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Abstract

Brain metastasis (BM) predominantly occurs in triple-negative (TN) and epidermal growth factor 2 (HER2)-positive

breast cancer (BC) patients, and currently, there is an unmet need for the treatment of these patients. BM is a

complex process that is regulated by the formation of a metastatic niche. A better understanding of the brain

metastatic processes and the crosstalk between cancer cells and brain microenvironment is essential for designing

a novel therapeutic approach. In this context, the aberrant expression of miRNA has been shown to be associated

with BM. These non-coding RNAs/miRNAs regulate metastasis through modulating the formation of a metastatic

niche and metabolic reprogramming via regulation of their target genes. However, the role of miRNA in breast

cancer brain metastasis (BCBM) is poorly explored. Thus, identification and understanding of miRNAs in the

pathobiology of BCBM may identify a novel candidate miRNA for the early diagnosis and prevention of this

devastating process. In this review, we focus on understanding the role of candidate miRNAs in the regulation of

BC brain metastatic processes as well as designing novel miRNA-based therapeutic strategies for BCBM.
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Introduction
Distant organ metastasis in breast cancer (BC) patients

accounts for 90% of deaths [1]. In the central nervous

system (CNS), the incidence of brain metastasis (BM) is

ten times higher than primary brain lesions [2]. BC is

the second most common cancer associated with BM

with an incidence of BM, approximately 15-30% of total

breast cancer cases [3]. Among different BC subtypes,

triple-negative (TN) and HER2-positive BCs are more

prone to BM [4]. Around 25% of BC cases show HER2

amplification, and out of these, 30-55% of patients develop

BM with a median survival of only 4-14 months [5, 6].

Furthermore, TNBC patients with ER-/PR-/ HER2- status

are at high risk of BM recurrence [7].

Despite improvements in BC therapy, the treatment of

patients with BM is still disappointingly challenging.

BMs are commonly associated with poor prognosis and

affect both cognitive and sensory functions of patients

and limit the quality of life (QOL) [8]. Several markers,

such as age, histology, ER/PR/HER2 status, and the

number of non-CNS metastatic sites, have been used to

predict BM from non-BM BC patients [9]. Owing to a

high level of variability, these predictive markers have

limitations.

In order to make progress in this field, there is an

urgent need to improve the understanding of the patho-

biology of BM, perhaps via first modeling the intricate

process of metastasis in the brain microenvironment.

The development of a BM is a multistep process, and

the metastatic cellular niche is highly dynamic and

heterogeneous [10, 11]. Moreover, the brain metastatic

cell population harbors a unique genetic and epigenetic

profile that distinguishes those cells from similar metas-

tases in other organs [12]. Previous reports suggested an

early onset of BM (22 months) after primary diagnosis

with TNBC patients as compared to HER2+(30 months)

and ER+/HER2-(63.5 months) BC patients [13].
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Interestingly, the BBB protects the normal brain, looses its

permeability partially or hetrogenously, and transforms

into a blood-tumor barrier (BTB) which enhances the

accessibily of therapeutic drugs to some extent, but not

completly [14]. However the therapeutic role of BTB per-

meability is not well defined. Smith et al., demonstrated

that BTB limits the uptake of chemotherapeutic drugs for

BC, such as doxorubicin and paclitaxel into the brain rela-

tive to other organs [14, 15], suggesting limitations of BTB

for the complete response of these drugs.

Growing evidence has demonstrated the role of miRNA

in different steps of the metastatic process, including in

BCBM, such as the epithelial to mesenchymal transition

(EMT) [16–19], local invasion [20–23], intravasation [24–

30], survival in circulation [31–33], extravasation [34], the

integrity of the BBB [35–40], niche formation [41, 42], and

colonization in the brain parenchyma [43–45]. MiRNAs

are 20-22 short nucleotide sequences that often negatively

regulate gene expression through the imperfect binding of

their seed sequences to the 3’UTR region of target genes

[46]. They can cleave or degrade target mRNA when bind-

ing with complete complementarity, and thereby inhibit

translation of the target [47]. Recent investigations have

revealed unique miR expression profiles in different can-

cer types at different stages, with compelling evidence sup-

portive of miR-based staging and typing [48, 49]. In

addition, miRNAs can regulate multiple genes and hence

multiple processes simultaneously [50]. Given their ability

to modulate the expression of multiple genes at a time,

miRs are viewed as attractive therapeutic targets for can-

cer metastasis, a process mediated by multiple deregulated

genes. This review discusses the functional role of miR-

NAs at different steps of BCBM in hopes of identifying

novel miRNA-based therapeutic candidates for the treat-

ment of this devastating process.

Molecular events leading to BM: the role of miRNA

BM is a complex, multi-step, selective process. BM initiates

by the dissemination of tumor cells from the primary site

to the circulation and known as circulating tumor cells

(CTCs). Prior to which these cells undergo EMT transition

to invade the extracellular matrix (ECM) at the primary

site. Then, to survive anoikis and immunosurveillance, pri-

mary tumor cells and CTCs secrete RNA and miRNA en-

capsulated in exosomes, which further facilitate the survival

of metastatic cancer cells at the metastatic site. These miR-

NAs also transform brain stroma and breach the BBB for

BM. Given the coordinated multi-step process that culmi-

nates in BM, miRs are perfectly poised to play a cardinal

role in BM establishment, given their inherent ability to

regulate multiple genes at a given time (Table 1). We have

discussed below the role of miRNA at different stages of

BM, starting from the primary site of dissemination to

brain colonization.

miRNA-mediated activation of EMT

Although the EMT is both highly conserved and vital for

normal developmental processes [78], it serves an essen-

tial role in metastasizing cancer cells [79]. In cancer

pathogenesis, EMT promotes the dissemination of the

primary tumor [80]. EMT transcription factors (TFs),

such as TWIST1, SNAIL1, and SLUG, are contributory

to BC metastatic potential and associated with poor

prognosis [81]. ADAM12, a long splice variant with a

transmembrane domain and member of the disintegrin

and metalloproteinase family [82], can be induced by

Twist1, thereby promoting tumor invasion via regulation

of invadopodia formation and focal adhesions [83]. MiR-

34a suppresses BC metastasis by downregulating EMT-

TFs (SLUG, TWIST1, and ZEB1/2) and NOTCH1

signaling [81]. Further, ADAM12 is a direct target of the

miR-29 and miR-200 families, both involved in BC pro-

gression [54]. Aside from regulating EMT-TFs, miRNAs

can also regulate cytoskeletal rearrangement in cancer

cells by targeting the expression of key molecules and

cell signaling pathways involved in cell adhesion [84].

