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Abstract

Although microsatellites are ubiquitous in eukaryota,
the number of available markers varies strongly among

taxa. This meta-analysis was conducted on 32 insect
species. Sequences were obtained from two assem-
bled whole genomes, whole genome shotgun (WGS)
sequences from 10 species and screening partial
genomic libraries for microsatellites from 23 species.
We have demonstrated: (1) strong differences in the
abundance of microsatellites among species; (2) that
microsatellites within species are often grouped into
families based on similarities in their flanking sequen-
ces; (3) that the proportion of microsatellites grouped
into families varies strongly among taxa; and (4) that
microsatellite families were significantly more often
associated with transposable elements – or their
remnants – than unique microsatellite sequences.

Keywords: microsatellite, flanking region, interspersed
repetitive element, Lepidoptera, genome.

Introduction

 

Microsatellites have been detected in a wide diversity of
eukaryotes of varying complexity and genome size (Tóth

 

et al

 

., 2000). Although numerous studies suggest that at
least a fraction of microsatellites have important functions
(Li 

 

et al

 

., 2002, and references therein), they are generally
regarded as highly variable neutral markers, and are thus
the most frequently used genetic markers in population
biology.

Despite early reports of microsatellite abundance (Beck-
mann & Soller, 1990; Beckmann & Weber, 1992; Epplen

 

et al

 

., 1997), the isolation of microsatellites as useable
markers appears to be more difficult in some taxa than in
others (Nematoda: Fisher & Viney, 1996; Lepidoptera:
Nève & Meglécz, 2000; Zhang, 2004; 

 

Aedes aegypti

 

 and

 

Ixodes scapulris

 

: Fagerberg 

 

et al

 

., 2001). There are at least
two possible, non-exclusive, explanations for this heteroge-
neity: (1) either the abundance of microsatellites, or (2) their
localization in the genomes (e.g. coding or noncoding
regions; association with repetitive DNA; extent of gene
duplications or polyploidy; position on the chromosomes)
significantly differ among species or higher level taxa.

Zhang (2004) has pointed out the relative scarcity of
microsatellites in Lepidopteran genomes, as have Fagerberg
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et al

 

. (2001) in 

 

I. scapularis

 

 (Arachnida; Ixodida) and 

 

A.
aegypti

 

 (Diptera). Both studies are based on indirect esti-
mates, as genome data are rare for non-Dipteran (non-

 

Drosophila

 

) insects. The only Lepidoptera genome that has
been sequenced so far is of 

 

Bombyx mori

 

 (Mita 

 

et al

 

., 2004;
Xia 

 

et al

 

., 2004). In this species, microsatellites make up
0.31% of the genome (Prasad 

 

et al

 

., 2005), which is rather
low but not out of the range of other analysed genomes
(Tóth 

 

et al

 

., 2000). In this study, we directly compared
microsatellite abundance among the 10 insect species
for which Whole Genome Shotgun (WGS) sequences are
available.

The use of polymerase chain reaction-based micro-
satellite analysis in population genetics is based upon
the premise that the flanking sequences are unique for each
locus (single co-dominant locus evaluation) and that they
mutate much more slowly than the microsatellite repeat
motif (Hancock, 1999). While there have been many stud-
ies on the mutation pattern of microsatellite core repeats
(Weber & Wong, 1993; Michalakis & Veuille, 1996;
Chakraborty 

 

et al

 

., 1997; Schlötterer, 1998; Schug 

 

et al

 

.,
1998; Estoup & Cornuet, 1999; Hancock, 1999; Pupko &
Graur, 1999), little is known on their origin, including the
uniqueness of their flanking sequences. A recent study
showed that in two butterfly species a considerable propor-
tion of the isolated microsatellite loci cluster into families
based on similarities between flanking regions of different
loci (Meglécz 

 

et al

 

., 2004). The work presented here aims
to (1) test if this phenomenon is general in insects and in
Lepidoptera in particular, and to (2) examine the distribution
of the frequencies of these microsatellite families among
taxa.

As microsatellites are generally more frequent in non-
coding DNA regions (Hancock, 1995; Ramsay 

 

et al

 

., 1999;
Metzgar 

 

et al

 

., 2000; Tóth 

 

et al

 

., 2000; Karaoglu 

 

et al

 

.,
2005) and a large portion of noncoding DNA is repetitive in

many species (Comeron, 2001; Kidwell & Lisch, 2001;
Li 

 

et al

 

., 2002 and references therein), we also tested the
association between microsatellite families and inter-
spersed repetitive elements.

