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Abstract 
We have developed “Microscope-Cockpit” (Cockpit), a highly adaptable 
open source user-friendly Python-based Graphical User Interface 
(GUI) environment for precision control of both simple and elaborate 
bespoke microscope systems. The user environment allows next-
generation near instantaneous navigation of the entire slide 
landscape for efficient selection of specimens of interest and 
automated acquisition without the use of eyepieces. Cockpit uses 
“Python-Microscope” (Microscope) for high-performance coordinated 
control of a wide range of hardware devices using open source 
software. Microscope also controls complex hardware devices such as 
deformable mirrors for aberration correction and spatial light 
modulators for structured illumination via abstracted device models. 
We demonstrate the advantages of the Cockpit platform using several 
bespoke microscopes, including a simple widefield system and a 
complex system with adaptive optics and structured illumination. A 
key strength of Cockpit is its use of Python, which means that any 
microscope built with Cockpit is ready for future customisation by 
simply adding new libraries, for example machine learning algorithms 
to enable automated microscopy decision making while imaging.
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Introduction
Why we need Cockpit
Biomedical research has benefited from significant engineering  
advances that have increased the speed and sensitivity of many 
types of scientific instrumentation. Microscope technology, 
in particular, is evolving rapidly through advances in optical 
techniques and image processing, enabling major scientific dis-
covery. However, the rapid adoption and application of advanced 
microscopies by biomedical scientists is constrained, espe-
cially when it relies on commercialisation to make the necessary 
technology accessible to the end-users.

It can often take several years to develop innovations from 
research instruments into user-friendly, off-the-shelf systems1–4. 
We report a collaboration between the University of Oxford and 
the University of California San Francisco (UCSF) that grew 
out of the OMX microscope project, dating from the early 
1990s, which is extensively documented in the supplement of 1.

To accelerate technology adoption, many labs are building cus-
tom microscopes based on newly developed imaging methods, 
such as light sheet5, lattice light sheet3, 3DSIM1,6, STED7, and 
MINFLUX8, or to exploit new analysis techniques, such as 
STORM analysis9,10, 3B11, and SIMFLUX12. These instruments 
require flexible, computerised control of a wide range of indi-
vidual components (lasers, mirror actuators, filters, objectives, 
detectors, etc.) allowing more rapid deployment of novel tech-
niques, and often providing faster and more sensitive operation 
than commercial systems3,13,14. However, integration of these 
components into a single user-friendly platform that is focused 
on users’ scientific application, rather than dictated by the control 
infrastructure, can be a major challenge. There have been three 
general solutions adopted by the community for software 
control of bespoke microscope hardware.

1.    Using individual manufacturer-provided packages for each 
piece of hardware. This can provide a straightforward  
solution for simpler systems, but fundamental incompat-
ibilities between each vendor’s control models can prevent  
integration of multiple components.

2.    Using LabVIEW, a commercial visual programming tool 
from a leading hardware manufacturer, National Instruments  
(Austin, Texas, United States).

3.    Use of a dedicated microscope control package, of which 
several are available, with the most widely used being Micro-
manager (µManager): an open source Java and C++ based  
software platform for controlling a range of microscope 
hardware such as stands, cameras, and stages. A less  
widely-adopted solution is a bespoke platform written 
in Python to control the OMX microscope1,15,16, and this 
forms the starting point of the Microscope-Cockpit project  
described in this manuscript.

An important feature for custom microscopes is the freedom 
to design the system around a specific set of experiments, as 
defined by the user. With a specific application in mind, an 
instrument can be optimised to make the best possible 

compromises for that application. For example, imaging deep 
into biological tissue can involve significant optical aberrations 
leading to degraded image quality. This can be compensated 
for by the application of adaptive optics techniques, at a 
cost of increased complexity and marginally decreased light  
efficiency. However, it is desirable that this capability is easily  
enabled and exploited by microscope users, typically biologists  
with limited experience of the underlying engineering, and be 
reproducible over months or years of use. Many such custom 
microscope designs have been published17–22. In all of these cases, 
control of the many hardware components in a complex and 
timed manner is challenging, particularly for time sensitive  
applications involving living specimens. Correction settings must 
be measured and applied in coordination while simultaneously 
minimising additional exposure of the sample.

Finally, the democratisation of artificial intelligence (AI)-based 
image analysis approaches means that a wealth of tools are poten-
tially available to users. However, current systems, with some 
specific exceptions, are not well suited for the integration of 
bespoke novel AI-approaches with the imaging process. This 
limitation can be significantly reduced by an appropriately 
flexible package for control of bespoke systems.

Philosophy and implementation of Cockpit
We set out to create a package that is suitable for biologists to 
carry out a range of experiments in a time efficient manner, at 
scale. At the same time, the software has to control a wide range 
of electronic and optical hardware devices and microscope 
types. Many bespoke microscope systems that lack eyepieces, 
such as systems built by physical scientists in collaboration with 
biologists, make sample navigation particularly challenging. 
Improving navigation on this type of system is a major feature 
of Cockpit.

There are several existing software control approaches includ-
ing manufacturer-supplied packages, custom control software, 
in LabVIEW or a more traditional programming language, or 
the open source program µManager, as discussed earlier. We 
feel that Cockpit has several distinct advantages over these other 
approaches. We compare the relative merits of Cockpit and a 
range of alternatives in the discussion.