MiR-8084, miR-708-3p, miR-96-182-183 cluster, miR-

484, miR-210, and miR-142-3p modulate the invasive

potential of BC cells by modulating EMT [16–19]. Re-

cently, it has been shown that miR-124, miR-199a/214,

miR-3178, miR-30a, miR-508-3p and miR-212-5p can

modulate the level of EMT markers and TFs regulating

the expression of E-cadherin in TNBC, a subtype that

commonly metastasizes to the brain [51–53, 85].

miRNA-mediated intravasation

Once breast tumor cells change their phenotype through

EMT-driven mechanisms, metastasizing tumor cells start

the process of metastasis by intravasation into nearby

capillaries to facilitate neovascularization for survival

[86]. To metastasize at distal sites, cancer cells begin

contacting endothelial cells via adhesion molecules and

protein receptors [86]. They then follow an amoeboid

motility pattern and squeeze themselves between endo-

thelial cells [87]. Some secretory miRNA can regulate

the integrity of the endothelium, and thereby the process

of intravasation. For instance, miR-105 that is secreted

by BC cells disrupts the endothelium by targeting

Zonula occludens protein-1(ZO-1), a tight junction

protein1 (TJP-1) [29], thus promoting BM. Deryugina

et al. discovered an alternative intravasation model

suggestive of intravasation within the interior core of a

primary tumor in parallel to stromal invasion [88].

Angiogenic factors and growth factors either released

by tumor cells or stromal cells individually or during

their mutual crosstalk contribute to intravasation [89].

These factors allow tumor cells to invade through the

basement membrane, adhere to the endothelial mem-

brane, and pass through endothelial gap junctions to
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Table 1 miRNAs mediated regulation of BCBM

miRNA Targets Regulation References

EMT

miR-8084 ING2, p53-BAX upregulated [16]

miR-484 PAX-5 upregulated [19]

miR-708-3p ZEB1, CDH2 and vimentin downregulated [17]

miR-210 E-cadherin (ORF), PAX-5 upregulated [19]

miR-142-3p Bach-1, CXCR4, MMP9, and VEGFR downregulated [18]

miR-199a/214 Slug downregulated [51]

miR-3178 Notch1 downregulated [52]

miR-212-5p Prrx2 downregulated [53]

miR-29,miR-30
miR-200 family

ADAM12-L downregulated [54]

Intravasation

miR-126 VEGF/PI3K/AKT axis, MAPK downregulated [30]

miR-520/373 ANGPTL4, PTHrP, PAI-1 downregulated [25]

miR-204 ANGPT1 and TGFβR2 downregulated [24]

miR-200 family IL-8 and CXCL1 downregulated [27]

miR-105 ZO-1 downregulated [29]

Intravascular Microenvironment

miR-141 Protection in circulation upregulated [31]

miR-183 DAP12/NK cells downregulated [32]

Extravasation in Brain Microenvironment

miR-7, let-7c, miR-21 FasL, SERPIN1 upregulated [55]

miR-200c FAP-1 downregulated [56]

miR-206 Cx43 downregulated [57]

miR-19a, miR-32,miR-124a, miR-130b, miR-148a, and miR-583 PCTH7 downregulated [58]

miR-125a/b-5p ET-1 downregulated [59]

miR-1266, miR-185 and miR-30c BCL2L1 downregulated [60]

miR-151-3p TWIST1 downregulated [61]

miR-17 ICAM-1and E-Selectin downregulated [62]

miR-126 and miR-1185 VCAM1 downregulated [63]

miR-483-5p ALCAM downregulated [64]

miR-21-3p L1CAM upregulated [34]

miR-212 HBEGF downregulated [65]

miR-655 COX2 downregulated [66]

miR-200b, 200c ST6GALNAC5 downregulated [67, 68]

BBB Regulation

miR-181c PDPK1 upregulated [69]

miR-143 PUMA upregulated [35]

miR-125a-5p ICAM-1 downregulated [38]

miR-1258 HPSE downregulated [40]

miR-210 Occludin, β-catenin upregulated [37]

Cross Talk and Niche Formation

miR-26a PTEN
ATM

upregulated [70, 71]

miR-19a PTEN upregulated [42]
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disseminate into the circulation [86]. Although no miRNA

has been reported to influence intravasation directly, they

can regulate angiogenic signals by targeting angiogenic

factors and protein kinases. A recent study discovered a

novel role of TGF-β by tumor-associated fibroblasts

(TAFs) in the organization of tumor blood capillaries.

TAFs enhanced vessel coverage by pericytes, which are

vascular cells that support capillaries [90]. In this regard,

mRNA profiling of miR-520/373 overexpressing meta-

static MDA-MB-231 cells elicited a strong downregulation

of TGF-β signaling. It has also been reported that miR-

520/373 are instrumental in reducing metastasis through

downregulating TGF-β dependent potent angiogenic fac-

tors such as plasminogen activator inhibitor-1 (PAI-1),

parathyroid hormone-related protein (PTHrP), and

angiopoietin-like 4 (ANGPTL4) [25]. In a separate study,

miR-204 was shown to suppress vascularization and

angiogenesis in vitro and in vivo through targeting pro-

angiogenic ANGPT1 and TGFβR2 in BC [24]. The miR-

200 family could also play a role in regulating angiogenesis

by directly targeting the pro-angiogenic cytokines IL-8

and CXCL1 in endothelial cells [27].

miRNA-mediated survival in the intravascular

microenvironment

When a primary tumor grows, circulating tumor cells

(CTCs) are shed and enter the circulation. Most CTCs are

phagocytosed or undergo apoptosis, leaving behind only a

few surviving CTCs to arrive at the targeted organ. Meta-

static tumors, as well as CTCs from the primary tumor,

may exhibit characteristics different from those of their

cell of origin. In order to survive, CTCs must overcome

anoikis and immune surveillance once they detach from

the primary tumor. One of the tools exploited by CTCs

after entering the circulation is platelet activation; by indu-

cing platelet aggregation, tumor cells are protected from

immune surveillance, undergo cell arrest within the vascu-

lature, and experience enhanced survival [91, 92]. The

CSCs phenotype of BC cells is associated with brain trop-

ism in TNBC patients [93–95]. Debeb et al. have shown

that overexpression of miR-141 in the MDA-MB-231 cell

line enhances its brain tropism in a tail vein injection

mouse model. Further, knockdown of miR-141 inhibited

the metastatic ability of inflammatory BC to the brain,

suggesting that miR-141 protects cells in the circulation

and helps with colonization in the brain [31].

