
SOFTWARE TOOL ARTICLE

Microscope-Cockpit: Python-based bespoke microscopy for

bio-medical science [version 1; peer review: 1 approved, 1

approved with reservations]
Mick A. Phillips 1-3, David Miguel Susano Pinto 1, Nicholas Hall 1,
Julio Mateos-Langerak 4, Richard M. Parton 1, Josh Titlow1,
Danail V. Stoychev 1, Thomas Parks2, Tiago Susano Pinto1, John W. Sedat5,
Martin J. Booth 6, Ilan Davis1, Ian M. Dobbie 1

1Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
2Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
3Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine,, Roosevelt Drive, Oxford, OX3 7BN, UK
4IGH, Univ Montpellier, Montpellier, 34396, France
5Department of Biochemistry & Biophysics, UCSF, San Francisco, CA, 94158, USA
6Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK

First published: 08 Apr 2021, 6:76
https://doi.org/10.12688/wellcomeopenres.16610.1
Latest published: 17 Jan 2022, 6:76
https://doi.org/10.12688/wellcomeopenres.16610.2

v1

Abstract
We have developed “Microscope-Cockpit” (Cockpit), a highly adaptable
open source user-friendly Python-based Graphical User Interface
(GUI) environment for precision control of both simple and elaborate
bespoke microscope systems. The user environment allows next-
generation near instantaneous navigation of the entire slide
landscape for efficient selection of specimens of interest and
automated acquisition without the use of eyepieces. Cockpit uses
“Python-Microscope” (Microscope) for high-performance coordinated
control of a wide range of hardware devices using open source
software. Microscope also controls complex hardware devices such as
deformable mirrors for aberration correction and spatial light
modulators for structured illumination via abstracted device models.
We demonstrate the advantages of the Cockpit platform using several
bespoke microscopes, including a simple widefield system and a
complex system with adaptive optics and structured illumination. A
key strength of Cockpit is its use of Python, which means that any
microscope built with Cockpit is ready for future customisation by
simply adding new libraries, for example machine learning algorithms
to enable automated microscopy decision making while imaging.

Open Peer Review

Approval Status

1 2

version 2

(revision)
17 Jan 2022

version 1
08 Apr 2021 view view

Kyle Harrington , Max Delbrueck Center

for Molecular Medicine, Berlin, Germany

1.

Jason R Swedlow , University of Dundee,

Dundee, UK

Emil Rozbicki, Glencoe Software, Inc, Seattle,

USA

William Moore, University of Dundee,

Dundee, UK

Sébastien Besson , University of Dundee,

Dundee, UK

2.

Page 1 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://wellcomeopenresearch.org/articles/6-76/v1
https://wellcomeopenresearch.org/articles/6-76/v1
https://orcid.org/0000-0003-3578-7301
https://orcid.org/0000-0003-2710-0186
https://orcid.org/0000-0003-2259-8755
https://orcid.org/0000-0003-1579-0773
https://orcid.org/0000-0002-2152-4271
https://orcid.org/0000-0001-5539-2206
https://orcid.org/0000-0002-9525-8981
https://orcid.org/0000-0002-5531-5865
https://doi.org/10.12688/wellcomeopenres.16610.1
https://doi.org/10.12688/wellcomeopenres.16610.2
https://wellcomeopenresearch.org/articles/6-76/v2
https://wellcomeopenresearch.org/articles/6-76/v1
https://wellcomeopenresearch.org/articles/6-76/v1#referee-response-45664
https://wellcomeopenresearch.org/articles/6-76/v1#referee-response-45668
https://orcid.org/0000-0002-7237-1973
https://orcid.org/0000-0002-2198-1958
https://orcid.org/0000-0001-8783-1429
http://crossmark.crossref.org/dialog/?doi=10.12688/wellcomeopenres.16610.1&domain=pdf&date_stamp=2021-04-08

Corresponding authors: Ilan Davis (ilan.davis@bioch.ox.ac.uk), Ian M. Dobbie (ian.dobbie@jhu.edu)
Author roles: Phillips MA: Conceptualization, Software; Susano Pinto DM: Conceptualization, Software, Supervision, Writing – Original
Draft Preparation, Writing – Review & Editing; Hall N: Software; Mateos-Langerak J: Software; Parton RM: Conceptualization,
Resources; Titlow J: Resources; Stoychev DV: Software; Parks T: Software; Susano Pinto T: Software; Sedat JW: Conceptualization;
Booth MJ: Conceptualization, Supervision; Davis I: Conceptualization, Funding Acquisition, Project Administration, Supervision, Writing –
Original Draft Preparation, Writing – Review & Editing; Dobbie IM: Conceptualization, Funding Acquisition, Project Administration,
Software, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: Martin Booth declares a significant interest in Aurox Ltd., whose microscopes were used in this work.
Grant information: This research was funded by Wellcome strategic awards, a senior fellowship and an investigator award to I.D.
[091911/Z/10/Z], [091911/Z/10/A], [107457/Z/15/Z], [096144/Z/17/Z]and [209412/Z/17/Z]; Wellcome funding to the Wellcome Trust
Centre for Human Genetics [105605/Z/14/Z] and [203141/Z/16/Z]; an MRC/EPSRC/BBSRC Next-generation Optical Microscopy
[MR/K01577X/1] to I.D.; GIS IBiSA [#2015-28]; and by the CNRSMITI [Défi Imag’In 2015]. D.S. is funded by a BBSRC iCASE grant with Aurox
as the industrial partner [BB/M011224/1]. N.H. was supported by funding from the Engineering and Physical Sciences Research Council
(EPSRC) and Medical Research Council (MRC)[EP/L016052/1].
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2021 Phillips MA et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Phillips MA, Susano Pinto DM, Hall N et al. Microscope-Cockpit: Python-based bespoke microscopy for bio-
medical science [version 1; peer review: 1 approved, 1 approved with reservations] Wellcome Open Research 2021, 6:76
https://doi.org/10.12688/wellcomeopenres.16610.1
First published: 08 Apr 2021, 6:76 https://doi.org/10.12688/wellcomeopenres.16610.1

Keywords
Microscope-Python, Bespoke microscope, Microscope hardware
device control, Free and open source software, Imaging, Machine
Learning (ML), Artificial Intelligence (AI), Adaptive optics (AO), Super
resolution microscopy

Any reports and responses or comments on the

article can be found at the end of the article.

Page 2 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

mailto:ilan.davis@bioch.ox.ac.uk
mailto:ian.dobbie@jhu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.16610.1
https://doi.org/10.12688/wellcomeopenres.16610.1

Introduction
Why we need Cockpit
Biomedical research has benefited from significant engineering
advances that have increased the speed and sensitivity of many
types of scientific instrumentation. Microscope technology,
in particular, is evolving rapidly through advances in optical
techniques and image processing, enabling major scientific dis-
covery. However, the rapid adoption and application of advanced
microscopies by biomedical scientists is constrained, espe-
cially when it relies on commercialisation to make the necessary
technology accessible to the end-users.

It can often take several years to develop innovations from
research instruments into user-friendly, off-the-shelf systems1–4.
We report a collaboration between the University of Oxford and
the University of California San Francisco (UCSF) that grew
out of the OMX microscope project, dating from the early
1990s, which is extensively documented in the supplement of 1.

To accelerate technology adoption, many labs are building cus-
tom microscopes based on newly developed imaging methods,
such as light sheet5, lattice light sheet3, 3DSIM1,6, STED7, and
MINFLUX8, or to exploit new analysis techniques, such as
STORM analysis9,10, 3B11, and SIMFLUX12. These instruments
require flexible, computerised control of a wide range of indi-
vidual components (lasers, mirror actuators, filters, objectives,
detectors, etc.) allowing more rapid deployment of novel tech-
niques, and often providing faster and more sensitive operation
than commercial systems3,13,14. However, integration of these
components into a single user-friendly platform that is focused
on users’ scientific application, rather than dictated by the control
infrastructure, can be a major challenge. There have been three
general solutions adopted by the community for software
control of bespoke microscope hardware.