Cockpit is an open-source software package that makes it easy 
to control multiple devices through a single Python-based user 
interface (Figure 1). Cockpit supports multiple platforms, and 
the similarity of its interface across operating systems and 
widget toolkits is shown in Figure 2. It provides an innovative 
mosaic tool, allowing large areas of a microscope specimen to  
be imaged and then navigated in real time. This is similar to 
Micro-Magellan23, but with the additional feature of keeping 
even thousands of images in Graphic Processing Unit (GPU) 
memory for instant access at various levels of detail. It uti-
lises Python-Microscope to communicate with a wide range of 
microscope hardware and is able to exploit a master timing con-
trol device to provide hardware triggering for digital devices 
and synchronised analogue voltages. This enables highly repro-
ducible timing over a range of time scales even in extremely 
complex experiments with multiple devices.
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Figure 1. The main Cockpit Graphical User Interface (GUI) components: (a) The main window provides quick access to a number of functions 
and shows the status of all the devices, as well as the channels buttons to load predefined configurations. (b) The macro stage window 
provides an overview of the position of all stages, including nested stages and Z position. (c) The camera view shows the last image taken 
from each active camera and their histograms. (d) The mosaic view displays all mosaic images taken, saved locations, and dramatically eases 
navigation.

The simple interface design (Figure 1) enables users to focus 
on collecting the data they require without having to devise 
complex control infrastructure for systems of any level of com-
plexity. It also enables easy navigation of even large sample 
regions. This can be especially important on bespoke micro-
scopes which often lack eyepieces. For these types of system, 
Cockpit includes a touchscreen-optimised display window, pro-
viding large buttons and simple control over most functions 
(Figure 3).

The principal design goals for the Cockpit interface were to:

•    Provide an easy-to-use, simple “Cockpit” control program  
for a wide range of microscopes.

•    Hide from the user the complexity required to control an  
advanced microscope.

•    Minimise the effort required to change hardware or integrate  
new hardware.

•    Enable high-precision hardware timing signals to optimise  
experimental control, facilitate complex systems and maximise 
speed.

Cockpit provides an integrated microscope control pack-
age that enables all these features while being user friendly and 
portable across many different microscopes and common 
operating systems.
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Figure 2. The Cockpit main window under different operating systems. 
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Figure 3. The Cockpit touchscreen window with the main GUI components in one window and large touchscreen friendly 
buttons. The left panel houses stage position indicators and controls, next panel over has devices like cameras and lights along with a 
set of large buttons at the bottom to run mosaics, centre the field of view on the current stage position, erase mosaic images, open the 
experiment dialog, drop a marker at the current position, display live video, run an experiment, a help button, and finally abort which stops 
an experiment or mosaic. The majority of the window is the mosaic display panel which can zoom from an overview up to the level of single 
pixels. Finally on the right is the last snapped image from each enabled camera, only one in this case.

The first version of the Cockpit software was developed in 
UCSF to drive the OMX microscope1,15,16, which was later 
commercialised. This code was re-written at UCSF and later 
released as open source under a BSD license. From this con-
cept we have extensively developed the implementation of 
Cockpit to realise its full potential.

Implementation
Cockpit is implemented in the Python programming  
language24. The code consists of four main components: devices, 
handlers, interfaces, and the Graphical User Interface (GUI). 
Devices represent the individual physical devices, handlers 
represent control components of the devices, handlers from sin-
gle or multiple devices are aggregated into interfaces, and the 
GUI component allows user interaction with the different 
interfaces. 

Devices and handlers
The hardware control side of Cockpit has two parts: devices 
and handlers. A Cockpit device maps to a single physical device 
while handlers abstract the control components of the device 
to be used. For example, an XY stage device provides two 
handlers, one per axis. A laser device also provides two  

handlers, a light source handler and a light power handler: the 
light source handler controls the light source state — on or  
off — while the light power handler controls its intensity.

Most of the Cockpit code does not interact with Cockpit 
devices directly. Rather, when the Cockpit program starts, it 
constructs a “depot” object whose role is to obtain and keep 
track of the different device handlers. This architecture ena-
bles rapid changes in the choices of hardware devices, so they 
can be very easily added or removed from a complex system as 
it is being developed. This approach prevents potential con-
flicts or confusions such as addressing devices that do not exist 
or adding devices that lack drivers.

Within this architecture, any Python class can be used as a 
device; it is only required to provide one or more Cockpit 
handler. Built-in Cockpit devices include adaptors for  the 
Python-Microscope package, thus supporting all of its 
available devices. Cockpit also supports the Aerotech PRO115 
linear stage from the Soloist CP Controller, the PI M-687 XY 
stage from the PI C-867.262 controller, the Picomotor control-
ler 8743-CL, the small 512x512 Spatial Light Modulator (SLM) 
and liquid crystal polarization rotator from Meadowlark 
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Optics, and the SR470 laser shutter system from Stanford 
Research Systems.

Cockpit itself does not require a direct connection to the hard-
ware. Indeed, most Cockpit devices are implemented as remote 
objects with the help of Pyro, a Python package for remote 
procedure calls. The use of Pyro enables the distribution of 
devices over the network to different computers, even running 
different operating systems.

Interfaces and GUI
Cockpit defines interfaces that are high-level abstractions for 
the system, with each controlling one or more handlers. For 
example, the stageMover interface is a unified translation 
manager that coordinates all translation stages, hiding the 
complexity of handling different stages for different axes and  
nested stages on the same axis. For instance, a system may 
include an XY stage, a coarse Z stage, and a high precision fast 
piezo Z stage. The GUI component provides different views 
onto the multiple interfaces and handlers, each exposing 
different levels of complexity.

Cockpit has a multi-window GUI, with each window serv-
ing a different purpose (Figure 1). This provides the flexibility 
to distribute the windows over multiple monitors in whatever  
form best fits the system being used. The main window  
provides an at-a-glance view of the state of the various devices; 
the mosaic window enables navigation of the sample relative 
to an overview formed of tiled images; the macro stage window 
displays the position of the different stages; and the camera 
view the current images from all active cameras. In addition, 
Cockpit also has a simpler single-window touchscreen inter-
face (Figure 3) which duplicates a subset of the functionality 
provided on the other windows. This window is optimised for 
touchscreen interaction with large buttons for the most useful 
subset of functionality.

Cockpit uses wxPython, a Python wrapper to wxWidgets, to 
provide a user interface that has a native look and feel on the 
different platforms (Figure 2). Within wxPython, we make 
extensive use of OpenGL to enable high performance display 
and interaction with large images or image mosaics up to 
gigapixel sizes.