Platelets also contribute to immune evasion by CTCs

from scavenging natural killer (NK) cells by enshrouding

CTCs and releasing TGFβ and platelet-derived growth

factor (PDGF) that directly inhibit the activity of NK cells

[96]. Platelet-derived microparticles (PMPs) are major re-

positories for miRs, and platelets can transfer miRNA con-

tents and modulate gene expression in CTCs [33]. PMP

encapsulated miR-183 can suppress NK cell activation,

possibly via the silencing of DAP12 a key accessory pro-

tein critical for surface NK receptor stabilization and

downstream signal transduction [32]. Platelets also con-

tribute to attenuate the early formulation of a metastatic

niche [97]. Thus, platelet-derived miRNA also helps in the

survival of CTCs after intravasation. The role of miRNA

released by CTCs and the intravascular microenvironment

in establishing a brain pre-metastatic niche formation

warrants further investigation.

Extravasation

Once CTCs are able to survive in circulation, BC cells

arrest in blood capillaries and start the process of ex-

travasation, a process coordinated by many oncogenes

Table 1 miRNAs mediated regulation of BCBM (Continued)

miRNA Targets Regulation References

miR-345 KISS1 upregulated [72]

miR-124, miR-155, miR-689 Associated with M1 phenotype of microglia upregulated [73]

miR-711 and miR-145 Associated with M2 phenotype of microglia upregulated [73]

miR-503 L1CAM
trigger M1–M2
polarization of microglia

upregulated [41]

Metabolic Reprogramming

miR-122 PKM2 , GLUT-1 upregulated [74]

miR-155 PIK3R1-PDK/AKT-FOXO3a-cMYC axis downregulated [75]

miR-7 RelA upregulated [76]

Colonization

miR-200 family (miR-200a,200b, 200c, miR-141, and miR-429) ZEB1 and ZEB2 upregulated [43, 44]

miR-147
ZEB1

upregulated

miR-126 IGFBP2, PITPNC1 and MERTK downregulated [77]
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[98]. Many pairs of ligand-receptor molecules contribute

to the process of extravasation, including selectins,

integrins, cadherins, CD44, and immunoglobulin super-

family receptors [99, 100].

Extravasation is a rate-limiting step for BCBM, as can-

cer cells must overcome the initial defenses imposed by

astrocytes and other protective factors in the brain

microenvironment [101]. Astrocytes that are mobilized

to the metastatic brain lesion at a very early stage of

colonization induce apoptosis through the FasL-

mediated pathway [102]. In recent studies, several miR-

NAs have been described to target various members of

the Fas-mediated apoptotic pathway. For example, miR-

7, let-7c, and miR-21 regulate the expression of FasL

[55], while miR-200c regulates the induction of apop-

tosis through CD95 by targeting FAP-1 [56]. Cancer

cells release protease inhibitors known as serpins to

combat the apoptotic effects exerted by astrocytes. MiR-

21 has been shown to inhibit Serpin1, a gene with novel

tumor-suppressive effects in gastric cancer [103]. How-

ever, its role in BM is unknown. Eventually, astrocytes

support CTCs survival in brain parenchyma via estab-

lishing connexins (Cx) gap junctions and promote BM

[104]. The expression of miR-206 is inversely correlated

with Cx43 levels and is associated with decreased

proliferation and migration [57]. PCDH7 in brain tropic

BCs contributes to establishing Cx43 gap junctions with

astrocytes and forms Ca++ channels [104]. A high

PCDH7 level in the brain tropic CSC population has

been reported and contributes to CSC extravasation, adap-

tation, and colonization in the new niche formation

through the PCDH7-PLCb-Ca2þ-CaMKII/S100A4 pathway

involving PCDH7-mediated tumor–astrocyte interaction

[95]. In addition, miR-19a, miR-32, miR-124a, miR-130b,

miR-148a, and miR-583 have been reported as potential

regulators of PCDH7 [58]. However, the role of these miR-

NAs in PCDH7 regulated BM has yet to be studied [95].

The production of IL6 and IL-8 by cancer cells re-

quires the establishment of gap junctions with astro-

cytes [105]. These cytokines influence both cell types

by inducing the expression of endothelin ligand (ET-

1) on astrocytes and endothelin receptors (ETAR and

ETBR) on cancer cells [101, 105]. ET-1 is regulated

through miR-125a/b-5p in endothelial cells [59]. In

addition, the expression of a few genes was found to

be dependent on such interaction [106]. Some of

them were validated in BM, such as TWIST1,

GSTA5, and BCL2L1 [106]. Interestingly, BCL2L1 is

regulated by miR-1266, miR-185, and miR-30c [60] in

prostate cancer. TWIST1 is regulated by miR-151-3p

in BC [61]. These miRNAs are involved in negative

regulation of the apoptotic pathway and upregulation

of invasion or migration respectively, but the role in

BM is not clear yet.