1. Using individual manufacturer-provided packages for each
piece of hardware. This can provide a straightforward
solution for simpler systems, but fundamental incompat-
ibilities between each vendor’s control models can prevent
integration of multiple components.

2. Using LabVIEW, a commercial visual programming tool
from a leading hardware manufacturer, National Instruments
(Austin, Texas, United States).

3. Use of a dedicated microscope control package, of which
several are available, with the most widely used being Micro-
manager (µManager): an open source Java and C++ based
software platform for controlling a range of microscope
hardware such as stands, cameras, and stages. A less
widely-adopted solution is a bespoke platform written
in Python to control the OMX microscope1,15,16, and this
forms the starting point of the Microscope-Cockpit project
described in this manuscript.

An important feature for custom microscopes is the freedom
to design the system around a specific set of experiments, as
defined by the user. With a specific application in mind, an
instrument can be optimised to make the best possible

compromises for that application. For example, imaging deep
into biological tissue can involve significant optical aberrations
leading to degraded image quality. This can be compensated
for by the application of adaptive optics techniques, at a
cost of increased complexity and marginally decreased light
efficiency. However, it is desirable that this capability is easily
enabled and exploited by microscope users, typically biologists
with limited experience of the underlying engineering, and be
reproducible over months or years of use. Many such custom
microscope designs have been published17–22. In all of these cases,
control of the many hardware components in a complex and
timed manner is challenging, particularly for time sensitive
applications involving living specimens. Correction settings must
be measured and applied in coordination while simultaneously
minimising additional exposure of the sample.

Finally, the democratisation of artificial intelligence (AI)-based
image analysis approaches means that a wealth of tools are poten-
tially available to users. However, current systems, with some
specific exceptions, are not well suited for the integration of
bespoke novel AI-approaches with the imaging process. This
limitation can be significantly reduced by an appropriately
flexible package for control of bespoke systems.

Philosophy and implementation of Cockpit
We set out to create a package that is suitable for biologists to
carry out a range of experiments in a time efficient manner, at
scale. At the same time, the software has to control a wide range
of electronic and optical hardware devices and microscope
types. Many bespoke microscope systems that lack eyepieces,
such as systems built by physical scientists in collaboration with
biologists, make sample navigation particularly challenging.
Improving navigation on this type of system is a major feature
of Cockpit.

There are several existing software control approaches includ-
ing manufacturer-supplied packages, custom control software,
in LabVIEW or a more traditional programming language, or
the open source program µManager, as discussed earlier. We
feel that Cockpit has several distinct advantages over these other
approaches. We compare the relative merits of Cockpit and a
range of alternatives in the discussion.

Cockpit is an open-source software package that makes it easy
to control multiple devices through a single Python-based user
interface (Figure 1). Cockpit supports multiple platforms, and
the similarity of its interface across operating systems and
widget toolkits is shown in Figure 2. It provides an innovative
mosaic tool, allowing large areas of a microscope specimen to
be imaged and then navigated in real time. This is similar to
Micro-Magellan23, but with the additional feature of keeping
even thousands of images in Graphic Processing Unit (GPU)
memory for instant access at various levels of detail. It uti-
lises Python-Microscope to communicate with a wide range of
microscope hardware and is able to exploit a master timing con-
trol device to provide hardware triggering for digital devices
and synchronised analogue voltages. This enables highly repro-
ducible timing over a range of time scales even in extremely
complex experiments with multiple devices.

Page 3 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://www.ni.com/en-gb/shop/labview.html
https://micro-manager.org/
https://micro-manager.org/
https://www.python.org/
https://micro-manager.org/wiki/MicroMagellan
https://python-microscope.org/

Figure 1. The main Cockpit Graphical User Interface (GUI) components: (a) The main window provides quick access to a number of functions
and shows the status of all the devices, as well as the channels buttons to load predefined configurations. (b) The macro stage window
provides an overview of the position of all stages, including nested stages and Z position. (c) The camera view shows the last image taken
from each active camera and their histograms. (d) The mosaic view displays all mosaic images taken, saved locations, and dramatically eases
navigation.

The simple interface design (Figure 1) enables users to focus
on collecting the data they require without having to devise
complex control infrastructure for systems of any level of com-
plexity. It also enables easy navigation of even large sample
regions. This can be especially important on bespoke micro-
scopes which often lack eyepieces. For these types of system,
Cockpit includes a touchscreen-optimised display window, pro-
viding large buttons and simple control over most functions
(Figure 3).

The principal design goals for the Cockpit interface were to:

• Provide an easy-to-use, simple “Cockpit” control program
for a wide range of microscopes.

• Hide from the user the complexity required to control an
advanced microscope.

• Minimise the effort required to change hardware or integrate
new hardware.

• Enable high-precision hardware timing signals to optimise
experimental control, facilitate complex systems and maximise
speed.

Cockpit provides an integrated microscope control pack-
age that enables all these features while being user friendly and
portable across many different microscopes and common
operating systems.

Page 4 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

Figure 2. The Cockpit main window under different operating systems.

Page 5 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

Figure 3. The Cockpit touchscreen window with the main GUI components in one window and large touchscreen friendly
buttons. The left panel houses stage position indicators and controls, next panel over has devices like cameras and lights along with a
set of large buttons at the bottom to run mosaics, centre the field of view on the current stage position, erase mosaic images, open the
experiment dialog, drop a marker at the current position, display live video, run an experiment, a help button, and finally abort which stops
an experiment or mosaic. The majority of the window is the mosaic display panel which can zoom from an overview up to the level of single
pixels. Finally on the right is the last snapped image from each enabled camera, only one in this case.

The first version of the Cockpit software was developed in
UCSF to drive the OMX microscope1,15,16, which was later
commercialised. This code was re-written at UCSF and later
released as open source under a BSD license. From this con-
cept we have extensively developed the implementation of
Cockpit to realise its full potential.

Implementation
Cockpit is implemented in the Python programming
language24. The code consists of four main components: devices,
handlers, interfaces, and the Graphical User Interface (GUI).
Devices represent the individual physical devices, handlers
represent control components of the devices, handlers from sin-
gle or multiple devices are aggregated into interfaces, and the
GUI component allows user interaction with the different
interfaces.

Devices and handlers
The hardware control side of Cockpit has two parts: devices
and handlers. A Cockpit device maps to a single physical device
while handlers abstract the control components of the device
to be used. For example, an XY stage device provides two
handlers, one per axis. A laser device also provides two

handlers, a light source handler and a light power handler: the
light source handler controls the light source state — on or
off — while the light power handler controls its intensity.

Most of the Cockpit code does not interact with Cockpit
devices directly. Rather, when the Cockpit program starts, it
constructs a “depot” object whose role is to obtain and keep
track of the different device handlers. This architecture ena-
bles rapid changes in the choices of hardware devices, so they
can be very easily added or removed from a complex system as
it is being developed. This approach prevents potential con-
flicts or confusions such as addressing devices that do not exist
or adding devices that lack drivers.

Within this architecture, any Python class can be used as a
device; it is only required to provide one or more Cockpit
handler. Built-in Cockpit devices include adaptors for the
Python-Microscope package, thus supporting all of its
available devices. Cockpit also supports the Aerotech PRO115
linear stage from the Soloist CP Controller, the PI M-687 XY
stage from the PI C-867.262 controller, the Picomotor control-
ler 8743-CL, the small 512x512 Spatial Light Modulator (SLM)
and liquid crystal polarization rotator from Meadowlark

Page 6 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://www.aerotech.com/product-catalog/drives-and-drive-racks/soloist-cp.aspx
https://www.newport.com/p/8743-CL
https://www.newport.com/p/8743-CL
https://www.meadowlark.com/small-512-512-spatial-light-modulator-p-139
https://www.meadowlark.com/liquid-crystal-polarization-rotator-p-96

Optics, and the SR470 laser shutter system from Stanford
Research Systems.

Cockpit itself does not require a direct connection to the hard-
ware. Indeed, most Cockpit devices are implemented as remote
objects with the help of Pyro, a Python package for remote
procedure calls. The use of Pyro enables the distribution of
devices over the network to different computers, even running
different operating systems.

