 4-miRNA signature of Hu et al. (miR-16, miR-25, 
miR-222, and miR-324-3p) [211] (Table 4).  

The leading strategy for BC treatment is the use 
of surgery in combination with or followed by chem-
otherapy. The most common chemotherapeutics are 
antracyclines [doxorubicin (DOXO), adriamycin 
(ADR), and epirubicin], selective ER modulators [ta-



 Theranostics 2015, Vol. 5, Issue 10 

 
http://www.thno.org 

1136 

moxifen (TAM)], taxanes (taxol or paclitaxel and 
docetaxel), 5-fluorouracil (5-FU), and cyclophospha-
mide. Despite advances in treatment achieved by the 
combination of some of these compounds, a large 
number of patients do not respond to chemotherapy. 
In this context, miRNAs that are able to predict the 
therapeutic response of a given patient could help 
clinicians in the choice of the correct therapeutic ap-
proach. Some signatures have been developed in 
search for miRNAs able to predict the therapeutic 
response of patients with BC [206, 212-214] (Table 4). 
TAM, one of the main molecules used in BC treat-
ment, is a drug that reduces or eliminates circulating 
estrogen or blocks the interaction of ER with genomic 
targets. In some studies, it was evaluated whether 
TAM could be a successful treatment for ER+ BC. The 
analyzed population had already developed metasta-
sis prior to the onset of treatment and the benefit of 
treatment was measured as an objective response ac-
cording to the REMARK criteria [215].  

Other miRNA signatures have been studied for 
predicting the response of BC to Herceptin (or 
trastuzumab, H) [216]. This molecule is a recombinant 
humanized monoclonal antibody against HER2 pro-
teins that blocks the HER2-mediated activation of 
intracellular kinases and effectors [66]. Although H 
treatment prolongs survival in adjuvant and meta-
static settings, a majority of women with HER2+ met-
astatic disease will develop resistance to the therapy 
within a year of treatment. Identification of a miRNA 
signature that predicts patient risk, disease outcome, 
and tolerability to H therapy would greatly improve 
the personalized management of HER2+ BC. A few 
studies have successfully identified a prognostic 
miRNA signature for the response of BC tissue sam-
ples to H therapy [217]. Combining the results of 
non-circulating miRNA signatures of BC cell lines 
treated with TAM or H, in order to identify miRNAs 
with predictive ability, only the let-7 family and 
miR-125a-5p/b-5p emerge as important predictors of 
therapeutic response [214, 217]. miR-125, whose ex-
pression correlates with the HER2 status [218], has 
been found to be significantly downregulated in pa-
tients with BC [183, 219]. Experimentally, the overex-
pression of miR-125 reduces ERBB2 and ERBB3, de-
creasing cell motility and the invasiveness of numer-
ous cancers, including BC [219]. The let-7 regulatory 
network suppresses metastasis by directly targeting 
the chromatin-remodeling protein HMGA2 and the 
transcription factor BACH1 [180, 220] (Figure 5B). 
Both targets promote the transcription of pro-invasive 
genes that suppress cell invasion and metastasis to the 
bone [180, 220].  

Almost all publications of circulating miRNA 
profile and HER2+ BC response to therapy have used 

BC cell lines to identify single miRNAs or groups of 
miRNAs whose expression is altered after prolonged 
H treatment [217, 221]. One miRNA possibly involved 
in the response to H therapy is miR-210, which is 
present both in tissue and in body fluids of patients 
with BC [222]. Circulating miR-210 has been associ-
ated with H sensitivity, tumor presence, and lymph 
node metastasis, suggesting a possible use of miR-210 
to monitor the response of HER2+ BC to H-based 
therapies [222]. Another miRNA, miR-155, has been 
used to monitor the effect of taxane treatment on BC. 
Sun et al. observed the decreased expression of 
miR-155 in serum after chemotherapy, which reached 
levels comparable to those of healthy subjects [223]. 

6c. miRNAs and hallmarks of BC  

We have depicted an overview of miRNAs that 
can already be considered as BC biomarkers. This is 
outlined in Table 4. We have tried to classify all cir-
culating and non-circulating miRNAs with diagnos-
tic, prognostic, and predictive capacity in relation to 
their function as described in the literature. In partic-
ular, we have related them to altered pathways, the 
hallmarks of BC [226], generating a daisy-shaped fig-
ure (Figure 6) in which each of the petal represents 
one of the hallmark function altered in BC. The major 
group of miRNAs (27 miRNAs) affects genes belong-
ing to the proliferation pathway, although some of 
these miRNAs (miR-155, miR-210, miR-21, and let7 
family) are also involved in directing the BC invasion 
and metastatic pathways, controlled by other 24 
miRNAs. Resting cell death and apoptosis are the 
targets of the third larger 14-miRNA group. Five 
miRNAs are responsible for the control of angiogene-
sis, whereas 2 miRNAs control genomic instability. 
miR-210 is the miRNA with a wider activity, being 
involved in energy metabolism, angiogenesis, and 
genomic instability beside the already described role 
in invasion and proliferation. Other miRNAs, such as 
miR-21, miR-27a/b, and miR-155, have been demon-
strated to have multiple functions. This feature may 
be partially explained by the fact that the action of 
certain miRNAs is dependent upon the cellular model 
or environmental context in which they have been 
studied. Only 5 miRNAs have not yet been charac-
terized in vitro for their function in BC development 
(miR-213, miR-299, miR-422a, miR-493, and miR-527). 