Emerging evidence shows that cell adhesion molecules

(CAMs) play an essential role in extravasation through a

cell-cell adhesion receptor. In an in vivo model of BM, a

subset of adhesion molecules, including E-selectin,

VCAM-1, ALCAM, ICAM-1, VLA-4, and a4 were found

to be upregulated in the cerebral endothelium when

injected intracardially. Conversely, the expression of their

ligands (PSGL-1, VLA-4, ALCAM, LFA-1, and VCAM-1)

was upregulated in brain tropic cancer cells [107], reveal-

ing a crucial role for these CAMs during the initial steps

of extravasation. MiRNAs post-transcriptionally regulate

CAMs. For instance, TGF-β induced ICAM-1, and E-

selectin expression is regulated by miR-17 [62]. MiR-126

and miR-1185 regulate endothelial expression of VCAM1

[63, 108]. ALCAM is reported as a target gene of miR-

483-5p [64].

Moreover, cancer cells can invade through the endo-

thelium by projecting invadopodia [109]. Invadopodia

are chemosensing protrusions that guide cancer cell

extravasation to promote brain tropism in metastasis

[110]. PAK1 (P21 (RAC1) Activated Kinase 1) is respon-

sible for guiding cancer cell extravasation in BCBM

[110]. PAK1 reduces the expression of miR-132 through

the PAK1/ATF2/miR-132 axis. L1CAM, an adhesion

molecule, mediates the spread of metastatic cells on the

vasculature and additionally mediates interactions

between cancer cells and endothelial cells in BM. The

depletion of L1CAM in cancer cells fails to co-opt brain

capillaries and hence is unsuccessful in promoting meta-

static outgrowth. Interestingly, miR-21-3p was reported

to be a positive regulator of L1CAM expression [34].

These studies strongly suggest that miRNAs can modu-

late the expression of various CAMs in cancer, as well as

endothelial cells, and thereby play a decisive role in the

establishment of metastasis at the distant metastatic site

via extravasation.

Reactive astrocytes have been shown to contribute to

the formation of a protumorigenic niche via a number of

mechanisms involving secreted molecules. In the BCBM

mouse model, Massague’s group has identified 17 genes

that are specifically correlated with BC-metastasis associ-

ated genes. Among these 17 genes, four genes, COX2,

EGFR ligand HBEGF, ANGPTL4, and the a2,6-sialyl-

transferase ST6GALNAC5 were identified as signature

molecules of BC metastasis to the brain parenchyma

[67]. COX2 is actively involved in BM by regulating the

expression of MMP-1 in BC patients, and high expres-

sion is reported in BC patients [111]. Interestingly,

COX2 expression is associated with BBB permeability .

COX2 induces a stem-like cell phenotype by upregulat-

ing miR-655 and miR-526b in BC, thereby rendering

cells more metastatic [66, 112]. MiR-212 directly targets

HBEGF and suppresses cell growth, migration, and inva-

sion [65]. ST6GALNAC5, a direct target of miR-200c, is
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a specific mediator of BCBM [67]. Conversely, the up-

regulation of ST6GALNAC5 in brain-tropic BC cells

showed a decrease in adhesive properties of the endothe-

lial component of a well-characterized human BBB

in vitro model [113]. ST6GALNAC5 can also regulate

the EMT process in BM and is a target of miR-200b

[68]. Several target genes actively participate in extrava-

sation within the brain parenchyma, although their regu-

lation in context of miRNA is not studied in BCBM.

Blood-brain barrier

The blood-brain barrier (BBB) is a semipermeable bar-

rier comprised of endothelial cells, astrocytes, and peri-

cytes, forming the neurovascular unit [114]. It remains

important to study the role of miRNAs in enhancing the

permeability of the BBB. Endothelial cells are intercon-

nected with each other via tight junctions, a functionally

important component of the BBB, controlling the free

flow of substances into the brain parenchyma. Most of

the solutes that are allowed to permeate the BBB, such

as glucose, macronutrients, and electrolytes, enter via

transporters present on the surface of endothelial cells.

Endothelial tight junctions facilitate the transmigration

of tumor cells through the BBB [115]. CD44, VEGF, and

CXCR4 contribute to the transendothelial migration

process by disturbing endothelial integrity [116]. Astro-

cytes are indispensable for the development and main-

tenance of the BBB [106]. The intracellular junctions of

brain endothelial cells form with tight junction proteins,

such as occludin, claudins, and ZO-1 proteins [117]. Dis-

ruption of intercellular junctions causes the breakdown

of the BBB and transform it into BTB [118, 119].

The priming of the pre-metastatic niche, or organo-

tropism, starts before cancer cells reach the metastatic

site from the primary tumors via paracrine routes. In

this context, miRNAs containing exosomes or extracel-

lular vehicles (EVs) have the ability to modify the brain

microenvironment, which leads to enhanced BM despite

the barrier function of the BBB [42, 120]. Recently,

miRNAs emerged as regulators of tight junction adhe-

sion proteins and their upstream and downstream sig-

naling pathways, playing an important role in

maintaining the integrity of the BBB. For instance, miR-

181c promotes the destabilization of the BBB through

the delocalization of actin fibers via the downregulation

of 3-phosphoinositide-dependent protein kinase-1

(PDPK1). PDPK1 degradation by miR-181c leads to the

downregulation of phosphorylated cofilin and a resultant

activated cofilin-induced modulation of actin dynamics

[69]. MiR-143 enhances the permeability of endothelial

cells through targeting p53 upregulated modulator of

apoptosis (PUMA), and consequently shows a reduction

of tight junction proteins (TJPs) [35]. Additionally, miR-

125a-5p has been shown to be an important player in

the maintenance of the integrity of the BBB. This

miRNA can directly regulate barrier function in an

in vitro BBB model and can reduce monocyte migration

through a BBB cell layer in vitro [38] (Fig. 1).

In BC, miR-1258 expression was directly associated

with heparanase expression. Heparanase is a prometa-

static enzyme present in BCBM cells that degrades hepa-

ran sulfate chains to affect the cytoskeleton and render

cells more capable of crossing the BBB [39, 40]. Re-

searchers demonstrated miR-1258 downregulates the

phosphorylation of Akt and EGFR signaling along with

the repression of MMP-9 and COX-2 protein expression

by direct targeting of HPSE [39, 40]. Watabe K et al. ob-

served high expression of miR-509 in primary tumors

whereas level was significantly downregulated in BM le-

sions. Consequently, the reduction of miR-509 in BM le-

sions induces the expression of two essential genes for

BM, RhoC and TNF-α, followed by upregulation of the

MMP9 level, which altogether augments the permeabil-

ity of BBB and penetration of tumor cells in the brain

[121]. MiR-210 suppresses the junction proteins and dis-

rupts the BBB in hypoxic-ischemic brain injury [37]. In

addition, high expression of miR-210 is associated with

poor survival in BC patients [36]. Exosomal profiling

done by Dario et al. showed significant upregulation of

miR-210 (2 to 6-fold increase) in three brain metastatic

BC cell-derived exosomes [122]. Therefore, it is plausible

that miR-210-containing exosomes released by the brain

may help BC cells breach the BBB.