 

Results and discussion

 

Microsatellite abundance

 

The estimation of microsatellite abundance is very difficult
without genomic data. Indirect methods, such as using the
frequency of positive clones, have a number of potential
biases. The emergence of genomic data provides a possi-
bility to have a clearer picture, but only for a limited number
of species. Furthermore, it is difficult to directly compare the
results of independent studies, as there are no standard
criteria for the minimal size of the microsatellites. In this
study, we have used microsatellites with at least four un-
interrupted repeat units (eight for single base pairs), so that
even short mono- or dinucleotide repeats are included in
the analyses. In similar studies, the criteria have been both
more and less stringent. For example Tóth 

 

et al

 

. (2000)
used microsatellites longer than 12 bp for a wide variety of
Eukaryotes, Dieringer & Schlötterer (2003) used at least
two repetitions, Karaoglu 

 

et al

 

. (2005) used microsatellites
longer than 10 bp for fungal genomes and Prasad 

 

et al

 

.
(2005) used at least five repetitions (15 for single bases),
for 

 

B. mori

 

.
Table 1 presents the estimated proportion of pure micro-

satellites in the genome, for each repeat unit length, calcu-
lated from WGS and complete genome data. At first sight,
our estimation seems extremely high. For example, we
found that on average 

 

≈

 

 16 kb of microsatellite is found
per 1 Mb of genomic DNA in the 

 

B. mori

 

 genome, while this
was found to be 

 

≈

 

 3 kb in Prasad 

 

et al

 

. (2005) for the same
species. Rerunning our analyses with the same criteria as
applied by Prasad 

 

et al

 

. (2005), however, gave very similar

Table 1. Total length of the analysed genomic sequences and proportion of microsatellites observed for each repeat unit length for the complete genome and 
WGS data

Total DNA (Mbp) Mono- (‰) Di- (‰) Tri- (‰) Tetra- (‰) Penta- (‰) Hexa- (‰) All motifs (‰)

Complete genome
Drosophila melanogaster 118.4 6.73 6.55 2.34 0.53 0.21 0.24 16.60
Anopheles gambiae 223.2 6.63 11.57 4.16 0.60 0.09 0.10 23.15

Whole Genome Shotgun
Aedes aegypti 1212.3 7.36 1.50 1.11 0.31 0.18 0.12 10.57
Anopheles gambiae 313.8 6.11 10.58 3.68 0.58 0.12 0.13 21.19
Apis mellifera 232.7 14.45 15.30 3.89 1.27 0.44 0.14 35.50
Bombyx mori A 393.3 10.03 3.64 1.39 0.78 0.16 0.04 16.06
Bombyx mori B 381.9 10.45 3.68 1.42 0.83 0.18 0.05 16.61
Drosophila melanogaster 132.5 6.58 6.16 2.22 0.50 0.45 0.22 16.13
Drosophila persimilis 175.5 4.65 9.52 3.24 0.91 0.65 0.95 19.93
Drosophila pseudoobscura 147.4 4.97 10.33 3.64 1.02 0.73 0.91 21.59
Drosophila sechelia 157.2 4.34 5.30 1.84 0.40 0.50 0.13 12.51
Drosophila simulans 119.3 4.71 6.01 2.05 0.43 0.17 0.13 13.51
Drosophila yakuba 156.8 5.05 5.80 2.02 0.42 0.21 0.33 13.83
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results to theirs (data not shown). It thus appears that this
large discrepancy among the estimates is due to the large
number of short microsatellites present in the genome of

 

B. mori

 

.
Nevertheless, our results enable us to compare the

frequencies of microsatellites among the 10 species for
which WGS data were available. We observed a three-fold
variation in microsatellite frequencies among the 10 inves-
tigated insect species, with the lowest value in 

 

A. aegypti

 

and the highest in 

 

Apis mellifera

 

. Even within the 

 

Drosophila

 

genus, the variation among species is considerable (Table 1).
Running the analyses with more stringent criteria (i.e. at
least five to eight uninterrupted repeats) did not change
the overall pattern of variation among species (data not
shown). The difference between genomes is even more pro-
nounced when only 2–6 bp motifs are considered (Fig. 1).
The proportion of mononucleotide motifs compared with
other motifs is particularly high in 

 

B. mori

 

 and 

 

A. aegypti

 

. As
microsatellites with mononucleotide motifs are rarely used
as markers, this introduces even greater difference among
species in the abundance of potential genetic markers.

A particularly low frequency of positive clones was
reported in 

 

A. aegypti

 

 compared with 

 

Anopheles albimanus

 

(Fagerberg 

 

et al

 

., 2001) and for several Lepidoptera spe-
cies (Zhang, 2004 and references therein), while 

 

A. mellif-
era

 

 is one of the insect species for which a very large
number of microsatellite markers are established (Solignac

 

et al

 

., 2003). Microsatellite abundance in the genome is
thus probably a relevant factor in the success of micro-
satellite marker isolation; however, it is unlikely to be the only
source of the problems specifically found in some taxa such
as Lepidoptera. The low frequency of microsatellites in the
genome should not lead to amplification problems and in
principle, with enrichment or by increasing the number of
screened clones, a sufficient number of markers could be
isolated.

 

Proportion of grouped sequences

 

Microsatellite flanking sequences were analysed species
by species. Each data set was blasted against itself
(e = 1E-40) and sequences were sorted into four catego-
ries based on the results of the 

 

BLAST

 

n: (1) 

 

Unique

 

 if no

similarities were observed to any other sequences of the
same data set; (2) 

 

Un

 

BLAST

 

able

 

 if sequence had no hits
at all, not even with itself; (3) 

 

Redundant

 

, if the identity to
another sequence was higher than 95% along the whole
flanking sequence; and (4) 

 

Grouped

 

 if sequences pro-
duced a significant hit with at least one different sequence
and they were not redundant.

