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Abstract

Microsatellites or Single Sequence Repeats (SSRs) are extensively employed in plant genetics studies, using both

low and high throughput genotyping approaches. Motivated by the importance of these sequences over the last de-

cades this review aims to address some theoretical aspects of SSRs, including definition, characterization and bio-

logical function. The methodologies for the development of SSR loci, genotyping and their applications as molecular

markers are also reviewed. Finally, two data surveys are presented. The first was conducted using the main data-

base of Web of Science, prospecting for articles published over the period from 2010 to 2015, resulting in approxi-

mately 930 records. The second survey was focused on papers that aimed at SSR marker development, published in

the American Journal of Botany’s Primer Notes and Protocols in Plant Sciences (over 2013 up to 2015), resulting in a

total of 87 publications. This scenario confirms the current relevance of SSRs and indicates their continuous utiliza-

tion in plant science.
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Brief introduction

Ongoing technological advances in all fields of
knowledge mean that we cannot be sure which technolo-
gies will survive the impact of innovation, and for how
long. Over the years, advances in molecular genetics meth-
odology have lead to widespread use of codominant molec-
ular markers, especially Simple Sequence Repeats (SSRs)
and, more recently, Single Nucleotide Polymorphisms
(SNPs). This paper attempts to present an overview of how
the concept of SSRs has evolved and how their biological
functions were discovered. We also address the develop-
ment of methods for identifying polymorphic SSRs, and the
application of these markers in genetic analysis. It reveals
that much remains to be explored regarding these se-
quences, particularly in relation to cultivated and wild
plants.

Definition and genome occurrence of

microsatellites and their use as genetic markers

Microsatellites (1 to 10 nucleotides) and mini-
satellites (> 10 nucleotides) are subcategories of tandem re-
peats (TRs) that, together with the predominant inter-
spersed repeats (or remnants of transposable elements),
make up genomic repetitive regions. TRs are evolutionarily

relevant due to their instability. They mutate at rates be-
tween 103 and 106 per cell generation i.e., up to 10 orders of
magnitude greater than point mutations (Gemayel et al.,
2012).

Microsatellites, Simple Sequence Repeats (SSR),
Short Tandem Repeats (STR) and Simple Sequence Length
Polymorphisms (SSLP) are found in prokaryotes and
eukaryotes. They are widely distributed throughout the ge-
nome, especially in the euchromatin of eukaryotes, and
coding and non-coding nuclear and organellar DNA
(Pérez-Jiménez et al., 2013; Phumichai et al., 2015).

There is a lot of evidence to back up the hypothesis
that SSRs are not randomly distributed along the genome.
In a comparative study, SSR distribution was found to be
highly non-random and to vary a great deal in different re-
gions of the genes of Arabidopsis thaliana and rice (Law-
son and Zhang, 2006). In the major cereals, for instance,
authors have tended to categorize microsatellites based on
different criteria. In barley and Avena species, SSRs were
classified in two types: those with unique sequences on ei-
ther flank and those intimately associated with retrotrans-
posons and other dispersed repetitive elements. The second
type was found to be less polymorphic in oat cultivars
(Ramsay et al., 1999; Li et al., 2000). Using publicly avail-
able DNA sequence information on the rice genome,
Temnykh et al. (2001) categorized microsatellites based on
length and noticed that longer perfect repeats (� 20 nucleo-
tides) were highly polymorphic. Microsatellites with SSRs
shorter than 12 bp were found to have a mutation potential

Genetics and Molecular Biology, 39, 3, 312-328 (2016)
Copyright © 2016, Sociedade Brasileira de Genética. Printed in Brazil
DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2016-0027

Send correspondence to Maria Lucia Carneiro Vieira. USP/ESALQ,

P.O. Box 83, 13400-970, Piracicaba, SP, Brazil. E-mail:

mlcvieir@usp.br

Review Article



no different from that of most unique sequences. Moreover,
authors reported that ~80% of GC-rich trinucleotides oc-
curred in exons, whereas AT-rich trinucleotides were
distributed roughly evenly throughout all genomic compo-
nents (coding sequences, untranslated regions, introns and
intergenic spaces). Tetranucleotide SSRs were predomi-
nantly situated in non-coding, mainly intergenic regions of
the rice genome. It was later established that the SSR distri-
butions in different regions of the maize genome were
non-random, and that density was highest in untranslated
regions (UTR), gradually falling off in the promotor,
intron, intergenic, and coding sequence regions, in that or-
der (Qu and Liu, 2013).

On the other hand, comparisons of microsatellite dis-
tributions in Rumex acetosa and Silene latifolia chromo-
somes showed that some motifs (e.g. CAA or TAA) are
strongly accumulated in non-recombining regions of the
sex chromosome (Y) in both plant species (Kejnovsky et

al., 2009). Similarly, a very large accumulation consisting
mainly of microsatellites on the heterochromatic W chro-
mosome was reported in a group of fish species (Leporinus

spp.) that share a ZW sex system, showing an interconnec-
tion between heterochromatinization and the accumulation
of repetitive sequences, which has been proposed as the ba-
sis of sex chromosome evolution (Poltronieri et al., 2014).