Crosstalk of cancer cells with brain microenvironment

Once infiltrated into the brain tissue, cancer cells en-

counter a number of host cell types, including pericytes,

reactive glia, neural progenitor cells, neurons, and oligo-

dendrocytes [123]. Astrocytes and endothelial cells are

the first to encounter incoming metastatic cells. Once

normal astrocytes encounter cancer cells, they become

reactive astrocytes (RAs) due to a perceived disruption

to brain homeostasis. At the initial stages of BCBM, RAs

act as a primary host defense system by proficiently lim-

iting the survival of arriving metastatic cells [102],

whereas, at later stages, RAs have been actively involved

in promoting metastatic outgrowth via secretion of

miRNA containing exosomes [42]. Exosomes can suc-

cessfully form the pre-metastatic niche in the brain by

modulating tumor-stroma communications [74]. MiR-

NAs with gene regulatory functions have emerged as key

regulators of the tumor microenvironment [124]. For in-

stance, miR-26a is present in astrocytes and released

through exosomes or by endothelial cells. MiR-26 can

regulate the growth of brain tumors and radiosensitize

tumor cells by targeting PTEN and ATM, respectively

[70, 71]. Thus, miR-26a may play a key role in regulating

the brain tumor microenvironment.
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Zhang et al. (2015) discovered a complicated recipro-

cal mechanism between brain metastatic BC cells and

stromal cells (astrocytes and myeloid cells). In BCBM

patients, PTEN loss was observed when compared to

primary breast tumors. In addition, miR-19a in the miR-

17-92 cluster was identified as a candidate responsible

for mediating PTEN suppression from astrocytes to

tumor cells via exosomes. Reactive astrocytes secrete in-

terleukins and chemokines, such as CCL2 and CXCL12/

SDF1, respectively, playing a mitogenic role. Moreover,

human BCBM has higher levels of CCL2 than primary

tumors. Interestingly, PTEN has been shown to be in-

strumental in the regulation of BCBM, as a reduced ex-

pression of PTEN leads to enhanced CCL2-mediated

recruitment of IBA1+ microglial cells, and thereby estab-

lishment of the BM [42].

Astrocytes have also been shown to enhance meta-

static growth through enhancing the CXCL12/CXCR4-

MIR345-KISS1/KISS1R axis. A significant reduction in

KISS1 expression in BCBM patient’s primary tumors has

been noticed. Ilya V. Ulasov et al. identified that

CXCL12 secreted by astrocytes can induce miRNAs that

can directly target KISS1 mRNA in metastatic BC cells

and negatively regulate KISS1 expression. In this regard,

miR-345 was the only identified miR that directly targets

KISS1, which is induced via the treatment of CXCL12 or

CCL2 proteins [125–127]. They experimentally con-

firmed the binding of miR-345 in stably transfected

KISS1 3’UTR in MDA231Br cells with astrocyte condi-

tioned media treatment or in the presence of individual

recombinant CCl2 or CXCL12 proteins [72]. Interestingly,

the downregulation of KISS1 has a stimulating effect on

ATG5 expression associated with autophagosome matur-

ation. Finally, they revealed a paracrine loop between

KISS1 and the CXCL12-miR-345 that can promote BC

cell invasion and survival in the brain.

Microglia are also a crucial component of the brain

parenchyma; they constitute about 5-20% of the total

CNS population and they are the only brain resident

myeloid cells that play an important role in brain

Fig. 1. Schematic of miRNA regulatory blood-brain-barrier (BBB) tight junction (TJs) protein. a miR-181c promotes the destruction of the BBB

through the delocalization of actin fibers via the downregulation of 3 phosphoinositide-dependent protein kinase-1 (PDPK1). PDPK1 degradation

by miR-181c leads to the downregulation of phosphorylated cofilin and the resultant activated cofilin-induced modulation of actin dynamics [69].

b miR-1258 downregulates MMP-9 and COX-2 protein by directly targeting HPSE, hence protecting the BBB from destruction [40]. c miR-509

negatively regulates the expression of two essential genes for brain metastasis, RhoC and TNF-α, which enhance the permeability of the BBB

[121]. d miR-210 directly targets β- Catenin and Occudin to disrupt the integrity of the BBB [37]. e MiR-143 decreases the expression of TJs by

directly targeting p53 upregulated modulator of apoptosis (PUMA) and increases the permeability of human brain endothelial cells [35]
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homeostasis and immunosurveillance [128–130]. Micro-

glia release cytokines and interleukins that support can-

cer invasion and colonization of the parenchyma.

Microglia can differentiate from the proinflammatory

M1 phenotype to the immunosuppressive M2 phenotype

based on environmental factors [131]. Interestingly,

miRNA can modulate microglial polarization. For in-

stance, miR-124, miR-155, and miR-689 are associated

with the M1 phenotype, whereas miR-711 and miR-

145 are strongly associated with M2 polarization [73].