Interfaces and GUI
Cockpit defines interfaces that are high-level abstractions for
the system, with each controlling one or more handlers. For
example, the stageMover interface is a unified translation
manager that coordinates all translation stages, hiding the
complexity of handling different stages for different axes and
nested stages on the same axis. For instance, a system may
include an XY stage, a coarse Z stage, and a high precision fast
piezo Z stage. The GUI component provides different views
onto the multiple interfaces and handlers, each exposing
different levels of complexity.

Cockpit has a multi-window GUI, with each window serv-
ing a different purpose (Figure 1). This provides the flexibility
to distribute the windows over multiple monitors in whatever
form best fits the system being used. The main window
provides an at-a-glance view of the state of the various devices;
the mosaic window enables navigation of the sample relative
to an overview formed of tiled images; the macro stage window
displays the position of the different stages; and the camera
view the current images from all active cameras. In addition,
Cockpit also has a simpler single-window touchscreen inter-
face (Figure 3) which duplicates a subset of the functionality
provided on the other windows. This window is optimised for
touchscreen interaction with large buttons for the most useful
subset of functionality.

Cockpit uses wxPython, a Python wrapper to wxWidgets, to
provide a user interface that has a native look and feel on the
different platforms (Figure 2). Within wxPython, we make
extensive use of OpenGL to enable high performance display
and interaction with large images or image mosaics up to
gigapixel sizes.

Data acquisition experiments
In Cockpit, the acquisition of an image series, such as a
Z-stack or a time lapse sequence, is defined by an experiment.
Cockpit experiments are based around the concept of an
action table which must be run with hardware triggers. The
experiment settings are converted into a list of device actions,
which is parsed into a list of pre-computed analogue values and
digital levels for each time point on a timing device. The action
table is uploaded to the timing device and then started, running
the experiment utilising hardware triggers and analogue
voltages, where appropriate, to control all active devices. This
approach, adapted from Carlton et al.1, is able to produce
both digital triggers and analogue signals with precise timing.

Effective execution of the experiment requires accurate
timing. In order to ensure that experiment timing is inde-
pendent of the host computer’s performance or the Python
implementation, the timing functionality is performed using
dedicated hardware. This enables time-critical operation of
the microscope imaging tasks. The timing system has been
implemented on several different hardware platforms, a digital
signal processing board (Innovative Integration M67-160 with
an A4D4 daughter board), an NI FPGA board (National Instru-
ments cRIO-9068), and a Red Pitaya single board computer
(STEMlab 125-14). In this way, we have created a universal
and adaptable microscope platform with outstanding timing
precision and accuracy.

System requirements
Cockpit requires Python 3.5 or later, and the Python packages
PyOpenGL, Pyro4, Freetype Python, Matplotlib (RRID:SCR_
008624)25, Python-Microscope, NumPy (RRID:SCR_008633)26,
pySerial, SciPy (RRID:SCR_008058)27, and wxPython. These
are all free and open-source software that are available for all
widely-used operating systems. Hence, Cockpit can be used
across GNU/Linux, macOS, and Windows.

The Cockpit interface incorporates some assumptions as to what
is required for a minimal microscope. It requires at least one
camera, a computer controlled X, Y and Z translation motor-
ised axes, and a light source that can either be hardware
triggered (directly or via a shutter) or left on during an experi-
ment. In addition, experiments require a device that can be
programmed as source of hardware triggers, supplying
digital signals and, optionally, analogue voltages.

With no configuration to specific hardware, Cockpit will
automatically start in simulation mode, providing simulated
cameras, light sources, and stages. This allows testing and
demonstration of the software without any hardware or configu-
ration. This can be further extended by utilising the test devices
within the associated Python-Microscope package. In this
mode, with some configuration, the software can link simulated
XYZ stage, camera, and filter-wheel to return a channel defined
by the filter-wheel and a subregion defined by the stage position
from a large multi-channel image. The simulation is further
improved by blurring the image based upon the Z position of
the stage. This mode was used for Figure 1 and Figure 3 in this
manuscript.

Use cases
Cockpit is optimised to provide an effective user experience
running a fully automated microscope on systems with no
eyepieces. A significant component of this is powerful mapping
and overview tools that provide a guide-map to the specimen
landscape, which is interactive and highly responsive. The
system can collect arbitrary mosaic images, which are acquired
in an expanding spiral pattern. Acquired mosaic images are
immediately uploaded to the graphics card as a texture map. This
allows smooth and rapid display of these images from low
zoom overview all the way to single pixel views. The graphics
card can then render these images interactively in real time.

Page 7 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://www.thinksrs.com/products/sr470474.html
https://pyro4.readthedocs.io/
https://www.wxpython.org/
https://www.wxwidgets.org/
https://www.opengl.org/
http://pyopengl.sourceforge.net/
https://pyro4.readthedocs.io/
https://github.com/rougier/freetype-py
https://matplotlib.org/
https://python-microscope.org/
https://www.numpy.org/
https://github.com/pyserial/pyserial
https://www.scipy.org/
https://www.wxpython.org/

The typical texture memory on modern graphics cards mean
that the system can navigate in real time around mosaics
made from hundreds or thousands of individual images, with
resulting mosaics up to gigapixels in size. Starting a new
mosaic does not remove previous images, so multiple, possibly
overlapping, mosaic areas can be collected. Keeping previ-
ous mosaic images means it is easy to navigate multiple regions
of the sample without having to reacquire overview images.
This greatly eases the navigation of complex samples.

There are two obvious use cases for this functionality. In the
first case, one could utilise a low magnification lens to map a
large section, or even the whole of the sample area, say a
coverslip as shown in Figure 4(a). This produces a ∼250
megapixel image, via which the user can visit any site of choice
and re-image points in fluorescence mode with higher magnifica-
tion objectives (Figure 4(b)). The new detailed images are then
“painted” onto the guide-map in real-time. As the second case,
in samples such as tissue culture cells, where many similar
regions are available, smaller regions can be imaged at higher
resolution to select interesting targets for further imaging. The
preservation of previous mosaics when a new one is initi-
ated is a critical component of this process, as it allows easy
navigation of multiple sample regions. It is then practical to
return to the regions of most interest without requiring reim-
aging, which would waste time and incur unnecessary light
exposure to the sample.

To improve the user-centred microscope experience, we
divided the use of the microscope into two stages. The user
starts an imaging session by rapidly exploring large regions or
even the entire slide to create a guide map, while marking
regions of interest for later inspection. In the first stage, the

touchscreen can be used to build the guide map. The user then
establishes the conditions required for the desired images, such
as choice of laser lines and their intensities, exposures, number
of channels and cameras, Z sectioning range, and points to
visit on the guide map. The use of a touchscreen enables rapid
setting up of the conditions for the experiment, focusing on the
most important features of the microscope hardware without
providing full functionality.

In a second phase of acquisition, a more detailed software
control window is used with a conventional keyboard to define
any more advanced experimental settings, such as numeric
values for time lapse interval which are difficult to set from
a touch interface. Finally the experiment is run.

In this way, we have created a unique, near-instantaneous
control environment that allows the user to start an imaging
session by exploring the entire slide quickly and marking
regions to visit and image in order to achieve their scientific
goals. Our software provides a novel way for the user to plan
their entire work flow rapidly and with efficient specimen usage.

Previously published systems and microscopes in
development using Cockpit
To exemplify the flexibility of Cockpit, we present a number
of systems that currently run using the software as the user
interface. Along with previously published systems, we have
a number of microscopes at earlier stages of development where
Cockpit provides the user interface.

Cockpit has already been deployed in three systems reported
in previous publications. The first is a cryo-super resolution
microscope for correlative imaging, CryoSIM28,29 (Figure 5(a)).

Figure 4. The mosaic tool used to image a standard Thermo Fisher test slide (FluoCells™ Prepared Slide #1, F36924) with: (a) mosaic of a
complete coverslip imaged with a 4× objective (pixel size 1.502 µm) consisting of more than 250 megapixels; (b) a magnified portion of the
mosaic with a single image from a 63× objective (pixel size 0.0954 µm) painted in on the low resolution map. The higher magnification image
has much better signal to noise ratio from better light collection as the objective has a much higher numerical aperture.