Generally speaking, it can be affirmed that the occur-
rence of SSRs is lower in gene regions, due to the fact that
SSRs have a high mutation rate that could compromise
gene expression. Studies indicate that in coding regions
there is a predominance of SSRs with gene motifs of the tri-
and hexanucleotide type, the result of selection pressure
against mutations that alter the reading frame (Zhang et al.,
2004; Xu et al., 2013b). In humans, the consensus is that
SSRs can also originate in coding regions, leading to the
appearance of repetitive patterns in protein sequences. In
protein sequence database studies, it was reported that tan-
dem repeats are common in many proteins, and the mecha-
nisms involved in their genesis may contribute to the rapid
evolution of proteins (Katti et al., 2000; Huntley and Gol-
ding, 2000).

Repeat polymorphisms usually result from the addi-
tion or deletion of the entire repeat units or motifs. There-
fore, different individuals exhibit variations as differences
in repeat numbers. In other words, the polymorphisms ob-
served in SSRs are the result of differences in the number of
repeats of the motif caused by polymerase strand-slippage
in DNA replication or by recombination errors.
Strand-slippage replication is a DNA replication error in
which the template and nascent strands are mismatched.
This means that the template strand can loop out, causing
contraction. The nascent strand can also loop out, leading to
repeat expansion. Recombination events, such as unequal
crossing over and gene conversion, may additionally lead
to SSR sequence contractions and expansions. According
to several authors, the longer and purer the repeat, the

higher the mutation frequency, whereas shorter repeats
with lower purity have a lower mutation frequency.

Mutations that have evaded correction by the DNA
mismatch repair system form new alleles at SSR loci. For
this reason, different alleles may exist at a given SSR locus,
which means that SSRs are more informative than other
molecular markers, including SNPs.

As for their composition, SSRs can be classified ac-
cording to motif as: i) perfect if composed entirely of re-
peats of a single motif; ii) imperfect if a base pair not
belonging to the motif occurs between repeats; iii) inter-
rupted if a sequence of a few base pairs is inserted into the
motif; or iv) composite if formed by multiple, adjacent, re-
petitive motifs (reviewed in Oliveira et al., 2006; revisited
by Mason, 2015).

SSRs have been the most widely used markers for
genotyping plants over the past 20 years because they are
highly informative, codominant, multi-allele genetic mark-
ers that are experimentally reproducible and transferable
among related species (Mason, 2015). In particular, SSRs
are useful for wild species (i) in studies of diversity mea-
sured on the basis of genetic distance; (ii) to estimate gene
flow and crossing over rates; and (iii) in evolutionary stud-
ies, above all to infer infraspecific genetic relations. On the
other hand, for cultivated plants SSRs are commonly used
for (i) constructing linkage maps; (ii) mapping loci in-
volved in quantitative traits (QTL); (iii) estimating the
degree of kinship between genotypes; (iv) using marker-
assisted selection; and (v) defining cultivar DNA finger-
prints (Jonah et al., 2011; Kalia et al., 2011). SSRs have
been particularly useful for generating integrated maps for
plant species in which full-sib families are used for con-
structing linkage maps (Garcia et al., 2006; Souza et al.,
2013; Pereira et al., 2013), and for combining genetic,
physical, and sequence-based maps (Temnykh, 2001), pro-
viding breeders and geneticists with a tool to link pheno-
typic and genotypic variation (see Mammadov et al., 2012;
Hayward et al., 2015 for review articles).

These markers are enormously useful in studies of
population structure, genetic mapping, and evolutionary
processes. SSRs with core repeats 3 to 5 nucleotides long
are preferred in forensics and parentage analysis. It is worth
noting that a number of SSR search algorithms have been
developed, including TRF (Benson, 1999), SSRIT
(Temnykh, 2001), MISA (Thiel et al., 2003), SSRFinder
(Gao et al., 2003), TROLL (Castelo et al., 2002) and
SciRoKo (Kofler et al., 2007).

Detailing the biological functions of SSRs

Despite the wide applicability of SSRs as genetic
markers since their discovery in the 1980s, little is known
about the biological importance of microsatellites (Tautz
and Renz, 1984), especially in plants. Morgante et al.

(2002) estimated the density of SSRs in Arabidopsis

thaliana, rice (Oryza sativa), soybean (Glycine max),
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maize (Zea mays) and wheat (Triticum aestivum) and ob-
served a high frequency of SSRs in transcribed regions, es-
pecially in untranslated regions (UTRs). Interestingly,
there are substantial data indicating that SSR expansions or
contractions in protein-coding regions can lead to a gain or
loss of gene function via frameshift mutation or expanded
toxic mRNAs. SSR variations in 5’-UTRs could regulate
gene expression by affecting transcription and translation,
but expansions in the 3’-UTRs cause transcription slippage
and produce expanded mRNA, which can disrupt splicing
and may disrupt other cellular functions. Intronic SSRs can
affect gene transcription, mRNA splicing, or export to cy-
toplasm. Triplet SSRs located in UTRs or introns can also
induce heterochromatin-mediated-like gene silencing. All
these effects can eventually lead to phenotypic changes (Li
et al., 2004; Nalavade et al., 2013).

In fact, variation in the length of DNA triplet repeats
has been linked to phenotypic variability in microbes and to
several human disorders, including Huntington’s disease
which is caused mainly by (CAG)n expansions. Moreover,
the frequencies of different codon repeats vary consider-
ably depending on the type of encoded amino acid. In
plants, a triplet repeat-associated genetic defect was identi-
fied in a wild variety of A. thaliana that carries a dramati-
cally expanded TTC/GAA repeat in the intron of the gene
encoding the large subunit 1 of the isopropyl malate iso-
merase. Expansion of the repeat causes an environment-
dependent reduction in the enzyme’s activity and severely
impairs plant growth, whereas contraction of the expanded
repeat can reverse the detrimental effect on the phenotype
(Sureshkumar et al., 2009).