MiR-124 is a brain enriched miRNA highly present in

resting microglia, and its expression declines with

microglial activation [132]. However, the role of miR-

124 in BCBM is yet to be studied. Loss of XIST, a

long noncoding RNA in tumor cells, causes local im-

mune suppression by converting the microglia to the

M2 phenotype through the transport of exosomal

miR-503 from the tumor cells [41]. These studies

strongly suggest that miRNAs have the ability to

modulate microglia activation, and thereby modulate

the brain microenvironment and subsequently metas-

tasis partly via immune invasion (Fig. 2).

miRNAs and metabolic reprogramming in the brain

microenvironment

Adaptation in the pre-metastatic niche is of great

importance and starts before the arrival of CTCs to dis-

tant sites of metastasis to sustain their survival and

growth [133]. Modulation of the tumor microenviron-

ment by metabolic factors is a different aspect of cancer

cells and tumor microenvironment crosstalk. Metabolic

reprogramming is associated with the deregulation of

several pathways controlled by hypoxia-inducible factor

1 alpha, MYC, p53, and miRNAs. MiRNAs target meta-

bolic enzymes, oncogenes, and tumor suppressors

involved in metabolic reprogramming, becoming crucial

elements in the crosstalk of molecular pathways that

promote extravasation and metastasis. In BC, cancer-

associated stromal cells rely on glycolysis to provide en-

ergy metabolites to cancer cells through monocarboxyl-

ate transporters during disease progression [134].

Endothelial cells also rely on glycolytic metabolism to

support vessel sprouting for angiogenesis [134]. Emer-

ging evidences in the metabolic reprogramming of the

microenvironment identified a prerequisite metabolic

Fig. 2. Cross talk of the brain tumor microenvironment with BC cells. a Autocrine and paracrine role of miR-122 in the development of the pre-

metastatic niche via regulating glucose metabolism in cancer cells. MiR-122 downregulates the expression of pyruvate kinase isozymes, PKM2,

and glucose transporter 1 (GLUT1), and decreases ATP levels in BC cells. MiR-122 reduces glucose consumption in stromal cells and allows more

glucose to be accessible to cancer cells, hence facilitating the formation of the metastatic niche and cancer cell growth [74]. b CXCL12 or CCL2

secreted by astrocytes increases the level of miR-345 via CXCR4, which negatively regulates the expression of KISS1 and promotes invasion and

survival in the brain [72]. c MiR-19a mediates the suppression of PTEN in cancer cells secreted by activated astrocytes. Reactive astrocytes secrete

interleukins and chemokines, such as CCL2 and CXCL12/SDF1. Reduced expression of PTEN leads to enhanced CCL2-mediated recruitment of

IBA1+ myeloid cells, and thereby establishment of the brain metastasis (BM) [42]. miR-26a is present in astrocytes and released by astrocytes

through exosomes, or it can be secreted by HUVEC cells, but its role in brain niche formation is not clear [70, 71]. d Microglia release cytokines

and interleukins that support cancer cells to invade and colonize the parenchyma. In cancer microglia, it can transform from the immunogenic

phenotype (M1) to immunosuppressive phenotype and miRNA can modulate microglial polarization. MiR-124, miR-155, and miR-689 are

associated with the M1 phenotype, whereas MiR-711 and miR-145 are strongly associated with M2 polarization [128, 129]. Loss of XIST, a long

noncoding RNA in tumor cells, causes local immune suppression by converting the microglia to the M2 phenotype through the transport of

exosomal miR-503 from the tumor cells [41]
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condition required to sustain cancer cells in the brain

[135]. For example, brain metastatic cells switch to meta-

bolic reprogramming by upregulating the fructose-1, 6-

bisphosphatases (FBP2) based gluconeogenesis pathway

and amino acid oxidation to survive and grow in the low

glucose environment of the brain parenchyma [135].

Interestingly, Emily Wang’s group has studied the

autocrine and paracrine role of miR-122 in glucose me-

tabolism in primary BC and pre-metastatic niche devel-

opment and metastasis [74]. MiR-122 downregulates the

expression of pyruvate kinase isozymes, PKM2, and glu-

cose transporter 1 (GLUT1) and decreases ATP levels in

BC cells. They demonstrated that cancer cells secreted

miR-122, which downregulates glucose uptake in astro-

cytes as well as lung fibroblasts. Orthotopic xenograft

mice with stably overexpressed DCISMCF/miR-122

form smaller tumors than empty vectors. Collectively,

they showed that cancer cells could induce glucose re-

allocation in the pre-metastatic niche by repressing glu-

cose consumption in stromal cells and allowing more

glucose to be accessible to cancer cells, hence facilitating

metastatic cancer growth. MiR-122 partially exhibits this

effect and helps in metabolic reprogramming of the

tumor microenvironment by downregulating its meta-

bolic target genes PKM1/2 and GLUT1 in stromal cells

in vitro and in vivo. MiR-122 has potential as a predict-

ive marker and therapeutic target for BC metastasis [74].

Furthermore, Chang et al. recently demonstrated the

role of miR-155 in glucose metabolism in the TNBC sub-

type. Utilizing a BC mouse model with miR-155-/- or miR-

155+/- backgrounds, they unraveled the miR-155-PIK3R1-

PDK/AKT-FOXO3a-cMYC axis that mediates energy me-

tabolism in BC [75]. However, the metastatic potential of

miR-155 has not been studied in the context of BM. High

glucose uptake is a salient feature of cancer cells [136].

MiR-7 is highly expressed in the brain and promotes gly-

colysis, as evinced by an increased intracellular ATP/ADP

ratio, glucose consumption, and lactic acid production.

MiR-7 directly targets the expression of RelA, which regu-

lates the expression of the cell surface glucose transporter,

Glut3, hence promoting glycolysis [76, 137]. In human BC

cells, miR-7 suppresses the homing and migration poten-

tial of human endothelial cells; however, there is the possi-

bility that the opposite may be true and the brain tumor

microenvironment may deliver exosomes containing miR-

7 to increase the glucose uptake and survival of breast

tumor cells in the brain parenchyma. Therefore, its role in

the metabolic reprogramming of the brain microenviron-

ment in BCBM is obscure and needs to be studied in

detail.

Metastatic colonization

The major problem with the EMT concept is that the

appearance of the majority of human metastatic

histology samples resembles the epithelial phenotype

and usually looks like the primary tumor [138]. Evidence

from previous studies suggests that for successful

colonization and growth after extravasation to a second-

ary site to occur, cancer cells have to go through the

mesenchymal to epithelial transition (MET) [138]. Inter-

estingly, BCBM is dependent on cellular reprogramming

through the EMT to the MET. Yang and colleagues

(2012) have demonstrated that Twist1 reversibly regu-

lates the EMT during metastasis. They have also shown

that early metastatic colonies elicited strong positive

Ki67 expression with low Twist1 expression under re-

versible EMT conditions, while irreversible EMT re-

sulted in colonies with high Twist1 expression and low

Ki67 [139], suggesting that metastatic cancer cells must

revert to the epithelial phenotype by a MET in order to

grow at a secondary site.