Data acquisition experiments
In Cockpit, the acquisition of an image series, such as a  
Z-stack or a time lapse sequence, is defined by an experiment. 
Cockpit experiments are based around the concept of an 
action table which must be run with hardware triggers. The 
experiment settings are converted into a list of device actions, 
which is parsed into a list of pre-computed analogue values and 
digital levels for each time point on a timing device. The action 
table is uploaded to the timing device and then started, running  
the experiment utilising hardware triggers and analogue 
voltages, where appropriate, to control all active devices. This 
approach, adapted from Carlton et al.1, is able to produce 
both digital triggers and analogue signals with precise timing.

Effective execution of the experiment requires accurate 
timing. In order to ensure that experiment timing is inde-
pendent of the host computer’s performance or the Python 
implementation, the timing functionality is performed using 
dedicated hardware. This enables time-critical operation of 
the microscope imaging tasks. The timing system has been 
implemented on several different hardware platforms, a digital 
signal processing board (Innovative Integration M67-160 with 
an A4D4 daughter board), an NI FPGA board (National Instru-
ments cRIO-9068), and a Red Pitaya single board computer 
(STEMlab 125-14). In this way, we have created a universal 
and adaptable microscope platform with outstanding timing 
precision and accuracy.

System requirements
Cockpit requires Python 3.5 or later, and the Python packages  
PyOpenGL, Pyro4, Freetype Python, Matplotlib (RRID:SCR_ 
008624)25, Python-Microscope, NumPy (RRID:SCR_008633)26,  
pySerial, SciPy (RRID:SCR_008058)27, and wxPython. These 
are all free and open-source software that are available for all 
widely-used operating systems. Hence, Cockpit can be used  
across GNU/Linux, macOS, and Windows.

The Cockpit interface incorporates some assumptions as to what 
is required for a minimal microscope. It requires at least one 
camera, a computer controlled X, Y and Z translation motor-
ised axes, and a light source that can either be hardware 
triggered (directly or via a shutter) or left on during an experi-
ment. In addition, experiments require a device that can be 
programmed as source of hardware triggers, supplying 
digital signals and, optionally, analogue voltages.

With no configuration to specific hardware, Cockpit will 
automatically start in simulation mode, providing simulated 
cameras, light sources, and stages. This allows testing and  
demonstration of the software without any hardware or configu-
ration. This can be further extended by utilising the test devices 
within the associated Python-Microscope package. In this 
mode, with some configuration, the software can link simulated 
XYZ stage, camera, and filter-wheel to return a channel defined 
by the filter-wheel and a subregion defined by the stage position 
from a large multi-channel image. The simulation is further 
improved by blurring the image based upon the Z position of 
the stage. This mode was used for Figure 1 and Figure 3 in this 
manuscript. 

Use cases
Cockpit is optimised to provide an effective user experience 
running a fully automated microscope on systems with no 
eyepieces. A significant component of this is powerful mapping 
and overview tools that provide a guide-map to the specimen  
landscape, which is interactive and highly responsive. The  
system can collect arbitrary mosaic images, which are acquired 
in an expanding spiral pattern. Acquired mosaic images are 
immediately uploaded to the graphics card as a texture map. This 
allows smooth and rapid display of these images from low 
zoom overview all the way to single pixel views. The graphics 
card can then render these images interactively in real time. 
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The typical texture memory on modern graphics cards mean 
that the system can navigate in real time around mosaics 
made from hundreds or thousands of individual images, with 
resulting mosaics up to gigapixels in size. Starting a new 
mosaic does not remove previous images, so multiple, possibly 
overlapping, mosaic areas can be collected. Keeping previ-
ous mosaic images means it is easy to navigate multiple regions 
of the sample without having to reacquire overview images. 
This greatly eases the navigation of complex samples.

There are two obvious use cases for this functionality. In the 
first case, one could utilise a low magnification lens to map a 
large section, or even the whole of the sample area, say a 
coverslip as shown in Figure 4(a). This produces a ∼250  
megapixel image, via which the user can visit any site of choice 
and re-image points in fluorescence mode with higher magnifica-
tion objectives (Figure 4(b)). The new detailed images are then 
“painted” onto the guide-map in real-time. As the second case, 
in samples such as tissue culture cells, where many similar 
regions are available, smaller regions can be imaged at higher 
resolution to select interesting targets for further imaging. The 
preservation of previous mosaics when a new one is initi-
ated is a critical component of this process, as it allows easy 
navigation of multiple sample regions. It is then practical to 
return to the regions of most interest without requiring reim-
aging, which would waste time and incur unnecessary light 
exposure to the sample.

To improve the user-centred microscope experience, we 
divided the use of the microscope into two stages. The user 
starts an imaging session by rapidly exploring large regions or 
even the entire slide to create a guide map, while marking 
regions of interest for later inspection. In the first stage, the 

touchscreen can be used to build the guide map. The user then 
establishes the conditions required for the desired images, such 
as choice of laser lines and their intensities, exposures, number 
of channels and cameras, Z sectioning range, and points to 
visit on the guide map. The use of a touchscreen enables rapid 
setting up of the conditions for the experiment, focusing on the 
most important features of the microscope hardware without 
providing full functionality.

In a second phase of acquisition, a more detailed software  
control window is used with a conventional keyboard to define 
any more advanced experimental settings, such as numeric 
values for time lapse interval which are difficult to set from 
a touch interface. Finally the experiment is run.

In this way, we have created a unique, near-instantaneous 
control environment that allows the user to start an imaging 
session by exploring the entire slide quickly and marking 
regions to visit and image in order to achieve their scientific 
goals. Our software provides a novel way for the user to plan 
their entire work flow rapidly and with efficient specimen usage.