Historically, tandem repeats have been designated as
nonfunctional DNA, mainly because they are highly unsta-
ble. With the exception of tandem repeats involved in hu-
man neurodegenerative diseases, repeat variation was often
believed to be neutral with no phenotypic consequences
(see Gemayel et al., 2012).

The detection of microsatellites in transcripts and reg-
ulatory regions of the genome encouraged scientific inter-
est in discovering their possible biological functions. More
and more publications have presented evidence that micro-
satellites play a role in relevant processes, such as the regu-
lation of transcription and translation, organization of
chromatin, genome size and the cell cycle (Nevo, 2001; Li
et al., 2004; Gao et al., 2013).

As mentioned above, most of the knowledge acquired
on microsatellites occurring in genes was obtained by
studying humans and animals, indicating their relationship
with the manifestation of disease. In bacteria, maintaining
numerous microsatellite variants provides a source of
highly mutable sequences that enable prompt generation of
novel variations, ensuring the survival of the bacterial pop-
ulation in widely varying environments, and adaptation to
pathogenesis and virulence. Nevertheless, few studies have
focused on whether the typical instability of microsatellites

is linked to phenotypic effects in plants (Li et al., 2004; Gao
et al., 2013). However, thanks to whole genome sequenc-
ing the important role repeats might play in genomes is be-
ing elucidated.

The consensus is that the biological function of a
microsatellite is related to its position in the genome. For
instance, SSRs in 5’-UTRs serve as protein binding sites,
thereby regulating gene translation and protein component
and function, as classically demonstrated for the human
genes for thymidylate synthase (Horie et al., 1995) and
calmodulin-1 (Toutenhoofd et al., 1998). Ten years later,
SSR densities in different regions (5’-UTRs, introns, cod-
ing exons, 3’-UTRs, and upstream regions) in housekeep-
ing and tissue-specific genes in human and mouse were
compared. Specifically, SSRs in the 5’-UTRs of house-
keeping genes are more abundant than in tissue-specific
genes. Additionally, it was suggested that SSRs may have
an effect on gene expression and may play an important
role in contributing to the different expression profiles of
housekeeping and tissue-specific genes (Lawson and
Zhang, 2008).

In plants, despite the fact that a high density of SSRs
has been detected in 5’-UTR regions (Fujimori et al., 2003;
Tranbarger et al., 2012; Zhao et al., 2014), there are few
studies verifying their effect on the regulation of gene ex-
pression. Additionally, tri- and hexanucleotide coding re-
peats appear to be controlled by stronger mutation pressure
in coding regions than in other gene regions. Consequently,
in plants there is less allele variability in exonic SSRs than
in intronic SSRs. The biased distribution of microsatellites
and microsatellite motifs also suggests that microsatellites
of different types play different roles in different gene re-
gions, such as within promoters, introns and exons in plants
(Li et al., 2004; Gemayel et al., 2012; Gao et al., 2013).

Comparison among SSRs located in CDS, 5’ UTR
and 3’ UTR in the transcriptome of Sargassum thunbergii,
an economically important brown macroalgae has con-
firmed that UTR regions harbored more microsatellite
compared to the CDS, and the length variation of
microsatellite was significantly affected by repeat motif
size. Remarkably were the results relative to the function of
microsatellite-containing transcripts. After an enrichment
analysis, four pathways, i.e. ubiquitin-mediated proteoly-
sis, RNA degradation, spliceosome and terpenoid back-
bone biosynthesis were obtained, providing new insights
into the function and evolution of microsatellite in tran-
script sequences (Liu et al., 2016).

Microsatellites located in introns can play a role in the
transport and alternative splicing of mRNA and in gene si-
lencing, as well as in the regulation of transcription, acting
independently or in combination with SSRs present in
5’-UTR regions (Kalia et al., 2011). A number of examples
of the effects of intronic SSRs in humans were reviewed by
Li et al. (2004), including an increase in the expression of
the type I collagen alpha2 gene, caused by the presence of
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(CA)n repeats in the 5’-UTR region and (GT)n repeats in the
first intron.

The 3’-UTR region is also subject to alterations due
to the presence of SSRs which cause slippage during the
transcription or modification of target regions whose trans-
lation is controlled by miRNAs (Li et al., 2004; Gao et al.,
2013). An example of the effect of polymerase slippage in
3’-UTR regions is the multisystem disorder myotonic dys-
trophy type 1, caused by expansion of a CTG trinucleotide
repeat. Normal alleles have 5 to 34 CTG repeats, but alleles
with > 50 CTG repeats are associated with disease manifes-
tations (see Ranum and Day, 2002; Li et al., 2004; Bird,
2015).

Finally, microsatellites are known to affect expres-
sion if present in gene promoters and intergenic regions. In
the promotor, SSRs render gene expression vulnerable to
possible alterations caused by expansion or contraction of
repeat sequences. These alterations result in an increase or
reduction in the level of gene expression caused by changes
in transcription factor linkage sites and can even culminate

in gene silencing. Tandem repeats in intergenic regions can
cause changes in the secondary structure of the DNA by
forming loops and altering the chromatin, which indirectly
results in alterations in the expression of nearby genes (Gao
et al., 2013).