 

Data from complete genomes and WGS 

 

For both 

 

Drosophila
melanogaster

 

 and 

 

Anopheles gambiae

 

, the estimates of the
proportion of grouped sequences were lower from com-
plete genome sequences than from WGS (Table 2). This
might be the consequence of the fact that genome assem-
bly is the most difficult in regions with a high concentration
of repetitive DNA, thus these regions might be over-
represented among the contigs of the WGS sequences.
Consequently, the proportion of grouped sequences
should not be taken literally from WGS data. Nevertheless,
the same tendency is observed in both WGS and complete
genome estimations: the genome of 

 

A. gambiae

 

 con-
tains a higher proportion of microsatellite sequences
grouped into families than that of 

 

D. melanogaster

 

 (Table 2;

 

χ

 

2

 

 = 4146.4, 

 

P

 

 < 0.0001; 

 

χ

 

2

 

 = 69.1, 

 

P

 

 < 0.0001, for com-
plete genome and WGS data, respectively).

The presence of microsatellite sequence families is
clearly demonstrated in all 10 species for which WGS
data were available (Table 2). The proportion of grouped
sequences among WGS data sets varied largely among
species (

 

χ

 

2

 

 = 12997.1, 

 

P

 

 < 0.0001). However, as discussed
above, these proportions are only rough estimates, and
should be interpreted with caution. Nevertheless, it is still
striking that the proportion of grouped sequences in

 

B. mori

 

 is the highest among the investigated 10 species
(36.1% and 34.7%, respectively, for the two data sets) and
it is significantly higher than the second highest proportion
(23.6% for 

 

A. aegypti

 

; 

 

χ

 

2

 

 = 368.5, 

 

P

 

 < 0.0001; 

 

χ

 

2

 

 = 293.6,

 

P

 

 < 0.0001, respectively).

 

Data from screening partial libraries 

 

Sequences originating
from screenings of partial genomic libraries may be biased
by the screening protocol applied. However, as discussed
in Meglécz 

 

et al

 

. (2004) the same protocol used in the

Figure 1. The proportion of pure microsatellites 
for each repeat unit length based on WGS data. 
‰ refers to the total length of microsatellites in 
kbp per one Mbp of analysed DNA.
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same laboratory, at the same time, for different species
gave strikingly different estimates of the proportion of
grouped sequences (

 

Euphydryas aurinia

 

,

 

 Parnassius apollo

 

,

 

Aphis fabae

 

). Our enlarged series of data from screenings
show the same lack of association between the applied
protocols and the proportions of grouped sequences.
Indeed, the same protocol was used for 

 

Busseola fusca

 

,

 

Cydia pomonella

 

, 

 

E. aurinia

 

, 

 

Ostrinia nubilalis

 

, 

 

P. apollo

 

, 

 

A.
fabae, with the percentage of grouped sequences ranging
from 2.8% to 55.1% (χ2 = 75.3, P < 0.0001), and another
protocol for Drupadia theda and Arhopala epimuta, where
the two species were screened simultaneously, yielded
6.5% and 31.4% grouped sequences, respectively (χ2 = 10.3,

P = 0.0013). Thus, it is unlikely that the screening protocol
is responsible for the high proportion of grouped sequences
in some species (Table 2).

An obvious disadvantage of the screening data is the
relatively small number of sequences available for each spe-
cies. By increasing the number of investigated sequences
some of the sequences classified as unique can become
grouped. Thus the proportion of grouped sequences
depends partially on the number of sequences available.
This introduces a downwards bias in the estimation of the
proportion of grouped sequences in small data sets. B. mori
data provide a possibility to compare estimates of the
proportion of grouped sequences based on screening

Table 2. Number of sequences in each category for each data set

Species Unique Grouped Redund. UnBL. Prop. grouped

Complete genome
Anopheles gambiae* 175128 14893 6141 108 0.078
Anopheles gambiae† 171483 24679 – 108 0.126
Drosophila melanogaster* 90005 1607 1835 58 0.018
Drosophila melanogaster† 89657 3790 – 58 0.041

Whole Genome Shotgun
Aedes aegypti 7432 2291 265 12 0.236
Anopheles gambiae* 8570 891 531 8 0.094
Apis mellifera 9672 126 69 133 0.013
Bombyx mori A* 6257 3541 192 10 0.361
Bombyx mori B* 6376 3391 209 24 0.347
Drosophila melanogaster* 9149 604 238 9 0.062
Drosophila persimilis 8222 1166 568 44 0.124
Drosophila pseudoobscura 9371 472 123 34 0.048
Drosophila sechelia 8770 738 475 17 0.078
Drosophila simulans 9568 287 122 23 0.029
Drosophila yakuba 8669 992 313 26 0.103