Previously published systems and microscopes in 
development using Cockpit
To exemplify the flexibility of Cockpit, we present a number 
of systems that currently run using the software as the user 
interface. Along with previously published systems, we have  
a number of microscopes at earlier stages of development where 
Cockpit provides the user interface.

Cockpit has already been deployed in three systems reported 
in previous publications. The first is a cryo-super resolution 
microscope for correlative imaging, CryoSIM28,29 (Figure 5(a)). 

Figure 4.  The mosaic tool used to image a standard Thermo Fisher test slide (FluoCells™ Prepared Slide #1, F36924) with: (a) mosaic of a 
complete coverslip imaged with a 4× objective (pixel size 1.502 µm) consisting of more than 250 megapixels; (b) a magnified portion of the 
mosaic with a single image from a 63× objective (pixel size 0.0954 µm) painted in on the low resolution map. The higher magnification image 
has much better signal to noise ratio from better light collection as the objective has a much higher numerical aperture.
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Figure 5.  Previously published systems that use Cockpit: (a) the CryoSIM system; (b) the Aurox Clarity AO laser free spinning disk confocal 
system; (c) image acquired on CryoSIM of cryo preserved HeLa cell labelled with MitoTracker green and LysoTracker red; (d) image acquired 
on the Aurox Clarity system with AO correction at high optical sectioning. Image is a maximum intensity projection of a 20 µm z-stack. 
Sample was a Drosophila neuromuscular junction with DLG in yellow, HRP in magenta, and DAPI in cyan. Scale bars 5 µm.

The second demonstration was a laser-free spinning disk  
confocal microscope using adaptive optics (AO) for aberration 
correction30 (Figure 5(b)). Additionally, Cockpit was the basis 
of the control software in the implementation of a novel 
technique, IsoSense, for improved aberration correction in 
widefield microscopes and structured illumination31.

A simple widefield microscope
We present a simple, compact, fully automated, portable 
inverted microscope based around the Zaber MVR system. This 
provides a bare-bones inverted stand with motorised X, Y, and 
Z axes, a multi-position motorised filter turret, and LED-based 
fluorescence illumination. The system has a Ximea camera with 
a small physical footprint (approximately 30 mm cube) and 
a Red Pitaya single board computer running as a hardware 
timing device (Figure 6).

This system is able to take fluorescence images in three 
colours, using the three illumination LEDs and a quad-bandpass 
dichroic filter set. The system has 4× and 63× air objectives. 

Although changing the objective involves physically remov-
ing the objective and its mount, this is easily achieved due to the 
spring-loaded kinematic mounting system. The Cockpit mosaic 
function allows large areas of a sample to be mapped quickly 
(Figure 4(a)), and then regions of interest can be selected and 
marked for return later or the mosaic stopped and z-stacks in 
one or more channels collected. If a live sample is used the 
system can be used for time lapse imaging.

This system provides a demonstration of the power and 
portability of Cockpit and it functions as a test bed for new 
software developments on practical hardware. The system’s 
small size and portability enable easy transport of the system 
for demonstrations and collaborative projects in other 
laboratories. 

A complex structured illumination microscope with 
adaptive optics
In a further system, we are using Cockpit to maximise the  
performance of complex upright widefield structured illumination 
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Figure 6. The Zaber microscope. (a) An image of the system, showing its compact size with a 300×450 mm footprint, (b) a three colour 
image showing the nucleus stained with DAPI in blue, the actin in green and mitochondria stained with MitoTracker Red CMXRos in Red. 
Scale bar 5 µm.

microscope, referred to as DeepSIM (Figure 7(a)). This incor-
porates not only translation stages, light sources, and cameras,  
but also a spatial light modulator (SLM) and a deformable 
mirror (DM) for AO. This set-up is required to perform 
super-resolution live imaging experiments deep in tissue speci-
mens, such as on the Drosophila larval neuro-muscular junc-
tion preparation, a powerful model system for understanding 
synapse biology on a molecular level. In order to achieve this 
imaging the system has to synchronise the illumination lasers, 
the SLM, a polarisation rotator, the DM, the Z stage position, 
and the cameras. The lasers, SLM, DM, and cameras receive 
digital triggers from the Red Pitaya, while the Z-position and 
polarisation rotator state are controlled via analogue voltages, 
all synchronised at the µs level. Cockpit provides a simple user 
interface allowing selection of different experimental param-
eters, such as exposure time, laser power, Z step, and stack size  
(Figure 7(b)). The experiment module creates the relevant 
signals and timing information, transfers this to the Red 
Pitaya which then controls the hardware during the experiment.

Cockpit also provides a user-friendly interface to 
Microscope-AOTools32, facilitating use of a wavefront sensor for 
calibration of the DM then adaptively correcting sample induced 
aberrations via image-based metrics, using so-called sensor-
less AO. This interface also implements IsoSense31 to improve 
aberration detection over a wide range of complex samples.

Although this system is extremely complex with a multitude 
of devices the user interface is clean and easy to use. The  
system has sensible defaults, thus minimising the expertise and 
interaction required to collect experimental data.

Discussion
We have developed a Python-based GUI for controlling 
bespoke microscopes which can map the entire slide or dish,  
allowing a real time exploration of the entire specimen land-
scape. It also connects to separate hardware timing devices to 
enable high precision timing of even complex devices and 
experiments. A key property of our software is that it is focused 
around the needs of the user and their experimental design and 
workflow. Finally, using Python means that the microscope 
control can easily be modified to make use of the extensive 
machine learning algorithms available in easy to integrate librar-
ies. This means that a microscope system that is controlled by 
Cockpit can readily be adapted to make decisions using machine 
learning algorithms during the acquisition process in order 
to modify the imaging conditions.

Existing control options
Cockpit has been introduced as an alternative to a number 
of existing microscope control options that are already avail-
able. Most published systems take one of three approaches: 
1) utilise individual software packages provided by the device 
manufactures, 2) use LabVIEW to integrate LabVIEW-based 
drivers (VIs) provided by the manufacturers into a single  
custom GUI, or 3) use the open source microscope control pack-
age µManager33. We will discuss the relative merits of each of 
these options in turn.