With respect to the clinical use of the depicted 
miRNAs, the majority of them (33/59) can be used as 
diagnostic tools; a small number of them (7/59) (in-
dicated in italics in Figure 6) also have prognostic 
ability (members of the let-7 family, miR-27a, miR-30, 
miR-148a, miR-155, miR-210, and miR-335). Some of 
them (19/59) have the capacity to predict the response 
of BC to therapy (indicated with * in Figure 6; let-7, 
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miR-7, miR-21, miR-23b, miR-26a/b, miR-27b, miR-30b/c, 
miR-125 a/b, miR-139-3p, miR-181b, miR-182, miR-187, 
miR-204, miR-210, miR-339-5p, miR-363, miR-365, 
miR-502-5p, and miR-520 family); 10/59 (marked in 
red in Figure 6) are circulating miRNAs, showing 
different functions in BC, and 2/59 (miR-155 and 
miR-210) are circulating miRNAs with both diagnos-
tic, prognostic, and predictive role in BC.  

7. miRNA for therapeutic use in cancer 

Use of miRNAs for the development of new 
therapeutic strategies is based on 2 approaches: 1) use 
of miRNAs as drug molecules, based on the synthesis 
and delivery of specific oligonucleotides, able to in-
crease or decrease miRNA levels in BC or 2) modula-
tion of miRNAs in combination with 
non-miRNA-based therapies to increase the efficacy 
of the conventional treatments. 

7a. Methods for miRNA modulation 

There are 2 main approaches for developing 
miRNA-based therapies: antagonist and mimic oli-
gonucleotides. MicroRNA antagonists or antagomiRs 
are generated to inhibit miRNAs that acquire a gain of 
function in human disease.  

The most common strategy to ablate the function 
of miRNAs is achieved by single-stranded oligonu-
cleotides with miRNA complementary sequences. In 

contrast, miRNA mimics are used to restore miRNAs 
that show a loss of function, as in the traditional gene 
therapy. This approach, also known as miRNA re-
placement therapy, has attracted much interest as it 
provides a new opportunity to therapeutically exploit 
tumor suppressors. The low molecular weight of 
miRNAs permits the delivery of therapeutic miRNAs 
as short double-stranded oligonucleotides [227]. To 
improve the efficiency of miRNA/anti-miRNA de-
livery in vivo, modified miRNA molecules, both 
miRNA mimics and antagomiRs, with longer 
half-lives and increased efficiency have been devel-
oped, such as anti-miRNA oligonucleotides (AMOs) 
[228], locked nucleic acid (LNA)-modified oligonu-
cleotides [229], cholesterol-conjugated antagomiRs 
[230], and the recently developed 2′-O-methoxyethyl- 
4′-thioRNA (MOE-SRNA) [231].  

In recent years, a method has been described to 
inhibit miRNA function using synthetic mRNAs con-
taining multiple binding sites for a specific miRNA, 
called miRNA sponges [232, 233]. In bladder cancer 
cell lines it has been demonstrated that the forced 
expression of a miRNA sponge designed to inhibit 
miR-21 leads to a reduction in tumor aerobic glycoly-
sis, i.e., the ability of the cells to metabolize glucose 
even under aerobic conditions [234]. miRNA sponges 
have been validated even in an SUM149-epithelial BC 
cell xenografted mouse model, where inhibition of 

Myc-driven miRNA-9 
using a synthetic 
mRNA containing sev-
eral miR-9 binding sites 
reduced the develop-
ment of lung metastases 
[198]. Inhibition of the 
BC cell proliferation 
effect has been ob-
served even in another 
xenografted mouse 
model implanted with 
the MDA-MB-231 BC 
cell line, where a 
miR-150 sponge-based 
inhibition led to a re-
duction in tumor mass 
proliferation via in-
crease in the P2X7 re-
ceptor [235]. 

 
 
 
 
 
 

 

 
Figure 6: miRNA biomarkers and BC hallmarks. miRNAs have a role as diagnostic miRNA, prognostic miRNAs (italics), 
miRNAs predictive of the BC response to therapy (*), or miRNAs with multiple functions (diagnosis, prognosis, prediction of therapy 
outcome; underlined). Circulating (red) and non-circulating (black) miRNAs of Table 4 are included. 