Page 8 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

Figure 5. Previously published systems that use Cockpit: (a) the CryoSIM system; (b) the Aurox Clarity AO laser free spinning disk confocal
system; (c) image acquired on CryoSIM of cryo preserved HeLa cell labelled with MitoTracker green and LysoTracker red; (d) image acquired
on the Aurox Clarity system with AO correction at high optical sectioning. Image is a maximum intensity projection of a 20 µm z-stack.
Sample was a Drosophila neuromuscular junction with DLG in yellow, HRP in magenta, and DAPI in cyan. Scale bars 5 µm.

The second demonstration was a laser-free spinning disk
confocal microscope using adaptive optics (AO) for aberration
correction30 (Figure 5(b)). Additionally, Cockpit was the basis
of the control software in the implementation of a novel
technique, IsoSense, for improved aberration correction in
widefield microscopes and structured illumination31.

A simple widefield microscope
We present a simple, compact, fully automated, portable
inverted microscope based around the Zaber MVR system. This
provides a bare-bones inverted stand with motorised X, Y, and
Z axes, a multi-position motorised filter turret, and LED-based
fluorescence illumination. The system has a Ximea camera with
a small physical footprint (approximately 30 mm cube) and
a Red Pitaya single board computer running as a hardware
timing device (Figure 6).

This system is able to take fluorescence images in three
colours, using the three illumination LEDs and a quad-bandpass
dichroic filter set. The system has 4× and 63× air objectives.

Although changing the objective involves physically remov-
ing the objective and its mount, this is easily achieved due to the
spring-loaded kinematic mounting system. The Cockpit mosaic
function allows large areas of a sample to be mapped quickly
(Figure 4(a)), and then regions of interest can be selected and
marked for return later or the mosaic stopped and z-stacks in
one or more channels collected. If a live sample is used the
system can be used for time lapse imaging.

This system provides a demonstration of the power and
portability of Cockpit and it functions as a test bed for new
software developments on practical hardware. The system’s
small size and portability enable easy transport of the system
for demonstrations and collaborative projects in other
laboratories.

A complex structured illumination microscope with
adaptive optics
In a further system, we are using Cockpit to maximise the
performance of complex upright widefield structured illumination

Page 9 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

Figure 6. The Zaber microscope. (a) An image of the system, showing its compact size with a 300×450 mm footprint, (b) a three colour
image showing the nucleus stained with DAPI in blue, the actin in green and mitochondria stained with MitoTracker Red CMXRos in Red.
Scale bar 5 µm.

microscope, referred to as DeepSIM (Figure 7(a)). This incor-
porates not only translation stages, light sources, and cameras,
but also a spatial light modulator (SLM) and a deformable
mirror (DM) for AO. This set-up is required to perform
super-resolution live imaging experiments deep in tissue speci-
mens, such as on the Drosophila larval neuro-muscular junc-
tion preparation, a powerful model system for understanding
synapse biology on a molecular level. In order to achieve this
imaging the system has to synchronise the illumination lasers,
the SLM, a polarisation rotator, the DM, the Z stage position,
and the cameras. The lasers, SLM, DM, and cameras receive
digital triggers from the Red Pitaya, while the Z-position and
polarisation rotator state are controlled via analogue voltages,
all synchronised at the µs level. Cockpit provides a simple user
interface allowing selection of different experimental param-
eters, such as exposure time, laser power, Z step, and stack size
(Figure 7(b)). The experiment module creates the relevant
signals and timing information, transfers this to the Red
Pitaya which then controls the hardware during the experiment.

Cockpit also provides a user-friendly interface to
Microscope-AOTools32, facilitating use of a wavefront sensor for
calibration of the DM then adaptively correcting sample induced
aberrations via image-based metrics, using so-called sensor-
less AO. This interface also implements IsoSense31 to improve
aberration detection over a wide range of complex samples.

Although this system is extremely complex with a multitude
of devices the user interface is clean and easy to use. The
system has sensible defaults, thus minimising the expertise and
interaction required to collect experimental data.

Discussion
We have developed a Python-based GUI for controlling
bespoke microscopes which can map the entire slide or dish,
allowing a real time exploration of the entire specimen land-
scape. It also connects to separate hardware timing devices to
enable high precision timing of even complex devices and
experiments. A key property of our software is that it is focused
around the needs of the user and their experimental design and
workflow. Finally, using Python means that the microscope
control can easily be modified to make use of the extensive
machine learning algorithms available in easy to integrate librar-
ies. This means that a microscope system that is controlled by
Cockpit can readily be adapted to make decisions using machine
learning algorithms during the acquisition process in order
to modify the imaging conditions.

Existing control options
Cockpit has been introduced as an alternative to a number
of existing microscope control options that are already avail-
able. Most published systems take one of three approaches:
1) utilise individual software packages provided by the device
manufactures, 2) use LabVIEW to integrate LabVIEW-based
drivers (VIs) provided by the manufacturers into a single
custom GUI, or 3) use the open source microscope control pack-
age µManager33. We will discuss the relative merits of each of
these options in turn.

Using individual software packages to control each device is
simple and direct. However this approach has several severe
drawbacks. Each hardware device needs its own software,
which takes up screen space and computer resources. This also

Page 10 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

Figure 7. Example data from the DeepSIM system using Cockpit to image deep (> 20 µm) in Drosophila neuro-muscular junctions.
The system uses sensorless AO to correct for sample induced aberrations. (a) system view from the stage; (b) main Cockpit window with
the additional controls for the SLM and AO devices; (c) image of individual synapses at the Drosophila neuro-muscular junction using AO-
SIM imaging, with Cy3 labelled HRP antibody labelling the neuronal membrane in red and Brp::GFP in the synapse in green; (d) zoomed in
region of (c). Scale bars are 2µm.

removes the ability of different hardware parts to automati-
cally interact with each other, for instance changing a stage’s
position once a camera has finished collecting images. Producing
Z-stacks, or multi-channel images on such a setup is awkward,
slow and open to human errors. These factors can lead to
corruption of the results.

LabVIEW is a visual programming tool that allows the con-
struction of “programs” by connecting modules with wires
and building graphical interfaces. Many manufacturers pro-
vide software to allow their hardware to be used in LabVIEW,
through so-called virtual instruments (VIs). Building clean and
simple visual framework to control highly complex advanced
optical systems in LabVIEW requires advanced expertise in

the program’s use. Because such skills are usually beyond the
ability of most scientists in an academic setting, many one-off
complex bespoke systems, built to demonstrate a new principle,
are very hard to use routinely by experimental scientists. Despite
their obvious importance, such systems can rarely be
reproduced and adopted by others for routine use.

µManager is an open source generalised microscope control
interface which works on top of ImageJ, a popular image analysis
program. ImageJ is written in Java, and µManager is writ-
ten in a combination of Java and C++. µManager’s approach is
most directly comparable to Cockpit. Many hardware device
manufacturers provide µManager compatible libraries and
instructions on how to connect and control their hardware. The

Page 11 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://imagej.nih.gov/ij/index.html
https://www.java.com/
https://isocpp.org/

package comes with mechanisms to run basic experiments,
and the ability sequence commands.

Being based on ImageJ, µManager, by design, includes a
large application with multiple windows. This also means that
the majority of the interface must be written in Java; however
the system also needs a C/C++ layer to interface the Java code
to C/C++ based system libraries. Cockpit is written in pure
Python, relying on the Python-Microscope package for hardware
interfacing. Producing a strict separation of the user interface
from the hardware control components. This has the additional
benefit that connected hardware may be physically located
on another computer, increasing scalability and allowing
devices requiring incompatible hardware or software to still be
seamlessly integrated.

The mosaic window in Cockpit is similar in concept to
Micro-Magellan23, a µManager plugin. Being able to record
a large area view, possibly from multiple areas, and have that
available for instant navigation. The mosaic functionality
dramatically speeds up experiment setup and finding the cor-
rect regions of interest, especially on bespoke systems with
no eyepieces. Our mosaic interface utilises modern fast
GPUs to enable instant access to even very large mosaic
maps. Additionally, the touch screen interface allows easy and
intuitive access to most of the functionality using a visual
grammar that is very familiar to everyone.