Using individual software packages to control each device is 
simple and direct. However this approach has several severe 
drawbacks. Each hardware device needs its own software, 
which takes up screen space and computer resources. This also 
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Figure 7. Example data from the DeepSIM system using Cockpit to image deep (> 20 µm) in Drosophila neuro-muscular junctions. 
The system uses sensorless AO to correct for sample induced aberrations. (a) system view from the stage; (b) main Cockpit window with 
the additional controls for the SLM and AO devices; (c) image of individual synapses at the Drosophila neuro-muscular junction using AO-
SIM imaging, with Cy3 labelled HRP antibody labelling the neuronal membrane in red and Brp::GFP in the synapse in green; (d) zoomed in 
region of (c). Scale bars are 2µm.

removes the ability of different hardware parts to automati-
cally interact with each other, for instance changing a stage’s 
position once a camera has finished collecting images. Producing 
Z-stacks, or multi-channel images on such a setup is awkward, 
slow and open to human errors. These factors can lead to 
corruption of the results.

LabVIEW is a visual programming tool that allows the con-
struction of “programs” by connecting modules with wires 
and building graphical interfaces. Many manufacturers pro-
vide software to allow their hardware to be used in LabVIEW, 
through so-called virtual instruments (VIs). Building clean and 
simple visual framework to control highly complex advanced 
optical systems in LabVIEW requires advanced expertise in 

the program’s use. Because such skills are usually beyond the 
ability of most scientists in an academic setting, many one-off 
complex bespoke systems, built to demonstrate a new principle, 
are very hard to use routinely by experimental scientists. Despite 
their obvious importance, such systems can rarely be 
reproduced and adopted by others for routine use.

µManager is an open source generalised microscope control  
interface which works on top of ImageJ, a popular image analysis 
program. ImageJ is written in Java, and µManager is writ-
ten in a combination of Java and C++. µManager’s approach is 
most directly comparable to Cockpit. Many hardware device 
manufacturers provide µManager compatible libraries and 
instructions on how to connect and control their hardware. The 
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package comes with mechanisms to run basic experiments, 
and the ability sequence commands.

Being based on ImageJ, µManager, by design, includes a 
large application with multiple windows. This also means that 
the majority of the interface must be written in Java; however 
the system also needs a C/C++ layer to interface the Java code 
to C/C++ based system libraries. Cockpit is written in pure 
Python, relying on the Python-Microscope package for hardware 
interfacing. Producing a strict separation of the user interface 
from the hardware control components. This has the additional 
benefit that connected hardware may be physically located 
on another computer, increasing scalability and allowing 
devices requiring incompatible hardware or software to still be 
seamlessly integrated.

The mosaic window in Cockpit is similar in concept to 
Micro-Magellan23, a µManager plugin. Being able to record 
a large area view, possibly from multiple areas, and have that 
available for instant navigation. The mosaic functionality 
dramatically speeds up experiment setup and finding the cor-
rect regions of interest, especially on bespoke systems with 
no eyepieces. Our mosaic interface utilises modern fast 
GPUs to enable instant access to even very large mosaic 
maps. Additionally, the touch screen interface allows easy and 
intuitive access to most of the functionality using a visual 
grammar that is very familiar to everyone.

The dedicated timing device interface allows fast and repeat-
able timing for both simple and complex experiments. It is 
useful in general but absolutely indispensable for experiments 
like the live cell adaptive optics SIM experiment (Figure 7(c)).

The standardised device interfaces from Python-Microscope 
mean that replacing one device with another of the same type 
is simply a matter of changing the address of the device in a 
configuration file.

Cockpit is still under active development, both within our labs 
and at several other laboratories across multiple countries. 
We are working on adding online image analysis to further 
enhance the mosaic functionality with machine learning, ena-
bling the system to capture a large area of the sample quickly 
at low-resolution and then automatically identify features 
of interest for 3D-multi-channel acquisition.

Conclusions
We have developed Cockpit, a new paradigm for user-based 
software control of complex bespoke microscopes. The  
software is highly adaptable by a user or engineer with experi-
ence in Python. The key advantage of our approach is that a 
user is presented with a clean and simple interface that hides 
the complexity of the hardware, so they can focus on their 
experimental design and obtain data from the instrument with 
a high precision and reproducible workflow. We hope that the 
community will adopt this package and help us to continue 
to develop it.

Methods
CryoSIM imaging
The CryoSIM system has previously been published in 
detail28,29. It was used to image HeLa cells grown on carbon 
coated gold EM grids under standard tissue culture conditions. 
Cells were labelled with MitoTracker Green (Thermo Fisher) 
at 100 nM and LysoTracker Red DND-99 (Thermo Fisher) 
at 50 nM after 30 minutes of incubation, to give green  
mitochondria and red lysosomes. The grids with live cells on them 
were then blotted and plunge frozen in liquid nitrogen cooled 
liquid ethane (Leica EM GP2) before being transferred to  
liquid nitrogen storage. Once frozen, grids were preserved in 
liquid nitrogen or at cryogenic temperatures on the imaging  
systems to prevent thawing and detrimental ice crystal  
formation. Structured Illumination Microscopy (SIM) images 
were collected with 488 nm and 561 nm laser excitation and 
emission collected at 525/50 and 605/70 on two Andor iXon 
EMCCD cameras. Images were reconstructed using SoftWoRx  
(GE Healthcare) and image quality was assessed with SIMcheck34.