Screening (Lepidoptera)
Arctia caja 45 10 10 21 0.182
Arhopala epimuta 35 16 6 3 0.314
Busseola fusca 30 24 7 2 0.444
Bombyx mori* 26 9 0 2 0.257
Coenonympha hero 28 8 2 7 0.222
Cydia pomonella 70 2 14 1 0.028
Drupadia theda 58 4 11 8 0.065
Euphydryas aurinia 51 22 13 3 0.301
Ostrinia nubilalis 15 4 4 2 0.211
Parnassius apollo 35 43 18 7 0.551
Parnassius mnemosyne 26 0 2 3 0
Parnassius smintheus 18 0 0 1 0
Polyommatus belargus 8 4 6 4 0.333
Plutella xylostella 83 33 8 3 0.284
Reissita simonyi 28 4 3 0 0.125
Zale galbanata 8 0 1 0 0

Screening (non-Lepidoptera)
Aphis fabae 61 4 31 3 0.061
Amphitmetus transversus 26 9 9 0 0.257
Culex pipens 14 2 1 7 0.125
Culex quinquefasciatus 16 2 0 2 0.111
Monolepta vincta 30 2 2 0 0.062
Plectrocnemia conspersa 26 6 27 7 0.188
Polycentropus flavomaculatus 18 2 6 3 0.1

Unique = number of sequences with no similarities to any other sequences of the same data set; Grouped = number of sequences grouped into sequence 
families based on similarities in their flanking region; Redund. = number of redundant sequences; UnBL. = number of the sequences that did not produce any 
hit; Prop. Grouped = proportion of grouped sequences (Grouped/(Grouped + Unique)).
*Species with more than one data set available are in bold characters.
†Without the identification of redundant sequences.
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vs. WGS data. As expected, the proportion of grouped
sequences is lower when estimated from the screening
data (25.7%) than from the WGS data (34.7% and 36.1%
for the two data sets). However, these estimates are not
significantly different (χ2 = 0.882, P = 0.348; χ2 = 1.222,
P = 0.267, for the two comparisons, respectively).

In spite of the downwards bias of the proportion of
grouped sequences from screening data, we demonstrated
the presence of sequence families in almost all studied
species apart from three species for which only a few
sequences were available. Nevertheless, by decreasing
the stringency of the search for sequence similarities (i.e.
BLAST with e = 1E-10 instead of e = 1E-40) Parnassius
mnemosyne and Parnassius smintheus had 6.9% and
15.8% of grouped sequences, respectively. Only Zale
galbanata (with only nine sequences available) remained
apparently free from grouped sequences. Thus, there
appears to be a common trend that varying and often high
proportion of microsatellite sequences within Lepidoptera
species cluster into families. Some of the microsatellites of
the seven control (non-Lepidoptera) species also grouped
into families, and WGS data sets indicated that this phe-
nomenon is indeed not restricted to Lepidoptera, but it is
present in all investigated taxa (Table 2).

GenBank entries of microsatellites Of the 415 insect
species for which microsatellite sequences have been sub-
mitted to GenBank, 13% had at least one pair of grouped
sequences. Note that redundant sequences were identified
and discarded as before, in order to avoid a further possible
bias of different teams of researchers working on the same
species and finding the same microsatellite sequences. By
selecting only species that have at least 10, 20, 30 or 40
sequences available in GenBank, the proportion of species
having at least two grouped sequences increased strongly
(32%, 53%, 71%, 81%, respectively). Undoubtedly, Gen-
Bank microsatellite entries are not representative of whole
genomes as in most cases researchers submit only poly-
morphic loci for which successful amplification protocols
were established. Furthermore, the number of sequences
is very low for most of the species (i.e. only 58 insect spe-
cies had a minimum of 20 microsatellite entries). In spite of
these factors, which introduce a very strong downwards
bias in the proportion of grouped sequences, a high propor-
tion of species representing diverse insect orders had mic-
rosatellite sequence families.

Grouped vs. redundant sequences For all data sets, the
same approach was used to identify grouped and redun-
dant sequences. This is a necessary step for data originat-
ing from both screening and whole genome shotgun
sequencing, in order to eliminate alleles of the same locus
or multiple copies of the same allele. Our choice of the
95% cut-off is based on previously published results (for

discussion see Meglécz et al., 2004). Although, the complete
genome sequences are nonredundant, we used the same
method for identification of redundant sequences in order
to obtain results comparable with the other data. Running
the analysis with or without the identification of redundant
sequences for complete genomes suggests that our proce-
dure of eliminating redundant sequences and setting the
cut-off limit to 95% is rather conservative. Indeed, a con-
siderable portion of the sequences classified as redundant
are in fact not redundant but represent different loci grouped
into families. As a result, the proportions of grouped
sequences within species are underestimated. However,
as our principal aim was to compare the proportion of
grouped sequences among the different data sets, the cut-
off value is of little importance as long as it is identical for
all analyses. Furthermore, demonstrating the presence of
microsatellite sequence families with a conservative
method gives an even stronger evidence of their occur-
rences. While using this conservative method, we man-
aged to demonstrate the presence of microsatellite
sequence families based on interlocus similarities of the
flanking regions in a wide variety of insect species from
data of diverse origins. Although the quantification of this
phenomenon is difficult, our results indicate that the propor-
tion of grouped microsatellites varies considerably among
species and taxa. In particular, data from both partial
genomic screens and WGS indicate that in many Lepidop-
tera the proportion of grouped sequences is particularly
high (approximately 20% or more; Fig. 2).