In spite of the scarcity of studies on the functional
changes brought about by SSRs in plants, their effects are
believed to be similar to those found in humans. For in-
stance, the occurrence of trinucleotide repeats in
Arabidopsis genome was found to be twice as frequent in
coding regions, suggesting selection for certain stretches of
amino acids (Morgante et al., 2002). Using data generated
in our laboratory, we have compared the percentage of
SSRs having mono-, di-, tri, tetra-, penta and
hexanucleotide motifs in expressed sequences, gene-rich
regions, BAC-end sequences and chloroplast genome se-
quences of Passiflora edulis, and identified the prevalent
motif in each case. We also noticed the prevalence of tri-
and hexanucleotide motifs in expressed sequences (Figu-
re 1).
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Figure 1 - The percentage of mono-, di-, tri-, tetra-, penta- and hexanucleotides in the microsatellites found in expressed sequences, gene-rich regions,
BAC-end sequences and in the chloroplast genome of Passiflora edulis (Passifloraceae) (A); the percentage of the most common motif is displayed for
each case (B).



Recently, based on the genomes available in the
Phytozome database, Zhao et al. (2014) analyzed the distri-
bution of tandem repeats in 29 species of terrestrial plants
and two species of algae, in which the density of repeat se-
quences was higher in introns and coding sequences; in
plants, 5’-UTR and upstream intergenic 200 nucleotide re-
gions had the first and second highest densities.

In cDNA libraries constructed using plant and repro-
ductive tissues of Elaeis guineensis, SSRs were observed in
both coding regions and UTRs (Tranbarger et al., 2012).
The majority were identified in open reading frames, indi-
cating a possible effect on the gene product and conse-
quently on gene function. On the other hand, mutations in
SSRs located in UTRs could affect transcription, transla-
tion or transcript splicing (Tranbarger et al., 2012).

An important example of the functioning of SSRs in
plants was reported by Liu et al. (2014b) using a high-
throughput sequencing approach to characterize miRNAs
and their targeted transcripts in different tissues of sweet
orange. These miRNAs were evenly distributed across the
genome in several small clusters, and 69 pre-miRNAs were
co-localized with SSRs. Noticeably, the loop size of a par-
ticular pre-miRNA was influenced by the repeat number of
the CUU codon. Another important aspect is the instability
of microsatellites. Studies conducted on transgenic plants
of A. thaliana showed that this instability increases as the
plant ages, mainly due to a drop in the efficiency of DNA
repair mechanisms (Golubov et al., 2010). This peculiarity
means that SSR markers can be used to assess the impacts
of mutagenic contaminants. Mutagenesis induced in Pisum

sativum by high doses of lead was detected based on the in-

stability of microsatellites at a locus involved in
metabolizing glutamine (Rodriguez et al., 2013).

Microsatellite alterations associated with diseases in
humans are widely known and can give the false impres-
sion that the effects of these mutations are predominantly
adverse. On the contrary, some examples provide evidence
that SSR alleles can offer potential selective advantages
(Kashi and King, 2006). It was therefore time to abandon
the presumption that SSRs are junk DNA. SSRs are cur-
rently qualified as relevant to population adaptation and
phenotypic plasticity within and across generations and
gene-associated tandem repeats act as evolutionary facilita-
tors, providing abundant, robust variation and thus en-
abling rapid development of new forms (Nevo, 2001; Kashi
and King, 2006).

Development of SSR markers, including de
novo nucleotide sequences for finding SSRs

The development of SSR markers can basically be di-
vided into the following stages: (i) prior knowledge of nu-
cleotide sequences in which SSRs occur; (ii) design of
oligonucleotides (or primers) complementary to the regions
flanking the SSR; (iii) validation of primers by PCR and
electrophoresis of the product of the reaction, and (iv) de-
tection of polymorphisms among individuals (Mason,
2015). A schematic workflow showing how an SSR marker
can be obtained is given in Figure 2. Interestingly, the effi-
ciency of SSR marker development was found to be associ-
ated with the microsatellite class. In rice, for instance, the
rate of successful amplification varied from 31.7% (AT re-
peats) up to 87% (GAA repeats). The following figures
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were observed for other SSR classes: GA, 83.8%; CA,
71.8%; GC-rich trinucleotides, 64.45%; ATT, 78,3%; CAT
and CAA, 83,3% and tetranucleotides, 71.4% (Temnykh et

al., 2001).
Microsatellites were originally developed from both

coding and non-coding regions of plant genomes, and sev-
eral sources were used to search for SSRs, including a vari-
ety of DNA libraries (genomic, genomic-enriched for SSR,
bacterial artificial chromosome and cDNA libraries), as
well as public databases, including expressed sequence tag
(EST) databases (see Hanai et al., 2007).

In prospecting for SSRs, the first step consists of con-
structing enriched genomic libraries and various enrich-
ment methods have been successfully developed (Billotte
et al., 1999; Maio and Castro, 2013). To construct and se-
quence genomic libraries, the DNA is fragmented, ligated
to adaptors and inserted into vectors for transforming Esch-

erichia coli. Most protocols involve a stage of enrichment
for repetitive sequences that can be achieved using selec-
tive hybridization, PCR or both techniques (Senan et al.,
2014). In enrichment by hybridization, positive clones are
detected using radioactively or chemically labeled SSR
probes. Finally, these clones are selected by PCR amplifi-
cation and sequencing (Semagn et al., 2006; Blair et al.,
2009). Another way of enriching a library is to use bio-
tinized SSR probes that are captured by streptavidin-coated
beads (Nunome et al., 2006). The captured DNA is eluted,
amplified, cloned and sequenced. The enriched libraries are
screened to identify clones containing SSRs, producing the
subsample of repetitive sequences that is intrinsic to this
approach. PCR-based methods can bias the sampling of re-
petitive sequences in non-enriched libraries, since fragment
selection and amplification are dependent on complemen-
tarity with specific primers for the SSR and cloning vector.
However, non-enriched libraries and alternative methods
derived from other molecular markers (e.g. RAPD and
AFLP) have also been used to find SSRs (see Senan et al.,
2014).