Aurox AO imaging
The Aurox Clarity AO system is as previously published, 
the system utilised an Olympus IX70 microscope with a 
60× 1.42NA objective. Illumination was provided by a 
CoolLED p-30030. This system was used to image Drosophila 

melanogaster neuro-muscular junctions (NMJ). The samples 
were prepared by following the protocol form Brent 
et al. 200935. 3rd instar Drosophila melanogaster larvae (Ore-
gon-R strain) were dissected in HL3 buffer with 0.3mM Ca2+ 
to prepare a larval fillet. After this, larvae were fixed with 4% 
paraformaldehyde and blocked using 1% BSA35. Larvae were 
stained overnight with 1:100 Horseradish Peroxidase (HRP)  
conjugated to Alexa568 fluorophore to visualise the neurons, and 
primary mouse antibody against Discs large (DLG) to visualise 
the postsynaptic density. The next day, the larvae were counter  
stained with secondary antibody to detect the DLG (1:200  
donkey anti-mouse conjugated to Alexa488 fluorophore was 
used), as well as 1:1000 from 1 mg mL−1 stock DAPI to visualise 
the nuclei. The larvae were then washed and mounted in 
65% vectashield.

Zaber imaging
This system is based around a Zaber MVR motorised inverted 
microscope with Zeiss optics and 4x, 0.13NA and 63x 0.75 
Air objectives. Fluorescence illumination comes via 3 LEDs 
(385 nm, 473 nm and 568 nm) and a quad bandpass dich-
roic filter set (Chroma #89402). The system has a small format 
(approx 30 mm cube) Ximea (model MQ042MGCM) camera 
and a Red Pitaya single board computer running as a hardware 
timing device. Multi channel images were taken by sequentially 
illuminating with the three different LEDs without changing 
the quad dichroic filter cube.

DeepSIM imaging
DeepSIM is a custom made upright structured illumination 
microscope with AO specifically designed for SIM super resolu-
tion imaging deep into live tissue (manuscript in preparation). 
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On the DeepSIM system images were taken using 488 nm and 
561 nm laser illumination. The system includes a Structure 
Light Modulator (SLM, Meadowlark) to provide structured 
illumination for SIM imaging. The system also includes a 
deformable mirror (Alpao DM-69) for aberration correction. The 
system has a 60x 1.1 water dipping objective and samples were 
imaged in aqueous buffer. The AO components were calibrated 
and controlled using Microscope-AOTools32 to reduce aber-
rations and produce good SIM imaging at depth in biological 
samples.

The samples were prepared by following the protocol35. 
3rd instar Drosophila melanogaster larvae (Bruchpilot 
(Brp)-GFP strain) were dissected in HL3 buffer with 
0.3mM Ca2+ to prepare a so-called larval fillet, and the larval 
brains were removed. After this, larvae were stained for 
15 minutes with 1:50 Horseradish Peroxidase (HRP) conjugated 
to Cy3 fluorophore to visualise the neurons, washed with 
HL3 buffer with 0.3mM Ca2+ and imaged in HL3 buffer with 
0mM Ca2+ to prevent the larvae from moving.

Data availability
No data are associated with this article.

Software availability
Software available from: https://pypi.org/project/microscope- 
cockpit/

Source code availabile from: https://github.com/MicronOxford/
cockpit

Archived source code at time of publication (version 2.9.1):  
https://zenodo.org/record/454286324

Cockpit is distributed under the terms of the GNU General 
Public License as published by the Free Software Founda-
tion, either version 3 of the License, or (at your option) any later 
version.
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This paper introduces Microscope-Cockpit, a graphical user interface software that has been built 
on top of the historical software used to control the OMX microscope. It aims to provide a clean 
and user friendly interface allowing to create complex experimental set-up. Several use cases are 
included in the article to support the capacity of the software to adapt to different experimental 
set-ups. Overall the tool described in this article is scientifically valid but we would like to suggest 
some revisions detailed below. 
The Implementation section details the Python requirements of Microscope-Cockpit. Amongst 
those packages, the Python-microscope library appears as one of the most critical dependencies 
since it contains all the logic and support for handling and controlling microscopy devices. As part 
of this review, it came to our attention that this library has been recently published (
https://doi.org/10.1242/jcs.258955)1 including a supplementary figure Fig S1 which cross-
references Fig 1 of this paper. The article should thus be amended to cross-reference the Python-
microscope publication wherever appropriate. 
The article makes no mention of the file format written by Microscope-Cockpit. The Python-
microscope paper does not include any detail about the choice of data output for end-users either. 
From our minimal testing of the application, the only option available to the user is to write data 
as “DV files (.dv)”, a proprietary file format. Is this the only choice available to the user? If so, this 
feels like a limitation of the current implementation which contradicts the claim for the open and 
universal mission of Cockpit. We suggest a paragraph should be added to the Implementation 
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section that discusses the Data Generation/Output including a description of the file format as 
well as the tooling available for end-users of the acquisition system to read and analyze imaging 
data generated by Cockpit. 
In the section discussing Cockpit in relationship Micro-Manager, a proposed key strength of 
Cockpit is its Python implementation allowing the “strict separation of the user interface from the 
hardware control components” while “the majority of [Micro-Manager] interface must be written 
in Java; however the system also needs a C/C++ layer to interface the Java code to C/C++ based 
system libraries”. This argument omits Pycro-Manager, a Python bridge for Micro-Manager, 
published earlier this year (https://doi.org/10.1038/s41592-021-01087-6)2 and mentioned in the 
aforementioned Python-microscope publication. The section mentioned above should be 
amended to cite this paper and include Pycro-Manager in the comparison with Cockpit. 
Much is made of the ability to use Python for custom modifications and the integration of third-
party libraries. The text mentions that “the microscope control can easily be modified to make use 
of the extensive machine learning algorithms available in easy to integrate libraries” but this 
sentence rather suggests the extensibility is a property of the underlying python-microscope 
library rather than the Cockpit interface. The Cockpit reference documentation (
https://www.micron.ox.ac.uk/software/cockpit/) primarily describes the installation and the 
configuration of the software. To support the extensibility claim, we would suggest either to 
introduce a public example of Python extension to the default Cockpit UI and/or an amendment to 
the online documentation that would demonstrate this extension which could be linked from the 
article. 
Together with python-microscope paper, this paper introduces a new open-source solution for 
microscope control and imaging acquisition. Both in the introduction and in the discussion, 
Cockpit is compared to several equivalent commercial and open-source solutions, including the 
well-established Micro-Manager. This comparison is important and particularly useful for end 
users and imaging facility managers who need to make informed decisions e.g. when investing in 
new equipment or technologies. We suggest to make the outcome of this discussion more explicit 
and prominent e.g. under a form of a summary table that would include the different available 
ecosystems (individual hardware solutions, LabView, python-microscope/Microscope-Cockpit and 
Micro-Manager/Pycro-Manager) and compare their respective advantages and drawbacks. 
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Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
No

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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Response to review from authors.  
 