 
 



 Theranostics 2015, Vol. 5, Issue 10 

 
http://www.thno.org 

1138 

7b. miRNA-targeted therapies 

Use of miRNAs alone in anti-cancer therapy to 
inhibit BC proliferation and development is still a 
challenge, although some promising results have al-
ready been obtained in both ex vivo and in vivo ex-
periments. For instance, miR-145 has been chosen as a 
target therapy in BC cells because it is usually found 
to be downregulated in BC [236]. Use of mimic or 
inhibitor miRNA oligonucleotides has been exploited 
in in vivo experiments. For instance, miR-21 has been 
found to be of particular interest in BC because 
chemically modified anti-miRNA oligonucleotides 
have already been developed for the in vivo treatment 
of xenografted BC mouse models [110]. 

To avoid rapid degradation and excretion of 
miRNAs, study of new delivery systems, which could 
enhance the stability and the delivery to target tissues, 
is necessary.  

Recently, some studies focused on the potential 
use of nanomaterials to facilitate the delivery of bio-
molecules inside tumors. In particular, gold nanopar-
ticles, with their high affinity for biomolecules, re-
duced cytotoxicity, easy size control, and 
well-developed surface chemistry, have been modi-
fied to increase their complementarity for nucleic ac-
ids [237], allowing the effective delivery of silencing 
RNAs inside cells [238, 239]. The same approach has 
been used for the delivery of miR-145 into BC cells 
[236]. Therefore, gold nanoparticles have been suc-
cessfully used for the delivery of miR-145 oligonucle-
otides inside BC cell lines [240]. 

The question regarding the effect of the delivery 
on non-target organs and systemic toxicity of the 
compound remains unanswered. An obstacle for the 
use of miRNAs in therapy is the fact that miRNA 
modulation can affect hundreds of transcripts in dif-
ferent tissues, being potentially capable of shutting 
down entire pathways. Thus, till date, few companies 
have used miRNAs to develop a new class of cancer 
therapeutics. MRX34, a miR-34a mimic compound, is 
probably one of the first miRNA replacement agents 
to undergo clinical trials. At the time of writing this 
review, Mirna Therapeutics is recruiting participants 
to a phase I study of MRX34 (NCT01829971) 
(http://clinicaltrials.gov/ct2/show/NCT01829971). 
Similarly, Regulus Therapeutics is developing anta-
go-miR-221 for hepatocellular carcinoma treatment 
and antagomiR-10b for glioblastoma treatment 
(http://www.regulusrx.com/therapeutic-areas/#On
cology). All these companies suggest that antago-miR 
oligonucleotides can be easily administered through 
local or parenteral injection routes with sufficient up-
take of the agent to achieve sustained target inhibition 
in tissues and organs without the need for a formula-
tion. Nevertheless, miRNA features, such as their sta-

bility and widespread activity on several targets, lead 
us to think that before using miRNA in therapies, 
much work is required to obtain more detailed and 
comprehensive knowledge about miRNA therapeutic 
potential, such as miRNA tissue distribution and 
systemic toxicity. 

7c. miRNAs and chemoresistance 

miRNAs can potentially be used to increase the 
response of BC to a therapeutic intervention. As an 
example, BC has been shown to be chemoresistant 
when some miRNAs are dysregulated (e.g., miR-125b, 
[239]). miRNA mimic oligonucleotides, which in-
crease the levels of a given miRNA in a BC in which 
this miRNA is lost, can be used in combination with 
conventional therapy to obtain an increased benefit 
for patient outcomes. An example of this approach 
has been used in the study by Yang et al. [241], where 
the upregulation of miR-195, obtained by mimic oli-
gonucleotides, supplied to ADR-resistant MCF7 BC 
cell lines increased the sensitivity of the cells to the 
treatment, leading to apoptosis through downregula-
tion of Raf-1 and Bcl-2. In addition, the combined 
treatment of a patient with BC using antago-miR oli-
gonucleotides to shut down the increased miRNA 
expression levels in a specific patient could poten-
tially increase the effect of conventional therapy. This 
approach has been used, for example, to demonstrate 
in vitro that miR-21 antisense oligonucleotides could 
be used in combination with H to kill resistant BC 
cells in xenografted mouse models [242]. 

For a more detail review on the role of miRNAs 
in chemoresistance modulation, see [243]. 