The advances made in Next Generation Sequencing
(NGS) have provided a new scenario for detecting micro-
satellites. Various NGS-based projects have been devel-
oped over the last few decades, generating an enormous
quantity of sequences made available in public databases
and widely used for prospecting for microsatellites. Auto-
mation of the original sequencing method proposed by
Sanger and Coulson (1975) has made it possible to se-
quence the complete genome of A. thaliana (Arabidopsis
Genome Initiative, 2000). However, because of the high
cost of the Sanger method when sequencing complete
genomes, it has been replaced by NGS platforms or a com-
bination of both methods (Schnable et al., 2009).

NGS has been very useful for various studies, includ-
ing prospecting for new SSR markers. Successors of the
Sanger sequencing method include the 454 FLX (Roche),
Solexa (Illumina), SOLiD (Applied Biosystems) and

HeliScope True Single Molecule Sequencing (Helicos)
platforms. Third generation platforms are also currently
available, including a platform developed by Pacific Bio-
sciences (PacBio), based on a new sequencing technology,
SMRT sequencing, which has the advantage of producing
longer DNA reads.

Each platform has specific characteristics in terms of
the number and size of reads generated, run time, as well as
the accuracy and cost of each base read, with both advan-
tages and disadvantages compared to other platforms (Egan
et al., 2012). In order to advice researchers in sequencing
technology choice, Alic et al. (2016) published a review
about different high-throughput sequencing methods and
50 stand-alone softwares used to control errors. Control er-
ror analysis is one of the most important steps in sequenc-
ing data analysis, mainly in de novo sequencing projects,
that lack a reference genome. Furthermore, sequences that
contain repetitive regions are challenges to be overcome by
error correction methods, due to their vulnerability to er-
rors. Initiatives for sequencing the complete genomes of
various species use combinations of different platforms
with the aim of incorporating the best features of each and
extracting the maximum amount of information.

Currently, 454 and Illumina are the NGS platforms
most widely used for developing SSR markers. However,
the PacBio SMRT sequencing technology is being consid-
ered an economically viable alternative for discovering
microsatellites (Grohme et al., 2013).

In-silico prospecting and transferability of SSR

markers

With the advent of NGS, it was necessary to create
databases for storing the information generated. In addition
to genomic sequences, a large quantity of expressed se-
quence tags (EST) derived from cDNA libraries (i.e. origi-
nating from mRNA) were also generated. The online
database platforms for nucleotide, protein and transcript
data available for the majority of plant species are relatively
small when compared to model species, such as A. thaliana,
Glycine max, O. sativa and Z. mays. Since the protocols for
obtaining and isolating de novo SSR loci can be expensive
and not viable in some cases, the investigation of these ele-
ments in silico (i.e. in the actual databases) is a promising
strategy. This approach is possible only because SSR loci
primers are transferable among different, phylogenetically
matching species (Kuleung et al., 2004).

The possibility of interchanging this genetic informa-
tion is ascribed to the synteny between matching species.
Although there are some exceptions resulting from struc-
tural rearrangements, synteny is an import attribute of plant
genomes and is inversely proportional to the phylogenetic
distance between species (Kaló et al., 2004). The conserva-
tion of this information could indicate that these loci confer
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evolutionary advantages, and are therefore subject to low
selection pressure (Zhu, 2005).

Microsatellites found in the chloroplast genome of
higher plants (cpSSRs) consist basically of mononucleotide
repeats (A and T) (Bryan et al., 1999). Contrarily, we have
found 50, 25, 8, 12 and 5% of mono-, di-, tri-, tetra- and
hexanucleotides respectively in the microsatellites of the
chloroplast genome of Passiflora edulis (Figure 1A), but
we have confirmed that mononucleotide repeats consisted
predominantly of A/T repeats (98%, Figure 1B). In terms of
transferability, cpSSRs are particularly promising for the
study of phylogenetically distant species, since the regions
flanking them are strongly conserved, so that universal
primers can be developed (Weising and Gardner, 1999;
Ebert and Peakall, 2009).

Genotyping

After identifying the sequences containing SSRs,
specific primers must be synthesized (18 and 25 bp in
length), complementary to the flanking regions, followed
by amplification and polymorphism testing. According to
Guichoux et al. (2011), a number of experimental problems
can arise during SSR amplification, which can compromise
allele calling and binning, resulting in increased error rates
or the need for extensive manual corrections. These authors
itemized possible solutions for aiding researchers to solve
these problems, such as stuttering or shadow bands,
non-template addition of a nucleotide by the Taq polymer-
ase, primer mispriming, etc.