Authors responses are in italics 
New text in the manuscript are in bold 
 
The Implementation section details the Python requirements of Microscope-Cockpit. 
Amongst those packages, the Python-microscope library appears as one of the most critical 
dependencies since it contains all the logic and support for handling and controlling 
microscopy devices. As part of this review, it came to our attention that this library has been 
recently published (https://doi.org/10.1242/jcs.258955)1 including a supplementary figure 
Fig S1 which cross-references Fig 1 of this paper. The article should thus be amended to 
cross-reference the Python-microscope publication wherever appropriate. 
 
We thank the reviewers for pointing this out. The Python-Microscope publication has been 
accepted at JCS since we submitted the article. We have revised the manuscript to reference the 
published article rather than the biorXiv preprint.  
 
The article makes no mention of the file format written by Microscope-Cockpit. The Python-
microscope paper does not include any detail about the choice of data output for end-users 
either. From our minimal testing of the application, the only option available to the user is 
to write data as “DV files (.dv)”, a proprietary file format. Is this the only choice available to 
the user? If so, this feels like a limitation of the current implementation which contradicts 
the claim for the open and universal mission of Cockpit. We suggest a paragraph should be 
added to the Implementation section that discusses the Data Generation/Output including 
a description of the file format as well as the tooling available for end-users of the 
acquisition system to read and analyze imaging data generated by Cockpit. 
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We thank the reviewers for raising this point. While it is correct that Microscope-Cockpit only 
saves images in the ‘.dv’ file format, it is a slight variant of the open MRC file format commonly 
used in the electron microscopy community. The MRC format is extensively documented at 
https://www.ccpem.ac.uk/mrc_format/mrc2014.php. The sight variations to the encoded 
metadata reflect differences between the relevant data in optical and electron microscopy. 
Crucially, there is considerable support within open source software that supports ‘.dv’ files, 
including Bio-Formats for importing data into ImageJ, OMERO and Matlab. Therefore, users can 
easily convert to other formats and use popular programs to analyse the data output by 
Microscope-Cockpit based microscopes.  We have revised the manuscript to address this point 
and changed the software package documentation to include an explanation of this as well as 
information about the software that supports the ‘.dv’ format, and explicit definition of what 
metadata we save in the files. We have added a section on output image files which explicitly 
mentions these points: 
 
Output image files 
 
Experimental images are saved into files utilising the ‘.dv’ file format, typically 
multiple wavelengths, Z-slices and time points into a single file. Images from the 
mosaic window and single snaps can also be saved into this format, with the mosaic 
saved files having an associated text file defining XYZ positions of each collected 
image. The ‘.dv’ format is an extension of the mrc file format, defined in detail in the 
MRC/CCP4 2014 file format specification. The CCP4 consortium of the EM community 
continue to support and extend this file format. This support includes file validators 
and a detailed specification, which is compatible with the files used here but not 
identical. 
 
The optical microscopy specific metadata are covered in the documentation. Although 
relatively uncommon, the file format is supported by the Bio-Formats project allowing 
import of ‘.dv’ files, along with the associated metadata into software using this 
library including ImageJ, OMERO and Matlab. Additionally, the Chromagnon image 
alignment tool will read and write ‘.dv’ files and it is the native format for DeltaVision 
microscopes utilising the commercial package SoftWoRx. 
 
 
In the section discussing Cockpit in relationship Micro-Manager, a proposed key strength of 
Cockpit is its Python implementation allowing the “strict separation of the user interface 
from the hardware control components” while “the majority of [Micro-Manager] interface 
must be written in Java; however the system also needs a C/C++ layer to interface the Java 
code to C/C++ based system libraries”. This argument omits Pycro-Manager, a Python 
bridge for Micro-Manager, published earlier this year (https://doi.org/10.1038/s41592-021-
01087-6)2 and mentioned in the aforementioned Python-microscope publication. The 
section mentioned above should be amended to cite this paper and include Pycro-Manager 
in the comparison with Cockpit. 
 
We thank the reviewers for pointing out this paper which was again published since our original 
submission and we have now added discussion about Pycro-Manager to the paper. We have 
revised the manuscript by adding the following text to the discussion section: 
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It should be noted that Pycro-Manager [pinkard2021] has recently been developed and 
released to allow much closer integration between Python and uManager. Pycro-
Manager seems likely to fill a similar position to Microscope-Cockpit, allowing direct 
Python based control of imaging experiments, integration with online analysis and a 
range of other functionality. As this is a recent development, we have not explored 
this package in any detail. 
 
 
Much is made of the ability to use Python for custom modifications and the integration of 
third-party libraries. The text mentions that “the microscope control can easily be modified 
to make use of the extensive machine learning algorithms available in easy to integrate 
libraries” but this sentence rather suggests the extensibility is a property of the underlying 
python-microscope library rather than the Cockpit interface. The Cockpit reference 
documentation (https://www.micron.ox.ac.uk/software/cockpit/) primarily describes the 
installation and the configuration of the software. To support the extensibility claim, we 
would suggest either to introduce a public example of Python extension to the default 
Cockpit UI and/or an amendment to the online documentation that would demonstrate this 
extension which could be linked from the article. 
 