7d. miRNAs, CSCs, and chemoresistance 

The ability of miRNAs to regulate the CSC phe-
notype and EMT is critical in the management of 
therapy resistance. In fact, CSCs in tumors are resting 
populations. The existing common chemoradiother-
apy can target only rapidly proliferating cells. Thus, 
CSCs will escape from being killed and will thus be 
able to become resistant, to metastasize, or to generate 
relapses. miRNA modulation is therefore fundamen-
tal to increase the response of the tumor to the thera-
py. It has been demonstrated, for example, that a 
leukemia cell line resistant to daunorubicin shows 
increased levels of miR-21, the miRNA responsible of 
the control of EMT, whereas the suppression of this 
miRNA in the same cell line enhances daunorubicin 
cytotoxicity [244]. Furthermore, in BC, therapy re-
sistance is clearly influenced by CSC miRNAs. For 
example, miR-34a expression, necessary for the 
maintenance of CSC, is downregulated in BC 
ADR-resistant cell lines, and its upregulation leads to 
increased sensitivity to therapy, both in vitro and in 
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vivo [245]. Moreover, a close cross-talk among 
miR-200c, miR-203, and a stem cell transcription factor, 
Bmi1, has been described in BC; in particular, Yin et 
al. [246] demonstrated that Bmi1, often upregulated in 
BC and involved in stem cell maintenance, is regu-
lated by miR-200c and miR-203. Bmi1 expression, and 
the parallel miR-200c and miR-203 downregulation are 
accompanied by the reversion of resistance to chem-
otherapy treatment in different BC cell lines [246].  

In all these examples, it is clear that modulation 
of miRNAs has a critical impact on CSC maintenance, 
EMT, and, in general, on the response of the disease to 
therapy. Because CSCs are involved in the relapse of 
BC, modulation of miRNA in combination with 
therapy could decrease the possibility of next BC re-
cidivism.  

8. Conclusions and future perspective 

 In this review, we have focused on the recent 
advances related to miRNAs involved in BC and on 
their capability to respond to the actual clinical needs 
for the diagnosis, prognosis, and treatment of patients 
with BC.  

Several lines of evidence have proven that in 
cancer, including BC, alterations in the levels of 
miRNAs are not only due to alterations in the miRNA 
biogenesis mechanisms but also depend on several 
upstream steps, such as epigenetic control, transcrip-
tion factors, or mutated protein controls. As a conse-
quence, prolonged aberrant expression of miRNAs, 
which could act either as tumor suppressors or as 
oncogenes, may contribute to the onset, progression, 
and diffusion of BC.  

In the recent years, considerable progress has 
been made to understand the mechanisms responsible 
for aberrant miRNA expression in BC and several 
miRNAs or miRNA families have been found as key 
regulators of BC hallmarks (Figure 6).  

Because early diagnosis of BC is essential for 
better prognosis of patients and because the currently 
available diagnostic methods show some limitations, 
miRNAs are emerging as novel diagnostic and prog-
nostic biomarkers for BC. In particular, several 
miRNAs have shown BC diagnostic potential (i.e., 
miR-9, miR-10b, and miR-17-5p) and other miRNAs 
have shown a role in BC prognosis (i.e., miR-148a and 
miR-335). BC miRNAs have also been proposed as 
predictors of therapeutic outcomes, because their ex-
pression levels enable the prediction of patients’ re-
sponse to specific treatment (i.e., miR-30c, miR-187, 
and miR-339-5p). A significant number of these 
miRNAs, found as BC biomarkers, have an important 
role in the control of BC hallmark functions such as 
invasion, metastasis, proliferation, resting death, 
apoptosis, and genome instability.  

A few miRNAs have multiple roles in diagnosis, 
prognosis, and prediction of therapeutic response in 
BC. Among these miRNAs, some are circulating (e.g., 
miR-155 and miR-210), and owing to their stability in 
body fluids, could really become new, easily accessi-
ble, affordable, non-invasive, and promising testing 
tools for the personalized management of patients 
with BC. Nevertheless, recent evidence suggest that 
circulating, multiple miRNAs-based profiles have 
better diagnostic and prognostic performance as well 
as better sensitivity than individual miRNA assays 
[225, 247] because the combination of several miR-
NAs, controlling multiple target genes, can better 
clarify how each of them contributes to tumor devel-
opment and better represent the global biological ef-
fect of miRNA regulation on the multistep process 
leading to BC.  

However, the full potential of miRNAs should 
not be exhausted in their use as biomarkers of BC. 
Future research should be directed to the develop-
ment and delivery of miRNA-based drugs in BC; in 
this respect, some miRNAs have already shown 
promising results (e.g., miR-9, miR-21, miR34a, 
miR145, and miR150). Thus, particular attention 
should be given to the optimization of miRNA-based 
drug stability, improvement of miRNA delivery, and 
control of the off-target effects of miRNA therapeu-
tics. Moreover, to increase the efficacy of currently 
used non-miRNA treatments for BC (e.g., chemo-
therapy), great efforts should be directed to the use of 
such non-miRNA treatments in combination with 
miRNAs showing a fundamental role in the modula-
tion of the response to treatment (e.g., miR-21, miR34a, 
miR195, miR200c, and miR203 in combination with 
chemotherapy). 
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