Association between microsatellites and interspersed 
repetitive elements

All sequences were screened for the presence of repetitive
elements. When testing D. melanogaster microsatellites
from the complete genome data set against the Drosophila
repetitive elements bank, 6.4% of the sequences showed
significant similarities to diverse repetitive elements. This
proportion, however, was more than 20 times higher among
grouped sequences (83.5%), than among unique sequen-
ces (3.5%; χ2 = 21315; P < 0.0001). Testing D. melanogaster
microsatellite sequences against the Anopheles repetitive
DNA bank gave similar but much less striking results: 1.1%
sequences showed similarities to repetitive elements in
total, 1.9% among grouped sequences, 0.8% among
uniques. Nevertheless, these proportions remained signifi-
cantly different (χ2 = 19.4; P < 0.0001).

A similar tendency was observed for A. gambiae micro-
satellites. When testing against the Anopheles repetitive
elements bank the proportion of sequences showing simi-
larities to a repetitive element is 40.1% and 3.4% for
grouped and unique sequences, respectively (χ2 = 32142;
P < 0.0001), while against the Drosophila bank these
proportions are 0.6% and 0.3% (χ2 = 54.0; P < 0.0001).
Thus, for a large proportion of grouped sequences in these
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two species, associations between repetitive elements and
microsatellites have been demonstrated. Furthermore, our
results indicate that repetitive element banks are rather
specific for each species or genus, and the sensitivity of
the detection of repetitive elements is strongly reduced for
species in different genera even from the same order.

Screening microsatellite sequences from WGS data for
repetitive elements yielded very similar results for all Dro-
sophila (six species) and Anopheles species as described
above (data not shown). However, only 0.75% (n = 10000)
microsatellites sequences of A. aegypti showed similarities
to the Anopheles repetitive bank, and for all non-Diptera
species this portion was even lower. This resulted in a low
power of detecting the difference between the proportion
of repetitive elements among grouped and unique sequen-
ces. In spite of this, the proportion of the sequences associ-
ated with repetitive elements was still significantly higher
among grouped sequences than among unique ones in
B. mori (data set B; against the Anopheles bank, χ2 = 9.27;
P = 0.0023).

A large number of studies indicate that microsatellites
are more frequent in noncoding regions than in coding ones
(Wang et al., 1994; Edwards et al., 1998; Metzgar et al.,
2000; Li et al., 2002; Tóth et al., 2000). Only tri- and hexa-
nucleotide repeats seem to be more frequent in coding
regions (Morgante et al., 2002), which is probably the con-
sequence of negative selection against frameshift muta-
tions in the coding regions (Metzgar et al., 2000). It is also
known that, in species with large genomes in particular,
noncoding DNA is largely composed of repetitive elements
(Kidwell & Lisch, 2001). For example, 45% of the euchro-
matic DNA in humans corresponds to transposable ele-
ments (Smit, 1999; Lander et al., 2001), and the size of
the genome of maize has been doubled as a result of
retrotransposon insertions (SanMiguel & Bennetzen, 1998).
Association between microsatellites and transposable ele-
ments has been reported in nematodes (Hoekstra et al.,
1997; Johnson et al., 2006), Dipterans (Fagerberg et al.,
2001; Wilder & Hollocher, 2001), rice (Akagi et al., 2001;
Temnykh et al., 2001) and barley (Ramsay et al., 1999).
Similarly, our study clearly demonstrates that a large pro-
portion of Drosophila (six species) and A. gambiae grouped
microsatellites are associated with diverse transposable

elements. Furthermore, we demonstrated the specificity of
the repetitive elements banks to each species/genus. This
indicates that the lack of significant association between
transposable elements and microsatellites for the other
investigated insect species is probably the result of the
scarcity of information on the transposable elements in
those specific species, rather than a true lack of associa-
tion. Thus, it is likely that the presence of microsatellite
families is at least partially the result of the association bet-
ween microsatellites and interspersed repetitive DNA
elements or their remnants.

There are at least three different mechanisms that might
create this kind of microsatellite–transposable element
association. (1) Microsatellites arise at random in the
genome, but they are more likely to be removed from cod-
ing and control regions. In this case, the association would
be incidental. However, with this mechanism, most micro-
satellites are expected to be found near interspersed repet-
itive elements and thus they should become grouped. Our
results do not support this hypothesis. (2) If a microsatellite
arises in a transposable element, the number of micro-
satellite loci can be considerably amplified by transposition.
(iii) Transposons might take an active role in microsatellite
origin if microsatellites arise during transposition. In the two
latter cases, grouped microsatellites are expected to be
associated with transposable elements more often than
unique ones. This is supported by our results. However, dis-
tinguishing between these two scenarios requires more
detailed analyses and it is beyond the scope of this paper.