Once the SSR markers have been produced, genotyp-
ing can begin. It is a relatively easy and low-cost procedure.
The allele variants of a given SSR locus can be identified by
agarose gel electrophoresis (AGE) or polyacrylamide gel
electrophoresis (PAGE), low-complexity methods used
routinely in molecular genetics laboratories. PAGE geno-
typing is more labor intensive but provides better resolu-
tion, allowing identification of given polymorphisms for a
single base pair (Penha et al., 2013; Mason, 2015). Alterna-
tively, marked SSR primers can be synthesized with fluo-
rescent markers for genotyping by capillary electrophoresis
using conventional sequencers (Araújo et al., 2007;
Csencsics et al., 2010; Agarwal et al., 2015). In this case,
each DNA sample is loaded into a capillary containing a
polyacrylamide matrix in which the electrophoresis is per-
formed. The fluorescence emitted by the marked primer is
captured and the molecular mass of the amplified fragment
is determined. The result is an electropherogram showing
luminescence peaks corresponding to each amplified allele.
Lastly, the genotyping stage consists of comparing the
electropherograms of different individuals (see Culley et

al., 2013; Mason, 2015), a technique that is particularly
widely used when working with complex genome species,
such as sugarcane and other polyploids (Morais TBR de,
2012, Doctoral Thesis. Escola Superior de Agricultura

“Luiz de Queiroz, University of São Paulo, Piracicaba, SP,
Brazil).

The most appropriate genotyping method for each
project is defined according to the species under investiga-
tion, the sensitivity required in determining allele varia-
tions, the availability of the equipment and cost
effectiveness. The amplification and genotyping stages can
be perfected to multiplex different SSR loci, cutting costs
and saving time, and allowing large scale analysis (Brown
et al., 1996; Guichoux et al., 2011; Lepais and Bacles,
2011). There are two ways of performing multiplexed anal-
ysis of microsatellite loci. The first is by multiplexed PCR,
in which different SSR primers are placed in the same reac-
tion tube. The following stages are essential: i) determining
the length (in bp) of the alleles at each SSR locus; ii) select-
ing loci whose allele lengths are not superimposed; iii) in

silico testing at melting temperature (Tm) and the possible
formation of secondary structures between the primers of
the SSR loci selected. The second multiplexed SSR loci
analysis method entails multiplexed genotyping. In this
case, amplifications are performed separately, but the am-
plified products of a biological sample are mixed and
loaded into the same electrophoresis gel channel or se-
quencing capillary.

Guichoux et al. (2011) have published an outstanding
analysis of current trends in microsatellite genotyping. Sev-
eral aspects are reviewed, including the overall cost of SSR
genotyping as a function of the degree of multiplexing and
the number of genotyped samples. For instance, the most
widely cited commercial kit has a cost per sample of 1.88.
The authors then suggest solutions to cut the final cost per
sample. According to these authors, most of the work done
to develop and optimize SSR multiplexing actually consists
of phases common to all SSR development projects.

In the past, alternative methods have been developed
to facilitate genotyped PCR multiplexing by capillary elec-
trophoresis, such as the M13 tailed primer method (Oetting
et al., 1995). In this method, the sequencing reaction is per-
formed as a multiplexed PCR using the M13 (reverse)
primer, conjugated with a fluorescent colorant and various
modified SSR (forward) primers. The SSR primers are
modified by a 19-bp extension at the 5’ end, identical to the
M13 nucleotide sequence. In the first PCR cycle, amplifi-
cation is based on the SSR primers, forming an M13 an-
nealing site at the 3’ end, used in the second amplification
cycle. A variant of this technique (Multiplex-Ready PCR)
was subsequently published with the aim of cutting the cost
of primer marking, which is usually 5 to 10 times that of
conventional primer synthesis (Hayden et al., 2008).

Current overview

Microsatellite genomic distribution, biological func-
tion and practical utility have been reviewed in a number of
articles over the past two decades, some of which are high-
lighted here: Jarne and Lagoda (1996); Schlötterer (1998);
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Li et al. (2002); Buschiazzo and Gemmell (2006); Oliveira
et al. (2006); Sun et al. (2009); Guichoux et al. (2011);
Gemayel et al. (2012); Senan et al. (2014); Mason (2015).
With the aim of investigating the use of microsatellite
markers over the period from 2010 to 2015 in the genetic
analysis of cultivated plants, we conducted a search in the
main database of Web of Science (Web of ScienceTM Core
Collection). We entered “microsatellite” or “SSR marker”
in the title field and “crop*” in the topic field. To avoid se-
lecting records related to plant pathogens and insect pests,
the following terms were excluded from the topic field:
bacteria (bacter*), fungi (fung*), insect (insect*) and
pathogen (pathogen*). Finally, the search was refined by
selecting the field of Plant Science, and all resulting hits
were manually checked. We found 933 unique records
(Figure 3, Supplementary Material Table S1) showing that
microsatellites continue to be used as high-relevance mo-
lecular markers in the genetic analysis of cultivated plants.
The number of publications rose steadily until 2012, and
then fell back, possibly due to the ease with which genetic
studies could be carried out using SNPs.

Recent studies have shown that the easiest way of
identifying SSR loci is by using NGS to sequence the ge-
nome or transcriptome. Zalapa et al. (2012) reviewed pa-
pers published in the American Journal of Botany’s Primer
Notes and Protocols in Plant Sciences, an important
monthly journal that centralizes a significant number of
publications related to the discovery and use of SSRs in
plants. Note that the use of the Sanger method was predom-
inant up to this time, as well as the use of genomic libraries
enriched with sequences containing microsatellites. Since
then, there is a tendency to replace this method by NGS ge-
nome or transcriptome sequencing.