The dedicated timing device interface allows fast and repeat-
able timing for both simple and complex experiments. It is
useful in general but absolutely indispensable for experiments
like the live cell adaptive optics SIM experiment (Figure 7(c)).

The standardised device interfaces from Python-Microscope
mean that replacing one device with another of the same type
is simply a matter of changing the address of the device in a
configuration file.

Cockpit is still under active development, both within our labs
and at several other laboratories across multiple countries.
We are working on adding online image analysis to further
enhance the mosaic functionality with machine learning, ena-
bling the system to capture a large area of the sample quickly
at low-resolution and then automatically identify features
of interest for 3D-multi-channel acquisition.

Conclusions
We have developed Cockpit, a new paradigm for user-based
software control of complex bespoke microscopes. The
software is highly adaptable by a user or engineer with experi-
ence in Python. The key advantage of our approach is that a
user is presented with a clean and simple interface that hides
the complexity of the hardware, so they can focus on their
experimental design and obtain data from the instrument with
a high precision and reproducible workflow. We hope that the
community will adopt this package and help us to continue
to develop it.

Methods
CryoSIM imaging
The CryoSIM system has previously been published in
detail28,29. It was used to image HeLa cells grown on carbon
coated gold EM grids under standard tissue culture conditions.
Cells were labelled with MitoTracker Green (Thermo Fisher)
at 100 nM and LysoTracker Red DND-99 (Thermo Fisher)
at 50 nM after 30 minutes of incubation, to give green
mitochondria and red lysosomes. The grids with live cells on them
were then blotted and plunge frozen in liquid nitrogen cooled
liquid ethane (Leica EM GP2) before being transferred to
liquid nitrogen storage. Once frozen, grids were preserved in
liquid nitrogen or at cryogenic temperatures on the imaging
systems to prevent thawing and detrimental ice crystal
formation. Structured Illumination Microscopy (SIM) images
were collected with 488 nm and 561 nm laser excitation and
emission collected at 525/50 and 605/70 on two Andor iXon
EMCCD cameras. Images were reconstructed using SoftWoRx
(GE Healthcare) and image quality was assessed with SIMcheck34.

Aurox AO imaging
The Aurox Clarity AO system is as previously published,
the system utilised an Olympus IX70 microscope with a
60× 1.42NA objective. Illumination was provided by a
CoolLED p-30030. This system was used to image Drosophila

melanogaster neuro-muscular junctions (NMJ). The samples
were prepared by following the protocol form Brent
et al. 200935. 3rd instar Drosophila melanogaster larvae (Ore-
gon-R strain) were dissected in HL3 buffer with 0.3mM Ca2+
to prepare a larval fillet. After this, larvae were fixed with 4%
paraformaldehyde and blocked using 1% BSA35. Larvae were
stained overnight with 1:100 Horseradish Peroxidase (HRP)
conjugated to Alexa568 fluorophore to visualise the neurons, and
primary mouse antibody against Discs large (DLG) to visualise
the postsynaptic density. The next day, the larvae were counter
stained with secondary antibody to detect the DLG (1:200
donkey anti-mouse conjugated to Alexa488 fluorophore was
used), as well as 1:1000 from 1 mg mL−1 stock DAPI to visualise
the nuclei. The larvae were then washed and mounted in
65% vectashield.

Zaber imaging
This system is based around a Zaber MVR motorised inverted
microscope with Zeiss optics and 4x, 0.13NA and 63x 0.75
Air objectives. Fluorescence illumination comes via 3 LEDs
(385 nm, 473 nm and 568 nm) and a quad bandpass dich-
roic filter set (Chroma #89402). The system has a small format
(approx 30 mm cube) Ximea (model MQ042MGCM) camera
and a Red Pitaya single board computer running as a hardware
timing device. Multi channel images were taken by sequentially
illuminating with the three different LEDs without changing
the quad dichroic filter cube.

DeepSIM imaging
DeepSIM is a custom made upright structured illumination
microscope with AO specifically designed for SIM super resolu-
tion imaging deep into live tissue (manuscript in preparation).

Page 12 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

On the DeepSIM system images were taken using 488 nm and
561 nm laser illumination. The system includes a Structure
Light Modulator (SLM, Meadowlark) to provide structured
illumination for SIM imaging. The system also includes a
deformable mirror (Alpao DM-69) for aberration correction. The
system has a 60x 1.1 water dipping objective and samples were
imaged in aqueous buffer. The AO components were calibrated
and controlled using Microscope-AOTools32 to reduce aber-
rations and produce good SIM imaging at depth in biological
samples.

The samples were prepared by following the protocol35.
3rd instar Drosophila melanogaster larvae (Bruchpilot
(Brp)-GFP strain) were dissected in HL3 buffer with
0.3mM Ca2+ to prepare a so-called larval fillet, and the larval
brains were removed. After this, larvae were stained for
15 minutes with 1:50 Horseradish Peroxidase (HRP) conjugated
to Cy3 fluorophore to visualise the neurons, washed with
HL3 buffer with 0.3mM Ca2+ and imaged in HL3 buffer with
0mM Ca2+ to prevent the larvae from moving.

Data availability
No data are associated with this article.

Software availability
Software available from: https://pypi.org/project/microscope-
cockpit/

Source code availabile from: https://github.com/MicronOxford/
cockpit

Archived source code at time of publication (version 2.9.1):
https://zenodo.org/record/454286324

Cockpit is distributed under the terms of the GNU General
Public License as published by the Free Software Founda-
tion, either version 3 of the License, or (at your option) any later
version.

Acknowledgements
We are grateful to the original UCSF software team led by
John Sedat, including Melvin Jones, Chris Weisiger and
Sebastian Haase for the initial writing of the Python code used
to control the OMX and OMX-T microscopes, which was
subsequently released as open source software and formed the
starting point for this project. We wish to thank many colleagues
who have provided helpful suggestions, discussions and testing
during development of Cockpit, the Micron Advanced Bioimag-
ing Unit particularly Mantas Žurauskas and Andrew Jefferson,
Maria Harkiolaki from the Diamond Light Source beamline
B24. Oscar Davis for help on the interface look and feel.
An earlier version of this article can be found on bioRxiv
(https://doi.org/10.1101/2021.01.18.427171).

References

1. Carlton PM, Boulanger J, Charles K, et al.: Fast live simultaneous
multiwavelength four-dimensional optical microscopy. Proc Natl Acad Sci
U S A. 2010; 107(37): 16016–16022.
PubMed Abstract | Publisher Full Text | Free Full Text

2. Stelzer EHK: Light-sheet fluorescence microscopy for quantitative biology.
Nat Methods. 2015; 12(1): 23–26.
PubMed Abstract | Publisher Full Text

3. Chen BC, Legant WR, Wang K, et al.: Lattice light-sheet microscopy: imaging
molecules to embryos at high spatiotemporal resolution. Science. 2014;
346(6208): 1257998.
PubMed Abstract | Publisher Full Text | Free Full Text

4. Gustafsson MG: Surpassing the lateral resolution limit by a factor of two
using structured illumination microscopy. J Microsc. 2000; 198(Pt 2): 82–87.
PubMed Abstract | Publisher Full Text

5. Pitrone PG, Schindelin J, Stuyvenberg L, et al.: OpenSPIM: an open-access
light-sheet microscopy platform. Nat Methods. 2013; 10(7): 598–599.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Markwirth A, Lachetta M, Mönkemöller V, et al.: Video-rate multi-color
structured illumination microscopy with simultaneous real-time
reconstruction. Nat Commun. 2019; 10(1): 4315.
PubMed Abstract | Publisher Full Text | Free Full Text

7. Zdankowski P, McGloin D, Swedlow JR: Full volume super-resolution imaging
of thick mitotic spindle using 3D AO STED microscope. Biomed Opt Express.
2019; 10(4): 1999–2009.
PubMed Abstract | Publisher Full Text | Free Full Text