BLAST against baculovirus sequences

Lepidoptera are commonly infected by baculoviruses (Cory
& Myers, 2003). In order to test the hypothesis of non-insect
amplified DNA, all Lepidoptera microsatellite sequences
were BLASTed against genomes of baculoviruses. As these
analyses did not produce any significant hits, it is unlikely
that virus infection is a cause of the presence of sequences
families in Lepidoptera.

Implications on the use of microsatellites as markers

Although the use of grouped microsatellites as genetic
markers is not impossible (Hoekstra et al., 1997), they are
unlikely to be good candidates for single locus genotyping

Figure 2. Proportion of grouped sequences 
estimated from different type of data. The first 
letters of the three-letter codes refer to the genus 
the second and the third are the first two letters of 
the species names.
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purposes as flanking region similarities can lead to multiple
locus amplifications and unclear banding patterns. Thus
the variability among species in both the proportion of
grouped sequences and the abundance of microsatellites
may explain the large differences in the success/effort ratio
of establishing reliable microsatellite markers for Lepidop-
tera and more generally for insects.

We are aware of two different methods to avoid clones
containing grouped sequences. van’t Hof et al. (2005)
have established a method to eliminate grouped
sequences as a last step of the screening process prior to
sequencing. An alternative approach is to isolate single-
copy DNA from the genome prior to screening for micro-
satellites (Elsik & Williams, 2001), as has recently been
accomplished for Aedes japonicus (Widdel et al., 2005).
Once the screening is done and sequences are available,
it is strongly advised to check microsatellite flanking
sequences for interloci similarities prior to primer design.
The program, MicroFamily (Meglécz, 2007; http://www.up.
univ-mrs.fr/Local/egee/dir/meglecz/MicroFamily.html) can
accomplish this task. However, if only a low number of
clones/sequences are available the fact that a sequence is
found to be unique, does not necessarily indicate its
uniqueness in the genome. The program Primer3 for
designing primers (Rozen & Skaletsky, 2000) has a highly
useful option of screening sequences for interspersed
repeats using human, rodent or Drosophila repetitive
element banks. However, as shown above, the sensitivity
of detecting interspersed repeats from a noncongeneric
repetitive bank is low.

A further problem in Lepidoptera and in many other spe-
cies (Keyghobadi et al., 1999; Harper et al., 2003; Meglécz
et al., 2004; Zhang, 2004; van’t Hof et al., 2005) is the fre-
quent presence of null alleles, even for apparently clearly
amplifying and interpretable microsatellite loci. This prob-
lem still has to be addressed in future research. Hardison
et al. (2003) have demonstrated the covariance of substitu-
tion rate and transposition frequency among different
genomic regions in human and mouse genomes. One
possibility is that transposition frequencies and substitution
rates also covary among species, such that some species
or groups of species have both a high number of trans-
posable elements and high average mutation rates. In these
species, the association between microsatellites and trans-
posable elements can lead to many microsatellites that are
not unique; but, even if amplification is successful, the high
mutation rate in the flanking regions may lead to a high likeli-
hood of null alleles.

Conclusions

Microsatellites are used as highly polymorphic, single
locus, co-dominant markers. However, our results demon-
strated that in insects, a variable proportion of microsatellites

cluster into sequence families based on similarities in their
flanking region. In some species, this phenomenon, in
association with a relatively low abundance of micro-
satellites, renders the isolation of reliable microsatellite
markers particularly difficult.

The association between microsatellite sequence fami-
lies and interspersed repetitive elements suggests a mech-
anism for the creation and/or amplification of microsatellites
and thus the presence of such microsatellite families, and
clearly indicates that the behaviour and evolution of micro-
satellite sequences can only be fully understood within a
larger genomic context.

Experimental procedures

Cleaning and extraction of sequences

Sequences from screening partial libraries Microsatellite sequ-
ence data were collected from 23 species, including 16
Lepidoptera and seven other insect species (two Diptera, two
Coleoptera, two Trichoptera, one Hemiptera). For each species, all
readable, microsatellite-containing, sequences resulting from one
or more screenings of partial genomic libraries were analysed
(Table 3). Microsatellites with motifs of 1–6 bp were identified. For
the motif of a single base at least eight, for all other motifs at least
four uninterrupted repetitions were necessary to retain the
sequence.

Sequences were edited by (1) replacing all characters other
than ACGT by N; (2) by deleting the extremities if they contained
more than two Ns in the 10 most extreme base pairs; and (3) by
removing vector and adapter contamination if the sequence pro-
duced a BLAST hit (e = 1E-3) against the UniVec vector base of
NCBI (ftp://ftp.ncbi.nih.gov/pub/UniVec) or the adaptors/linkers
used during microsatellite isolation.

GenBank microsatellite entries All microsatellite sequences of all
insects were downloaded from GenBank (10 January 2006) and
treated species by species, as described above.