In another study, epithelial markers, such as E-

cadherin, β-catenin, connexin 26, and connexin43, were

found to be upregulated in BC patients. In contrast,

mesenchymal markers FSP1 and vimentin were variably

altered in BC, suggesting a partial MET [140]. Shreds of

evidence show that miRNA participates in the process of

EMT to MET [141]. A well-documented example is the

miR-200 family. MiR-200s are associated with poor

prognosis of BC [142]. Recently, members of the miR-

200 family (miR-200a, miR-200b, miR-200c, miR-141,

and miR-429, containing similar consensus seed se-

quence) have been recognized as new epithelial markers

and negative regulators of EMT. The miR-200 family

members inhibit the EMT and promote MET transform-

ation in BC cells by directly targeting ZEB1 and ZEB2.

The miR-200 family regulates the MET and metastatic

colonization in BC, suggesting that flexible transitions

between EMT and MET, or epithelial-mesenchymal

plasticity, may be crucial at different stages of metastasis

[43–45].

Moreover, human BC metastases often show a higher

level of E-cadherin than their corresponding primary

tumor [140]. Korpal et al. suggested that miR-200s pro-

mote metastatic colonization of BC not only by influen-

cing cell-intrinsic epithelial traits through targeting of

the Zeb–E-cadherin axis but also by altering the tumor

cell-derived secretome through targeting of the Sec23

homolog A, Sec23a-mediated transport pathway. It ul-

timately targets two metastatic suppressors, insulin-like

growth factor binding protein 4 (IGFBP4) and tubule

interstitial nephritis antigen-like 1 [142].

In addition, CTCs increase the level of miR-200s in

BC patient serum and cerebrospinal fluid (CSF) with

BCBM [143, 144]. Although these studies suggest that

extracellular miR-200s are associated with BC metasta-

sis, they did not show that circulating miR-200 miRNAs

are functional [145]. Bisrat G. Debeb et al. generated a
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preclinical mouse model via tail vein injection of

epithelial-like inflammatory TNBC and HER2 positive

cells and mesenchymal-like lung metastatic cells. The

knockdown of miR-141 ceases the BM; however, ec-

topic expression of miR-141 enhances the brain

colonization of inflammatory metastatic cells in vivo.

Alternatively, ectopic expression of miR-141 in lung

metastatic cells was not sufficient for the onset of

BM, suggesting an epithelial phenotype is important

at the final step of BM [31]. High expression of ZEB1

and ZEB2 at a tumor invasion front in brain meta-

static tissues suggests a role of these EMT regulators

in facilitating BM [146]. MiR-126 is reported as a

tumor suppressor in various cancers [147–149]. It

regulates the migration of endothelial cells towards

the metastatic BC cells in vitro and in vivo [77].

Endogenous expression of miR-126 suppresses meta-

static colonization by targeting IGFBP2, PITPNC1,

and MERTK- novel pro-angiogenic genes and bio-

markers of human metastasis [77]. Silencing of miR-

126 in poorly metastatic CN34 BC cells results in in-

creased endothelial recruitment and metastatic brain

colonization [77]. Overall, the miRNAs are crucial at

multiple steps of breast cancer brain metastasis

(BCBM) (Fig. 3).

miRNA and BCBM therapeutics

Despite advances in therapy for BCBM, the exact mo-

lecular mechanism, and biomarkers for the diagnosis

and prognosis of patients are lacking [150]. Available

treatment options include local therapies, such as whole-

brain radiation therapy (WBRT), stereotactic radiosur-

gery (SRS), surgery, chemotherapy, and tyrosine kinase

inhibitors (TKIs) [151]. TKIs are promising anticancer

agents for HER2-positive BCBM, such as lapatinib,

which is a dual TKI that targets both HER2/ErbB2 and

EGFR. However, inhibition of kinases is not specific for

a single tyrosine kinase, results in reduced specificity

with high toxicity [152]. Due to specificity and toxicity

issues, monoclonal antibodies emerged as strong thera-

peutic tools and proved as a potent therapy for cancer

treatment. The current focus for TNBC patients is to

manipulate the anti-tumor immune response by block-

ing the activity of immune checkpoint inhibitors. Atezo-

lizumab, a PD-L1 blocking antibody in combination with

nab-paclitaxel improved the progression-free survival in

PD-L1 positive subgroup in an Impassion130 trial

(NCT02425891) [153]. In phase II, ongoing trial

(NCT03483012) TNBC patients with BM are treated

with SRS alone or in combination with Atezolizumab.

There is hope that SRS in combination with

Fig. 3. miRNAs function at multiple steps of breast cancer brain metastasis (BCBM). MiRNAs regulate key steps of BCBM, (a) breast cancer cell

intravasation and dissemination via EMT from the primary site, (b) survival in the circulation/vascular microenvironment, (c) breaching of blood-

brain barrier (BBB) integrity, (d) extravasation into brain parenchyma, (e) metabolic reprogramming into the brain microenvironment, and (f)

colonization and growth of cancer cells into brain
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atezolizumab, may enhance the immune response to BM

patients.

The enduring challenges in BCBM are to develop early

detection markers and novel targeted therapies that can

cross the BTB and improve the survival rate of BCBM

patients. Therefore, miRNAs are emerging as noninva-

sive, diagnostic, and prognostic markers in BM. The

miRNAs present in the blood plasma and CSF are at-

tractive biomarkers for BM, which provide the disease

severity, but also impart the prognostic value of the

treatment response [154]. Although a considerable num-

ber of miRNAs are found inside the cell, many miRNAs

are secretory, and their expression elevates or drops in

the brain lesions or BM. In this context, miRNA levels

can be used to monitor the disease burden, tumor re-

sponse, and differentiation between brain lesions and

metastatic brain tumors [155]. MiR-10 and miR-21 are

highly expressed in the cases of GBM and BCBM; how-

ever, the miR-200 family can be used to discriminate be-

tween GBM and BM [144]. Additionally, miR-223, miR-

711, miR-125, and miR-935 signatures were shown to

discriminate among medulloblastoma, GBM, breast, and

lung cancer BM [156].