8. Eilers Y, Ta H, Gwosch KC, et al.: MINFLUX monitors rapid molecular jumps
with superior spatiotemporal resolution. Proc Natl Acad Sci U S A. 2018;
115(24): 6117–6122.
PubMed Abstract | Publisher Full Text | Free Full Text

9. Holden SJ, Uphoff S, Kapanidis AN: DAOSTORM: an algorithm for high-
density super-resolution microscopy. Nat Methods. 2011; 8(4): 279–280.
PubMed Abstract | Publisher Full Text

10. Marsh RJ, Pfisterer K, Bennett P, et al.: Artifact-free high-density localization
microscopy analysis. Nat Methods. 2018; 15(9): 689–692.
PubMed Abstract | Publisher Full Text

11. Rosten E, Jones GE, Cox S: ImageJ plug-in for bayesian analysis of blinking
and bleaching. Nat Methods. 2013; 10(2): 97–98.
PubMed Abstract | Publisher Full Text

12. Cnossen J, Hinsdale T, Thorsen RØ, et al.: Localization microscopy at doubled
precision with patterned illumination. Nat Methods. 2020; 17(1): 59–63.
PubMed Abstract | Publisher Full Text | Free Full Text

13. Nadella KMNS, Roš H, Baragli C, et al.: Random-access scanning microscopy
for 3D imaging in awake behaving animals. Nat Methods. 2016; 13(12):
1001–1004.
PubMed Abstract | Publisher Full Text | Free Full Text

14. York AG, Chandris P, Nogare DD, et al.: Instant super-resolution imaging in
live cells and embryos via analog image processing. Nat Methods. 2013;
10(11): 1122–1126.
PubMed Abstract | Publisher Full Text | Free Full Text

15. Dobbie IM, King E, Parton RM, et al.: Omx: A new platform for multimodal,
multichannel wide-field imaging. Cold Spring Harb Protoc. 2011; 2011(8):
899–909.
PubMed Abstract | Publisher Full Text | Free Full Text

16. Schermelleh L, Carlton PM, Haase S, et al.: Subdiffraction multicolor imaging
of the nuclear periphery with 3D structured illumination microscopy.
Science. 2008; 320(5881): 1332–1336.
PubMed Abstract | Publisher Full Text | Free Full Text

17. Booth MJ: Adaptive optical microscopy: the ongoing quest for a perfect
image. Light Sci Appl. 2014; 3(4): e165.
Publisher Full Text

18. Liu TL, Upadhyayula S, Milkie DE, et al.: Observing the cell in its native state:
Imaging subcellular dynamics in multicellular organisms. Science. 2018;
360(6386): eaaq1392.
PubMed Abstract | Publisher Full Text | Free Full Text

Page 13 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://pypi.org/project/microscope-cockpit/
https://pypi.org/project/microscope-cockpit/
https://github.com/MicronOxford/cockpit
https://github.com/MicronOxford/cockpit
https://zenodo.org/record/4542863
https://doi.org/10.1101/2021.01.18.427171
http://www.ncbi.nlm.nih.gov/pubmed/20705899
http://dx.doi.org/10.1073/pnas.1004037107
http://www.ncbi.nlm.nih.gov/pmc/articles/2941331
http://www.ncbi.nlm.nih.gov/pubmed/25549266
http://dx.doi.org/10.1038/nmeth.3219
http://www.ncbi.nlm.nih.gov/pubmed/25342811
http://dx.doi.org/10.1126/science.1257998
http://www.ncbi.nlm.nih.gov/pmc/articles/4336192
http://www.ncbi.nlm.nih.gov/pubmed/10810003
http://dx.doi.org/10.1046/j.1365-2818.2000.00710.x
http://www.ncbi.nlm.nih.gov/pubmed/23749304
http://dx.doi.org/10.1038/nmeth.2507
http://www.ncbi.nlm.nih.gov/pmc/articles/7450513
http://www.ncbi.nlm.nih.gov/pubmed/31541134
http://dx.doi.org/10.1038/s41467-019-12165-x
http://www.ncbi.nlm.nih.gov/pmc/articles/6754501
http://www.ncbi.nlm.nih.gov/pubmed/31086714
http://dx.doi.org/10.1364/BOE.10.001999
http://www.ncbi.nlm.nih.gov/pmc/articles/6484978
http://www.ncbi.nlm.nih.gov/pubmed/29844182
http://dx.doi.org/10.1073/pnas.1801672115
http://www.ncbi.nlm.nih.gov/pmc/articles/6004438
http://www.ncbi.nlm.nih.gov/pubmed/21451515
http://dx.doi.org/10.1038/nmeth0411-279
http://www.ncbi.nlm.nih.gov/pubmed/30061677
http://dx.doi.org/10.1038/s41592-018-0072-5
http://www.ncbi.nlm.nih.gov/pubmed/23361088
http://dx.doi.org/10.1038/nmeth.2342
http://www.ncbi.nlm.nih.gov/pubmed/31819263
http://dx.doi.org/10.1038/s41592-019-0657-7
http://www.ncbi.nlm.nih.gov/pmc/articles/6989044
http://www.ncbi.nlm.nih.gov/pubmed/27749836
http://dx.doi.org/10.1038/nmeth.4033
http://www.ncbi.nlm.nih.gov/pmc/articles/5769813
http://www.ncbi.nlm.nih.gov/pubmed/24097271
http://dx.doi.org/10.1038/nmeth.2687
http://www.ncbi.nlm.nih.gov/pmc/articles/3898876
http://www.ncbi.nlm.nih.gov/pubmed/21807861
http://dx.doi.org/10.1101/pdb.top121
http://www.ncbi.nlm.nih.gov/pmc/articles/6219697
http://www.ncbi.nlm.nih.gov/pubmed/18535242
http://dx.doi.org/10.1126/science.1156947
http://www.ncbi.nlm.nih.gov/pmc/articles/2916659
http://dx.doi.org/10.1038/lsa.2014.46
http://www.ncbi.nlm.nih.gov/pubmed/29674564
http://dx.doi.org/10.1126/science.aaq1392
http://www.ncbi.nlm.nih.gov/pmc/articles/6040645

19. Turcotte R, Liang Y, Tanimoto M, et al.: Dynamic super-resolution structured
illumination imaging in the living brain. Proc Natl Acad Sci U S A. 2019;
116(19): 9586–9591.
PubMed Abstract | Publisher Full Text | Free Full Text

20. Gould TJ, Burke D, Bewersdorf J, et al.: Adaptive optics enables 3D STED
microscopy in aberrating specimens. Opt Express. 2012; 20(19): 20998–
21009.
PubMed Abstract | Publisher Full Text | Free Full Text

21. Kner P, Winoto L, Agard DA, et al.: Closed loop adaptive optics for microscopy
without a wavefront sensor. In: Three-Dimensional and Multidimensional
Microscopy: Image Acquisition and Processing XVII. Proc SPIE Int Soc Opt Eng. 2010;
7570: 757006.
PubMed Abstract | Publisher Full Text | Free Full Text

22. Kner P, Sedat JW, Agard DA, et al.: High-resolution wide-field microscopy
with adaptive optics for spherical aberration correction and motionless
focusing. J Microsc. 2010; 237(2): 136–147.
PubMed Abstract | Publisher Full Text | Free Full Text

23. Pinkard H, Stuurman N, Corbin K, et al.: Micro-Magellan: open-source,
sample-adaptive, acquisition software for optical microscopy. Nat Methods.
2016; 13(10): 807–809.
PubMed Abstract | Publisher Full Text | Free Full Text

24. Mick, Pinto DMS, Dobbie I, et al.: MicronOxford/cockpit release-2.9.1. (Version
release-2.9.1) Zenodo. 2021.
http://www.doi.org/10.5281/zenodo.4542863

25. Hunter JD: Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007; 9(3):
90–95.
Publisher Full Text

26. Harris CR, Millman KJ, van der Walt SJ, et al.: Array programming with NumPy.
Nature. 2020; 585(7825): 357–362.
PubMed Abstract | Publisher Full Text | Free Full Text