With the aim of comparing this scenario with the cur-
rent situation, we conducted a similar survey based on pa-
pers published in the AJB from January 2013 to December
2015, selecting only those papers in which sequences were

generated by developing SSR markers. A total of 87 papers
were published during this period, the majority of which in-
volved using the Sanger method to sequence genomic li-
braries enriched with SSRs. It is worth noting that the use of
NGS for prospecting for and generating SSR markers has
been on the increase, surpassing the Sanger method in 2015
(Table 1). We also realized that the enrichment stage might
no longer be advantageous, due to the number of sequences
generated by NGS. On the contrary, since the composition
of the nucleotide base and the frequency of SSR motifs can
actually vary among plant genomes (Li et al., 2002), the en-
richment stage with a small number of motifs should allow
curtailment or subsampling of the population of SSRs to be
discovered.

Another interesting trend is that the Illumina platform
is being routinely used for transcriptome sequencing. The
advantage of developing SSR markers from transcribed se-
quences includes the possibility of finding associations
with genes and phenotypes (Li et al., 2002). As observed by
Zalapa et al. (2012), a common factor of all the papers, irre-
spective of the sequencing method, is that only a small frac-
tion of the SSR loci discovered have been assessed. As
mentioned earlier, obtaining a sequence is only the first
stage in the marker development process. Primer design
and PCR optimization still represent a bottleneck. Further-
more, there is always the possibility that the locus is mono-
morphic, i.e. non-informative.

One strategy for working around this limitation is to
track loci polymorphisms in silico, during the stage at
which regions that contain SSRs are identified. This can be
done using two or more genetically contrasting individuals
or their progeny (F1) for performing NGS, increasing the
possibility of sampling alleles based on the alignment of the
sequences obtained, and thereby avoiding the synthesis and
testing of primers for monomorphic loci (Iorizzo et al.,
2011).
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Figure 3 - Number of publications relating to the use of microsatellites in crop genetic studies from 2010 to 2015 according to the Web of Science data-
base (A). Distribution of records according to the type of publication (B).
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Table 1 - Recent studies involved in the detection and development of SSR markers in plants, using different sequencing technologies.

Technology Source1 Library2 Enrichment Species Reference

Sanger G Y CA repeats and (GA)10 Aniba rosaeodora Angrizani et al., 2013

T N Expressed sequence tags from roots Callerya speciosa Li et al., 2013

G Y (AG)10, (GT)15, (CAG)8 and (AC)6(AG)5 Canavalia cathartica and
C. lineata

Yamashiro et al., 2013

G Y (CT)8 and (GT)8 Cariniana legalis Tambarussi et al., 2013

G Y CA, AAC, ATG, and TAGA Ceanothus megacarpus Ishibashi et al., 2013

G Y (GT)12 Cornus sanguinea Wadl et al., 2013

G Y (AC)15, (AG)15, and (AAG)10 Diplarche multiflora Zhang et al., 2013

G Y (CT)8 and (GT)8 Encholirium horridum Hmeljevski et al., 2013

G Y Not informed Lagerstroemia indica Liu et al., 2013c

G Y (AC)6(AG)7 or (AC)6(TC)7 Leptospermum recurvum Ando et al., 2013

G Y (AC)6(AG)5 or (TC)6(AC)5 Lilium longiflorum Sakazono et al., 2013

G Y (AG)15 and (AC)15 Melastoma dodecandrum Liu et al., 2013b

G Y TCn, TGn, and GATAn Miscanthus ssp. and
Saccharum ssp.

Hodkinson et al., 2013

G Y (AC)18/(AG)18/(ATG)12 Myriophyllum spicatum Wu et al., 2013

G Y (GT)15 and (AG)15 Phellodendron amurense Yu et al., 2013

G Y (CAT)11, (GCA)6, (GATA)11, (AAC)12, (ATTT)10(GC)8,
(GCGA)5, (TTC)15 and (GGT)7

Pinus edulis and P.

monophylla

Krohn et al., 2013

G Y (AC)n Pinus wangii Dou et al., 2013

T N Expressed sequence tags Pisum sativum Jain and McPhee 2013

G Y (GA)12 and (CA)12 Prunus sibirica Liu et al., 2013a

G Y (AG)13 and (TC)13 Rhizophora mangle Ribeiro et al., 2013

G Y (CCG)6, (AAG)8, (AGG)6, (CT)13, (AGC)6, (AC)10, and
(ATC)6

Rhodiola ssp You et al., 2013

G Y (CT)8 and (GT)8 Smilax brasiliensis Martins et al., 2013

G Y (AC)6(AG)5 or (TC)6(AC)5 Tricyrtis macrantha Ohki and Setoguchi 2013

G Y (AC)13 and (AG)13 Vernicia fordii Pan et al., 2013

Illumina T N Expressed sequence tags from leaves Firmiana danxiaensis Fan et al., 2013