Tumor suppressor miRNA with oncogenic targets may

enhance the efficacy of treatment in combination with

conventional chemotherapy, radiotherapy and immuno-

therapy in BCBM patients. For instance, miR-770-5p de-

creases the migration and invasive potential of HER+

breast cancer cells through inhibiting the translation of

downstream signaling of PI3K and MAPK, i.e., AKT and

ERK, pathways that mediate resistance to anti-HER2 ther-

apies. Additionally, miR-770-5p can increase the respon-

siveness of trastuzumab and reverse drug resistance [157].

miR-770 also suppresses the doxorubicin-resistance and

metastasis of TNBC cells [158, 159]. miR-326, a suppres-

sor of Hedgehog pathway, is inversely correlated with

multi drug resistance protein (MRP-1) expression in BC

patients and sensitize the response in doxorubicin and

etoposide (VP16) in resistant BC cells. miR-21 has been

shown to sensitize BC cells to topotecan and taxol [160].

miRNA-143-3p increase the sensitivity of TNBC to pacli-

taxel by inferenig with CIAPIN1 expression, a cytokine-

induced apoptosis inhibitor 1 protein [161]. miR-449 can

induce doxorubicin respone in TNBC by downregulating

cell cycle related genes [162]. Such combinations, which

are already tested in BC preclinical models have the po-

tential to be tested for BCBM. In addition, miRNA with

known function in BM such as miR-181c, miR-1258, miR-

509, miR-143, miR-122 and miR-19a could be utilized in

combination with radiotherapy, anti-HER2 therapies

(lapatinib or trastuzumab), chemotherapy or immunother-

apies for BM.

Since miRNA can target multiple sets of genes, it is an

excellent clinical choice for the heterogeneous

population of BM. In this context, miR-7 has been

shown to attenuate BC growth by downregulating both

EGFR and PKB signaling pathways [156]. MiR-7 also in-

hibits BCBM by inhibiting the self-renewal capacity of

BC stem-like cells by regulating the expression of KLF4

[163]. An additional example is let-7, which targets sev-

eral oncogenic pathways, including Ras, HMGA2, cyclin

d1/2/3, cyclin A, CDK4/6, c-Myc, DICER1, and Lin28,

which are responsible for stem cell self-renewal and che-

moresistance [164]. The current challenges with the de-

livery of miRNA into the brain are poor penetration of

miRNAs into tumor tissues due to the presence of BBBs,

instability of miRNA mimics or inhibitors in the blood

circulation, and neurotoxicity and immunotoxicity due

to an off-target effect. Therefore, miRNA can be conju-

gated to drug carrier systems or nanoparticles (NPs) for

targeting cancer cells. These miRNA delivery systems

have shown minimal toxicities and have the ability to

cross the BBB and successfully release the miRNA to

promote clinical advancement. Recently, numerous de-

livery systems have been developed to cross the BBB,

such as Cationic lipid nanoparticles (LNP) [165], Cat-

ionic Dendrimers PAMAM [166], Poly (lactic acid-co-

glycolic) acid (PLGA) nanoparticles [167], Magnetic

Nanoparticles [168], and Viral Vector Systems [169,

170]. Although water-soluble polymers, cationic lipids,

or liposome nanocarriers are less toxic than a viral vec-

tor, the delivery efficiency remains lower [171]. Since

leukocytes (including monocytes/macrophages, neutro-

phils, dendritic cells, and lymphocytes) or MSCs target

tumors and can migrate across physiological barriers like

the BBB, these cell types are increasingly utilized as car-

riers to transfer NPs to tumors [172]. As leukocytes/

MSCs follow the same pattern of migration as tumor

cells to cross the BBB, these cellular mechanisms can be

utilized effectively to deliver miRNA conjugated NPs to

the BMs. These NPs can be attached to the monocytes/

macrophages/MSCs for the delivery of miRNA through

various nanotechnology strategies [173].

Additionally, BBB-permeable NPs can be used to deliver

miRNAs into the metastatic sites. Recently, Galstyan et al.

have used BBB-permeable nano-immunoconjugates for

the successful inhibition of GBM growth using mouse

models [174]. They have used poly (β-L-malic acid) NPs

covalently attached to immune checkpoint antibodies for

systemic delivery directly into the brain. NPs have been

used to deliver anti-miR-132 that recover p120RasGAP in

the tumor endothelial cells, and have shown reduction in

tumor growth in an orthotopic xenograft mouse model of

BC [175]. If BBB permeable NPs are not available, regular

NPs containing miRNAs can be delivered through the

BBB using chemical modifications, partial opening by

ultrasound, microwave or electromagnetic field-based

thermal translocation of tight junction proteins [176].
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Conclusion and future perspective
Both the anatomy and physiology of the brain are very

complex; hence, the process of BCBM is enormously

complex too. Mechanistic and functional discoveries

could expedite the response of BM treatment. Each step

of BM is rate-limiting, and miRNA are instrumental in

the regulation of every step of metastasis since they are

upstream of oncogenes and tumor suppressor genes. All

the steps of BMs, starting from the dissociation from

primary sites through EMT related genes, survival into

the circulation by anoikis resistance genes, brain organo-

tropism, brain niche modulatory genes, and also brain

colonization related genes, are all regulated through

miRNAs. In the past few years, the focus on BMs has

significantly increased as several miRNAs were discov-

ered for initiating steps of metastasis. However, limited

research has been done to address questions like: how

does miRNA play a role in metastasizing cancer cells to

the brain? How can miRNAs breach the BBB? How do

cancer cells communicate with an entirely new environ-

ment of the brain niche via miRNA? How do astrocytes

overcome the defense mechanisms and facilitate the

survival of BC cells by altering the miRNA profile? How

do miRNAs modulate brain metabolism in favor of can-

cer cell survival? There are so many unanswered ques-

tions in the context of miRNA and BCBM. Therefore,

intense research is needed to tackle these problems, to

discover better treatment options, to improve BCBM

treatment efficacy.
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