27. Virtanen P, Gommers R, Oliphant TE, et al.: SciPy 1.0: Fundamental algorithms
for scientific computing in python. Nat Methods. 2020; 17(3): 261–272.
PubMed Abstract | Publisher Full Text | Free Full Text

28. Kounatidis I, Stanifer ML, Phillips MA, et al.: 3D correlative cryo-structured
illumination fluorescence and soft X-ray microscopy elucidates reovirus
intracellular release pathway. Cell. 2020; 182(2): 515–530.e17.
PubMed Abstract | Publisher Full Text | Free Full Text

29. Phillips MA, Harkiolaki M, Pinto DMS, et al.: CryoSIM: super resolution 3D
structured illumination cryogenic fluorescence microscopy for correlated
ultra-structural imaging. bioRxiv. 2020.
Publisher Full Text

30. Hussain SA, Kubo T, Hall N, et al.: Wavefront-sensorless adaptive optics with
a laser-free spinning disk confocal microscope. J Microsc. 2020.
PubMed Abstract | Publisher Full Text

31. Žurauskas M, Dobbie IM, Parton RM, et al.: IsoSense: frequency enhanced
sensorless adaptive optics through structured illumination. Optica. 2019;
6(3): 370–379.
PubMed Abstract | Publisher Full Text | Free Full Text

32. Hall N, Titlow J, Booth MJ, et al.: Microscope-AOtools: a generalised adaptive
optics implementation. Opt Express. 2020; 28(20): 28987–29003.
PubMed Abstract | Publisher Full Text

33. Edelstein A, Amodaj N, Hoover K, et al.: Computer control of microscopes
using µmanager. Curr Protoc Mol Biol. 2010; 92(1): 14–20.
PubMed Abstract | Publisher Full Text | Free Full Text

34. Ball G, Demmerle J, Kaufmann R, et al.: SIMcheck: a toolbox for successful
super-resolution structured illumination microscopy. Sci Rep. 2015; 5: 15915.
PubMed Abstract | Publisher Full Text | Free Full Text

35. Brent JR, Werner KM, McCabe BD: Drosophila larval NMJ dissection. J Vis Exp.
2009; (24): 1107.
PubMed Abstract | Publisher Full Text | Free Full Text

Page 14 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

http://www.ncbi.nlm.nih.gov/pubmed/31028150
http://dx.doi.org/10.1073/pnas.1819965116
http://www.ncbi.nlm.nih.gov/pmc/articles/6511017
http://www.ncbi.nlm.nih.gov/pubmed/23037223
http://dx.doi.org/10.1364/OE.20.020998
http://www.ncbi.nlm.nih.gov/pmc/articles/3635694
http://www.ncbi.nlm.nih.gov/pubmed/24392198
http://dx.doi.org/10.1117/12.840943
http://www.ncbi.nlm.nih.gov/pmc/articles/3877333
http://www.ncbi.nlm.nih.gov/pubmed/20096044
http://dx.doi.org/10.1111/j.1365-2818.2009.03315.x
http://www.ncbi.nlm.nih.gov/pmc/articles/2897157
http://www.ncbi.nlm.nih.gov/pubmed/27684577
http://dx.doi.org/10.1038/nmeth.3991
http://www.ncbi.nlm.nih.gov/pmc/articles/5100821
http://www.doi.org/10.5281/zenodo.4542863
http://dx.doi.org/10.1109/MCSE.2007.55
http://www.ncbi.nlm.nih.gov/pubmed/32939066
http://dx.doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pmc/articles/7759461
http://www.ncbi.nlm.nih.gov/pubmed/32015543
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pmc/articles/7056644
http://www.ncbi.nlm.nih.gov/pubmed/32610083
http://dx.doi.org/10.1016/j.cell.2020.05.051
http://www.ncbi.nlm.nih.gov/pmc/articles/7391008
http://dx.doi.org/10.1364/optica.393203
http://www.ncbi.nlm.nih.gov/pubmed/33128278
http://dx.doi.org/10.1111/jmi.12976
http://www.ncbi.nlm.nih.gov/pubmed/31417942
http://dx.doi.org/10.1364/OPTICA.6.000370
http://www.ncbi.nlm.nih.gov/pmc/articles/6683765
http://www.ncbi.nlm.nih.gov/pubmed/33114806
http://dx.doi.org/10.1364/OE.401117
http://www.ncbi.nlm.nih.gov/pubmed/20890901
http://dx.doi.org/10.1002/0471142727.mb1420s92
http://www.ncbi.nlm.nih.gov/pmc/articles/3065365
http://www.ncbi.nlm.nih.gov/pubmed/26525406
http://dx.doi.org/10.1038/srep15915
http://www.ncbi.nlm.nih.gov/pmc/articles/4648340
http://www.ncbi.nlm.nih.gov/pubmed/19229190
http://dx.doi.org/10.3791/1107
http://www.ncbi.nlm.nih.gov/pmc/articles/2762896

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 29 September 2021

https://doi.org/10.21956/wellcomeopenres.18310.r45668

© 2021 Swedlow J et al. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Jason R Swedlow
Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee,
UK
Emil Rozbicki
Glencoe Software, Inc, Seattle, WA, USA
William Moore
OME, University of Dundee, Dundee, UK

Sébastien Besson
Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee,
UK

This paper introduces Microscope-Cockpit, a graphical user interface software that has been built
on top of the historical software used to control the OMX microscope. It aims to provide a clean
and user friendly interface allowing to create complex experimental set-up. Several use cases are
included in the article to support the capacity of the software to adapt to different experimental
set-ups. Overall the tool described in this article is scientifically valid but we would like to suggest
some revisions detailed below.
The Implementation section details the Python requirements of Microscope-Cockpit. Amongst
those packages, the Python-microscope library appears as one of the most critical dependencies
since it contains all the logic and support for handling and controlling microscopy devices. As part
of this review, it came to our attention that this library has been recently published (
https://doi.org/10.1242/jcs.258955)1 including a supplementary figure Fig S1 which cross-
references Fig 1 of this paper. The article should thus be amended to cross-reference the Python-
microscope publication wherever appropriate.
The article makes no mention of the file format written by Microscope-Cockpit. The Python-
microscope paper does not include any detail about the choice of data output for end-users either.
From our minimal testing of the application, the only option available to the user is to write data
as “DV files (.dv)”, a proprietary file format. Is this the only choice available to the user? If so, this
feels like a limitation of the current implementation which contradicts the claim for the open and
universal mission of Cockpit. We suggest a paragraph should be added to the Implementation

Page 15 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://doi.org/10.21956/wellcomeopenres.18310.r45668
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2198-1958
http://orcid.org/0000-0001-8783-1429
https://doi.org/10.1242/jcs.258955
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-45668-1

section that discusses the Data Generation/Output including a description of the file format as
well as the tooling available for end-users of the acquisition system to read and analyze imaging
data generated by Cockpit.
In the section discussing Cockpit in relationship Micro-Manager, a proposed key strength of
Cockpit is its Python implementation allowing the “strict separation of the user interface from the
hardware control components” while “the majority of [Micro-Manager] interface must be written
in Java; however the system also needs a C/C++ layer to interface the Java code to C/C++ based
system libraries”. This argument omits Pycro-Manager, a Python bridge for Micro-Manager,
published earlier this year (https://doi.org/10.1038/s41592-021-01087-6)2 and mentioned in the
aforementioned Python-microscope publication. The section mentioned above should be
amended to cite this paper and include Pycro-Manager in the comparison with Cockpit.
Much is made of the ability to use Python for custom modifications and the integration of third-
party libraries. The text mentions that “the microscope control can easily be modified to make use
of the extensive machine learning algorithms available in easy to integrate libraries” but this
sentence rather suggests the extensibility is a property of the underlying python-microscope
library rather than the Cockpit interface. The Cockpit reference documentation (
https://www.micron.ox.ac.uk/software/cockpit/) primarily describes the installation and the
configuration of the software. To support the extensibility claim, we would suggest either to
introduce a public example of Python extension to the default Cockpit UI and/or an amendment to
the online documentation that would demonstrate this extension which could be linked from the
article.
Together with python-microscope paper, this paper introduces a new open-source solution for
microscope control and imaging acquisition. Both in the introduction and in the discussion,
Cockpit is compared to several equivalent commercial and open-source solutions, including the
well-established Micro-Manager. This comparison is important and particularly useful for end
users and imaging facility managers who need to make informed decisions e.g. when investing in
new equipment or technologies. We suggest to make the outcome of this discussion more explicit
and prominent e.g. under a form of a summary table that would include the different available
ecosystems (individual hardware solutions, LabView, python-microscope/Microscope-Cockpit and
Micro-Manager/Pycro-Manager) and compare their respective advantages and drawbacks.