Whole Genome Shotgun All contigs of WGS sequencing
projects were downloaded from NCBI (www.ncbi.nlm.nih.gov/
Genomes; 21 October 2005) for 10 insect species [Lepidoptera:
(1) Bombyx mori (data set A: ADDK01000001–01066482, Xia
et al., 2004; data set B: BAAB01000001–01213289, Mita et al.,
2004); Diptera: (2) Anopheles gambiae (AAAB01000001–
01069724, Holt et al., 2002), (3) Aedes aegypti (AAGE01000001–
01655164, The Institute for Genomic Research, Broad Institute,
http://msc.tigr.org/aedes/release.shtml), (4) Drosophila mela-
nogaster (AABU01000001–01002756, Celniker et al., 2002), (5)
Drosophila simulans (AAGH01000001–01025284, Drosophila simu-
lans Sequencing Consortium, Genome Sequencing Center at
Washington University School of Medicine in St Louis, http://
genome.wustl.edu/genome_group_index.cgi), (6) Drosophila
pseudoobscura (AADE01000001–01012826, Richards et al., 2005),
(7) Drosophila yakuba (AAEU01000001–01013569, Genome
Sequencing Center at Washington University School of Medicine
in St Louis, http://genome.wustl.edu/genome_group_index.cgi),
(8) Drosophila persimilis (AAIZ01000001–01026813, Broad
Institute, http://www.broad.mit.edu/tools/data/data-vert.html),

http://www.up
ftp://ftp.ncbi.nih.gov/pub/UniVec
http://msc.tigr.org/aedes/release.shtml
http://
http://genome.wustl.edu/genome_group_index.cgi
http://www.broad.mit.edu/tools/data/data-vert.html),
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(9) Drosophila sechelia (AAKO01000001–01021425, Broad
Institute, http://www.broad.mit.edu/tools/data/data-vert.html);
Hymenoptera: (10) Apis mellifera (AADG01000001–01018946,
The Honeybee Genome Sequencing Consortium, 2006).

If sequences contained more than 10 consecutive Ns, the Ns
were cut out and the sequences were not joined together. Then,
all microsatellites containing at least four repeat units of di-, tri-,
tetra-, penta- and hexanucleotide motifs, or at least eight single
nucleotide repeats, with 150 bp flanking sequence on each side
were extracted. If flanking regions of different microsatellites were
overlapping (i.e. when two microsatellites were separated by less
than 300 bp flanking sequences), they were pooled into the same

sequence to avoid redundancy. Thus, we obtained short
sequences with one or more microsatellites in each and 150 bp
flanking sequence on each extremity. These were used for further
analyses and we refer to each such entity as a ‘sequence’. In this
way, 11 pools of sequences were obtained, one from each WGS
data set. From each pool, 10 000 sequences were randomly
selected for comparison of the flanking regions.

Complete genomes All microsatellites from the complete
genome of D. melanogaster (NT_037436, NT_033779,
NT_033778, NT_033777, NC_004354, NC_004353; 23 July
2005; Adams et al., 2000) and A. gambiae (NC_004818,

Table 3. Number of available sequences (n) and their accession numbers for each species from screening partial genomic libraries

Species Order n Accession nos References

Arctia caja Lepidoptera 86 AJ809344–809406 Anderson et al. (2006)
AJ829727–829729
AJ867349–867385

Arhopala epimuta Lepidoptera 60 DQ380801–380855 Fauvelot (2005)
AY974048–974052

Busseola fusca Lepidoptera 63 AY884595–884602 Faure & Silvain (2005)
DQ393596–393652

Bombyx mori Lepidoptera 37 DQ383475–383511 Reddy et al. (1999)
AY566203

Coenonympha hero Lepidoptera 45 AF499094–499100 Cassel (2002)
AY396747
DQ399357–399393

Cydia pomonella Lepidoptera 87 AY640590–640613 Franck et al. (2005)
DQ393893–393955

Drupadia theda Lepidoptera 81 DQ380724–380800 Fauvelot (2005)
AY974054–974057

Euphydryas aurinia Lepidoptera 89 AY491782–491857 Péténian et al. (2005)
Ostrinia nubilalis Lepidoptera 25 AY642971–642974 Coates et al. (2005)

DQ375208–375226
Parnassius apollo Lepidoptera 103 AY491858–491940 Péténian et al. (2005)
Parnassius mnemosyne Lepidoptera 31 DQ373968–373998 Meglécz & Solignac (1998)
Parnassius smintheus Lepidoptera 19 AF1333661–133364 Keyghobadi et al. (1999, 2002)

AY048082–048096
Polyommatus bellargus Lepidoptera 22 AF276048–276052 Harper et al. (2000, 2003)

DQ396449–396465
Plutella xylostella Lepidoptera 127 DQ649107–649234 Unpublished
Reissita simonyi Lepidoptera 35 AY250742–250755 Klutsch et al. (2003)

DQ406603–406623
Zale galbanata Lepidoptera 9 AF484811–484815 Caldas et al. (2002)

DQ372958–372962
Aphis fabae Hemiptera 99 AY506847–506854 D’Acier et al. (2004)