The reviewers make a good point that would significantly strengthen the paper. We have written 
a short script that utilises some of the embedded functionality to find and mark cell nuclei in a 
typical DAPI stained sample. The code, along with a test image set, config files and detailed 
instructions on how to set it up are collected into a zenodo repository and available via a doi 
(10.5281/zenodo.5745648) link.  In fact, this simulated microscope approach is a very powerful 
approach to setting up and testing such scripts. We have also added the following text to the 
manuscript.  
 
Example simple extension in Python 
 
We include an example script which demonstrates how the functionality of cockpit 
can easily be extended in python. The script finds DAPI stained cell nuclei in images, 
utilising the mosaic functionality to scan large areas and the point marking features 
to record the centroids of the detected nuclei. The script utilises the OpenCV 
framework to detect large roughly circular objects in images. Images taken for the 
mosaic are also trapped by the code which Gaussian blurs to reduce noise, binarise 
and finally applies a Hough transform to find circular objects. The locations of these 
objects in the image are then transformed into stage coordinates and added to the 
marked point list. The Python code, a test image and detailed instructions on how to 
setup a simulated microscope to run this without any microscope hardware is detailed 
at https://doi.org/10.5281/zenodo.5745648. 
 
For this simple example the parameters are fixed and tuned to the data set used, and 
select a subset of nuclei within a size range and with defined circularity. The current 
code also doesn’t reliably detect nuclei at the edges between images in the mosaic 
scan. However, it can easily detect a large number of cell positions to create a point 
list which could then be run through a multi-site experiment to collect data such as a 
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3D, multi-channel stack, or time lapse on a large number of cells semi-automatically. 
 
 
Together with python-microscope paper, this paper introduces a new open-source solution 
for microscope control and imaging acquisition. Both in the introduction and in the 
discussion, Cockpit is compared to several equivalent commercial and open-source 
solutions, including the well-established Micro-Manager. This comparison is important and 
particularly useful for end users and imaging facility managers who need to make informed 
decisions e.g. when investing in new equipment or technologies. We suggest to make the 
outcome of this discussion more explicit and prominent e.g. under a form of a summary 
table that would include the different available ecosystems (individual hardware solutions, 
LabView, python-microscope/Microscope-Cockpit and Micro-Manager/Pycro-Manager) and 
compare their respective advantages and drawbacks. 
 
We thank the reviewers for this suggestion and we have added a table of feature comparison 
between a range of microscope control options as a traffic light colour coded table and the 
following text to the manuscript. 
 
 
 
Table 1 shows a comparison between various features of the previously described 
microscope control software options. We have ranked features of the control software 
options with a traffic light colour scheme with green being best and red least good. 
The table includes the approaches mentioned above along with Matlab, a common 
alternative to LabVIEW, a more conventional programming package with a range of 
extensions and with a large support base, and MetaMorph/ SlideBook included as 
representatives of commercial generalised microscope control packages. 
 
[New table included in revised version] 
 
Table 1: A symbolic representation of the relative strengths of different microscope 
control approaches in a number of areas with a traffic light colour scheme, with red 
worst and green best. Separate control programs involve using a separate control 
program for each piece of hardware. In general, this software is free, however some 
components such as cameras might require a separate software purchase from the 
manufacturer. MetaMorph and SlideBook are examples of generalised commercial 
software designed for microscope control and provided by third parties, these are only 
two examples of a range of such packages.  
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What about the availability of open source drivers through micromanager? Although it is 
somewhat recognized that the micromanager API/architecture is not ideal, it is certainly 
recognized that the large number of already existing drivers is a key strength. How is the 
availability of drivers for Cockpit? 
 
How does Cockpit compare to Pycro-manager (Pycro-Manager: open-source software for 
customized and reproducible microscope control, Pinkard et al., 2021, Nature Methods),1 which 
enjoys the benefits of the existing micromanager ecosystem while also providing a Python 
interface? 
 
Overall, Cockpit seems like a strong contribution. I see a lot of potential, but it is not clear that it is 
quite competitive with micromanager yet (which is fine, that will come with time). Integration with 
a tool like napari would be a great choice for broadening the usability of Cockpit. It is nice to see 
that Cockpit is being tested on multiple systems, although as mentioned it would be good to see a 
fair comparison between Cockpit's current (and future planned) drivers relative to a mature 
project like micromanager. 
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Response to review from Authors.  
 
What about the availability of open source drivers through micromanager? Although it is 
somewhat recognized that the micromanager API/architecture is not ideal, it is certainly 
recognized that the large number of already existing drivers is a key strength. How is the 
availability of drivers for Cockpit? 
 
This is an interesting idea and we have considered it. There are two major arguments against this 
approach. Firstly this would require importing the whole of the uManager infrastructure, the java 
JVM etc… Secondly our brief exploration appeared to show that matching devices to the fixed 
device type specific API in Python-Microscope, the library we use to interface directly to the 
hardware, would involve substantial effort for each device. We felt it was more productive o apply 
this effort to implementing the device directly in Python. This probably took roughly the same 
effort and enabled us to avoid the uManager overhead.  
 
How does Cockpit compare to Pycro-manager (Pycro-Manager: open-source software for 
customized and reproducible microscope control, Pinkard et al., 2021, Nature 
Methods), which enjoys the benefits of the existing micromanager ecosystem while also 
providing a Python interface? 
 
We thank the reviewer for pointing out this paper which was published since our original 
submission and we have now added discussion about Pycro-Manager to the paper. We have 
revised the manuscript by adding the following text to the discussion section: 
 
It should be noted that Pycro-Manager [pinkard2021] has recently been developed and 
released to allow much closer integration between Python and uManager. This seems 
likely to fill a similar position as Microscope-Cockpit, allowing direct Python based 
control of imaging experiments, integration with online analysis and a range of other 
functionality. As this is a recent development we have not explored this package in 
any detail.  
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