G N * Gleditsia triacanthos Owusu et al., 2013

T N Expressed sequence tags Spartina alterniflora Guo et al., 2013

454 G Y CT and GT Anthyllis vulneraria Kesselring et al., 2013

G Y CT and GT Berberis microphylla Varas et al., 2013

G Y (GT)8 (TC)9.5, (GTT)6.33, (TTC)7, (GTA)8.33, (GTG)4.67,
(TCC)5, (TTTG)2.5, (TTTC)6, (TTAC)6.75, and
(GATG)4.25

Elaeagnus angustifolia Gaskin et al., 2013

G N * Melaleuca argentea Nevill et al., 2013

G Y Not informed Pachyrhizus Rich. ex DC. Delêtre et al., 2013

G Y (GT)15, (CT)15, (GATA)10, (GACA)8, and (GATGT)5 Phoradendron

californicum

Arroyo et al., 2013

T N Expressed sequence tags from stem Pisum sativum Zhuang et al., 2013

G N * Prosopis alba and P.

chilensis

Bessega et al., 2013

G Y (CT)13 and (GT)13 Sebaea aurea Kissling et al., 2013

G Y TG,TC, AAC, AAG, AGG, ACG, ACAT and ACTC Thuja occidentalis Xu et al., 2013a

G N * Virola sebifera Wei et al., 2013

G Y (GA)15, (GTA)8, and (TTC)8 Argania spinosa Bahloul et al., 2014
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Technology Source1 Library2 Enrichment Species Reference

Sanger G Y (CT)8, (GT)8 Byrsonima cydoniifolia Bernardes et al., 2014

Cp N * Lemna minor Wani et al., 2014

G Y CT Lobelia inflata Hughes et al., 2014

G Y (GT)8 and (CT)8 Passiflora ssp. Cerqueira-Silva et

al., 2014

G Y (CT)8 and (GT)8 Piper solmsianum Yoshida et al., 2014

G Y (AC)6(AG)5 or (TC)6(AC)5 Scrophularia incisa Wang et al., 2014

G Y (AC)15 and (AG)15 Spiraea ssp Khan et al., 2014

G Y (AC)6(AG)5, (TC)6(AC)5 Vitex rotundifolia Ohtsuki et al., 2014

G Y (GA)n and (GT)n Xanthosoma sagittifolium Cathebras et al., 2014

Illumina T N Expressed sequence tags from roots Buxus spp. Thammina et al., 2014

G N * Macadamia ssp. Nock et al., 2014

T N Expressed sequence tags from leaves Ostryopsis ssp. Liu et al., 2014a

G N In silico mining Phoenix dactylifera Aberlenc-Bertossi et

al., 2014

G N * Solidago L. Beck et al., 2014

G N * Saxifraga granulata Meer et al., 2014

454 G Y (GA)15, (GTA)8, and (TTC)8 Argania spinosa Bahloul et al., 2014

G N * Agave utahensis Byers et al., 2014

G N * Bidens alba Lu et al., 2014

G Y CT and GT Nephroma ssp. Belinchón et al., 2014

G Y TG, TC, AAC, AAG, AGG, ACG, ACAT, and ACTC Parietaria judaica Bossu et al., 2014

Sanger G Y (CT)8 and (GT)8 Cabomba aquatica Barbosa et al., 2015

G Y (AT)8, (GA)8, and (GAA)8 Calibrachoa heterophylla Silva-Arias et al., 2015

G Y GA, GT, AGA, ACT, and ATC Campanula pyramidalis Radosavljeviæ et

al., 2015

G Y (AC)15 and (AG)15 Commelina communis Li et al., 2015

G Y (AG)10 Ilex chinensis Chen et al., 2015

G Y Not informed Fothergilla intermedia Hatmaker et al., 2015

G Y (AC)6(AG)5 or (GA)5(CA)5 Hepatica nobilis var. ja-

ponica

Kameoka et al., 2015

G Y (CT)8 and (GT)8 Philcoxia minensis Scatigna et al., 2015

G Y (AG)17, (AC)17, (AAC)10, (CCG)10, (CTG)10, and
(AAT)10

Psittacanthus

schiedeanus

González et al., 2015

G Y (AG)17, (AC)17, (AAC)10, (CCG)10, (CTG)10, and
(AAT)10

Quillaja saponaria Letelier et al., 2015

G Y (AC)15 and (AG)15 Saxifraga egregia Zhang et al., 2015

G Y (TTC)10, (CG)10, and (GT)10 Vellozia squamata Duarte-Barbosa et

al., 2015

Illumina T/Cp N Expressed sequence tags from leaves Artocarpus moraceae Gardner et al., 2015

T N Expressed sequence tags from leaves Bombax ceiba Ju et al., 2015

T N Expressed sequence tags from leaves Carallia brachiata Qiang et al., 2015

G N * Dendrobium calamiforme Trapnell et al., 2015

T N Expressed sequence tags from leaves Lablab purpureus,

Lathyrus sativus

Chapman 2015

Psophocarpus

tetragonolobus and Vigna

subterranea

Table 1 (cont.)



Finally, visiting the website of the 24th edition of the
Plant and Animal Genome (PAG) Conference (San Diego,
CA) held in January 2016, we were able to find 63 work-
shops, abstracts and posters in which the term SSR was em-
ployed. We categorized these studies according to the
groups of species analyzed and found the great majority of
them (~90%) related to plants. We also checked references
to SNPs and found about 150 studies, two-thirds related to
plants and a third to domesticated animals (cattle, chicken,
horse, pig, sheep and fish). A few (1.5% for SSRs and 5%
for SNPs) proposed advances in experimental approaches
or novel bioinformatics tools
(https://pag.confex.com/pag/xxiv/meetingapp.cgi). Are
SNPs destined to replace SSRs as the preferred marker? It
seems clear that this will occur, but we do believe that SSRs
will still be applicable in future plant genetic and genomic
studies.
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