DQ295044–295055
DQ381847–381924

Amphitmetus transversus Coleoptera 44 AY430192–430197 Patt et al. (2004b)
DQ419530–419568

Culex pipiens Diptera 24 AY423738–423745 Keyghobadi et al. (2004); Smith et al. (2005)
 DQ388481–388496

Culex quinquefasciatus Diptera 21 AY958073–958078 Keyghobadi et al. (2004); Smith et al. (2005)
DQ388497–388511

Monolepta vincta Coleoptera 34 AY575862–575868 Patt et al. (2004a)
DQ415989–416015

Plectrocnemia conspersa Trichoptera 66 AY634882–634887 Wilcock et al. (2001)
EF068319–068376

Polycentropus flavomaculatus Trichoptera 29 AJ429150–429164 Dawson & Wilcock (2002)
AJ810098–810101
AJ810103–810104
AJ810106–810107
AJ810109–810110
AJ810113–810116

http://www.broad.mit.edu/tools/data/data-vert.html
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NT_078265, NT_078266, NT_078267, NT_078268; 23 July 2005;
Severson et al., 2004) were extracted as described for WGS
sequences.

Sequence analyses

Sequences were analysed separately for each species and for
each type of sequence origin (i.e. screening partial genomic librar-
ies, GenBank entries, WGS and complete genome). In this way we
treated 23 data sets from screenings, 415 data sets from GenBank
entries, 11 data sets from WGS and two data sets from complete
genomes. Pure microsatellite repeat regions (as defined above)
were replaced by Ns in order to examine only the flanking regions
in the successive analyses. Each data set was blasted against
itself with e = 1E-40, thus all BLASTn results presented in this paper
represent only intraspecies comparisons. Sequences were sorted
into four categories based on the results of the BLASTn. They were
classified as: (1) Unique if no similarities were observed to any
other sequences of the same data set; (2) unBLASTable if sequence
had no hits at all, not even with itself (if the flanking region is too
short or repetitive, but not a perfect microsatellite, BLAST masks the
region; thus the sequence becomes uninformative and does not
align even with itself); or (3) Redundant, if the identity to another
sequence was higher than 95% along the whole flanking
sequence. All nonredundant sequences that produced a signifi-
cant hit with at least one different sequence were classified as (4)
Grouped. The proportion of grouped sequences was calculated
after eliminating unBLASTable and redundant sequences (e.g.
number of grouped sequences/(number of grouped sequen-
ces + number of unique sequences)). For the whole genome
sequences, both the above procedure was applied as well as the
same process without identifying ‘redundant’ sequences.

All these operations were conducted by Perl programs written by
the first author (available upon request), MICROFAMILY (Meglécz,
2007), BLASTn-2.2.10 (ftp://ftp.ncbi.nih.gov/blast/executable/) and
CLUSTALW1.83 (Higgins et al., 1991).

Repetitive sequence banks We scanned all the sequences of
our data sets against databases of repetitive sequences of D. mel-
anogaster and A. gambiae in order to detect the presence of inter-
spersed repetitive elements. This analysis was performed using
the program RepeatMasker2 (A.F.A. Smit and P. Green, unpub-
lished data, http://repeatmasker.genome.washington.edu/RM/
webrepeatmaskerhelp.html) and its databases using default sen-
sitivity parameters. The proportion of grouped vs. unique
sequences that showed similarities to repetitive elements were
compared by χ2 tests conducted by the R stats package, version
2.0.1 (R Development Core Team, 2004).

Comparison with baculovirus sequences All Lepidoptera
microsatellite sequence data sets were BLASTed against the 19
genomes of baculoviruses available in GenBank (downloaded 13
December 2005):
NC_007383.1, Trichoplusia ni SNPV virus;
NC_007151.1, Chrysodeixis chalcites nucleopolyhedrovirus;
NC_005137.2, Choristoneura fumiferana defective nucleopolyhe-
drovirus;
NC_004778.3, Choristoneura fumiferana MNPV;
NC_004117.1, Mamestra configurata nucleopolyhedrovirus B;
NC_003094.2, Helicoverpa armigera nuclear polyhedrosis virus;
NC_004690.1 Adoxophyes honmai nucleopolyhedrovirus;

NC_005068.1, Cryptophlebia leucotreta granulovirus;
NC_001962.1, Bombyx mori nucleopolyhedrovirus;
NC_002169.1, Spodoptera exigua nucleopolyhedrovirus;
NC_005038.1, Adoxophyes orana granulovirus;
NC_004156.1, Helothis zea virus 1;
NC_004062.1, Phthorimaea operculella granulovirus;
NC_003102.1, Spodoptera litura nucleopolyhedrovirus;
NC_002816.1, Cydia pomonella granulovirus;
NC_002654.1, Heliocoverpa armigera nucleopolyhedrovirus G4;
NC_001982.1, Helicoverpa armigera stunt virus RNA 2;
NC_001973.1, Lymantria dispar nucleopolyhedrovirus;
NC_001623.1, Autographa californica nucleopolyhedrovirus.
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