References
1. Pinto DMS, Phillips MA, Hall N, Mateos-Langerak J, et al.: Python-microscope: A new open source
Python library for the control of microscopes.J Cell Sci. 2021. PubMed Abstract | Publisher Full Text
2. Pinkard H, Stuurman N, Ivanov I, Anthony N, et al.: Pycro-Manager: open-source software for
customized and reproducible microscope control. Nature Methods. 2021; 18 (3): 226-228 Publisher
Full Text

Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Page 16 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://doi.org/10.1038/s41592-021-01087-6
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-45668-2
https://www.micron.ox.ac.uk/software/cockpit/
http://www.ncbi.nlm.nih.gov/pubmed/34448002
https://doi.org/10.1242/jcs.258955
https://doi.org/10.1038/s41592-021-01087-6
https://doi.org/10.1038/s41592-021-01087-6

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
No

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: bioimaging, image informatics, software engineering, data management

We confirm that we have read this submission and believe that we have an appropriate level
of expertise to confirm that it is of an acceptable scientific standard, however we have
significant reservations, as outlined above.

Author Response 14 Dec 2021
Ian Dobbie, University of Oxford, South Parks Road, Oxford, UK

Response to review from authors.

Authors responses are in italics
New text in the manuscript are in bold

The Implementation section details the Python requirements of Microscope-Cockpit.
Amongst those packages, the Python-microscope library appears as one of the most critical
dependencies since it contains all the logic and support for handling and controlling
microscopy devices. As part of this review, it came to our attention that this library has been
recently published (https://doi.org/10.1242/jcs.258955)1 including a supplementary figure
Fig S1 which cross-references Fig 1 of this paper. The article should thus be amended to
cross-reference the Python-microscope publication wherever appropriate.

We thank the reviewers for pointing this out. The Python-Microscope publication has been
accepted at JCS since we submitted the article. We have revised the manuscript to reference the
published article rather than the biorXiv preprint.

The article makes no mention of the file format written by Microscope-Cockpit. The Python-
microscope paper does not include any detail about the choice of data output for end-users
either. From our minimal testing of the application, the only option available to the user is
to write data as “DV files (.dv)”, a proprietary file format. Is this the only choice available to
the user? If so, this feels like a limitation of the current implementation which contradicts
the claim for the open and universal mission of Cockpit. We suggest a paragraph should be
added to the Implementation section that discusses the Data Generation/Output including
a description of the file format as well as the tooling available for end-users of the
acquisition system to read and analyze imaging data generated by Cockpit.

Page 17 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://doi.org/10.1242/jcs.258955
https://wellcomeopenresearch.org/articles/6-76/v1#rep-ref-45668-1

We thank the reviewers for raising this point. While it is correct that Microscope-Cockpit only
saves images in the ‘.dv’ file format, it is a slight variant of the open MRC file format commonly
used in the electron microscopy community. The MRC format is extensively documented at
https://www.ccpem.ac.uk/mrc_format/mrc2014.php. The sight variations to the encoded
metadata reflect differences between the relevant data in optical and electron microscopy.
Crucially, there is considerable support within open source software that supports ‘.dv’ files,
including Bio-Formats for importing data into ImageJ, OMERO and Matlab. Therefore, users can
easily convert to other formats and use popular programs to analyse the data output by
Microscope-Cockpit based microscopes. We have revised the manuscript to address this point
and changed the software package documentation to include an explanation of this as well as
information about the software that supports the ‘.dv’ format, and explicit definition of what
metadata we save in the files. We have added a section on output image files which explicitly
mentions these points:

Output image files

Experimental images are saved into files utilising the ‘.dv’ file format, typically
multiple wavelengths, Z-slices and time points into a single file. Images from the
mosaic window and single snaps can also be saved into this format, with the mosaic
saved files having an associated text file defining XYZ positions of each collected
image. The ‘.dv’ format is an extension of the mrc file format, defined in detail in the
MRC/CCP4 2014 file format specification. The CCP4 consortium of the EM community
continue to support and extend this file format. This support includes file validators
and a detailed specification, which is compatible with the files used here but not
identical.

The optical microscopy specific metadata are covered in the documentation. Although
relatively uncommon, the file format is supported by the Bio-Formats project allowing
import of ‘.dv’ files, along with the associated metadata into software using this
library including ImageJ, OMERO and Matlab. Additionally, the Chromagnon image
alignment tool will read and write ‘.dv’ files and it is the native format for DeltaVision
microscopes utilising the commercial package SoftWoRx.

In the section discussing Cockpit in relationship Micro-Manager, a proposed key strength of
Cockpit is its Python implementation allowing the “strict separation of the user interface
from the hardware control components” while “the majority of [Micro-Manager] interface
must be written in Java; however the system also needs a C/C++ layer to interface the Java
code to C/C++ based system libraries”. This argument omits Pycro-Manager, a Python
bridge for Micro-Manager, published earlier this year (https://doi.org/10.1038/s41592-021-
01087-6)2 and mentioned in the aforementioned Python-microscope publication. The
section mentioned above should be amended to cite this paper and include Pycro-Manager
in the comparison with Cockpit.

We thank the reviewers for pointing out this paper which was again published since our original
submission and we have now added discussion about Pycro-Manager to the paper. We have
revised the manuscript by adding the following text to the discussion section:

Page 18 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://www.ccpem.ac.uk/mrc_format/mrc2014.php
https://doi.org/10.1038/s41592-021-01087-6
https://doi.org/10.1038/s41592-021-01087-6
https://wellcomeopenresearch.org/articles/6-76/v1#rep-ref-45668-2

It should be noted that Pycro-Manager [pinkard2021] has recently been developed and
released to allow much closer integration between Python and uManager. Pycro-
Manager seems likely to fill a similar position to Microscope-Cockpit, allowing direct
Python based control of imaging experiments, integration with online analysis and a
range of other functionality. As this is a recent development, we have not explored
this package in any detail.

Much is made of the ability to use Python for custom modifications and the integration of
third-party libraries. The text mentions that “the microscope control can easily be modified
to make use of the extensive machine learning algorithms available in easy to integrate
libraries” but this sentence rather suggests the extensibility is a property of the underlying
python-microscope library rather than the Cockpit interface. The Cockpit reference
documentation (https://www.micron.ox.ac.uk/software/cockpit/) primarily describes the
installation and the configuration of the software. To support the extensibility claim, we
would suggest either to introduce a public example of Python extension to the default
Cockpit UI and/or an amendment to the online documentation that would demonstrate this
extension which could be linked from the article.

The reviewers make a good point that would significantly strengthen the paper. We have written
a short script that utilises some of the embedded functionality to find and mark cell nuclei in a
typical DAPI stained sample. The code, along with a test image set, config files and detailed
instructions on how to set it up are collected into a zenodo repository and available via a doi
(10.5281/zenodo.5745648) link. In fact, this simulated microscope approach is a very powerful
approach to setting up and testing such scripts. We have also added the following text to the
manuscript.

Example simple extension in Python

We include an example script which demonstrates how the functionality of cockpit
can easily be extended in python. The script finds DAPI stained cell nuclei in images,
utilising the mosaic functionality to scan large areas and the point marking features
to record the centroids of the detected nuclei. The script utilises the OpenCV
framework to detect large roughly circular objects in images. Images taken for the
mosaic are also trapped by the code which Gaussian blurs to reduce noise, binarise
and finally applies a Hough transform to find circular objects. The locations of these
objects in the image are then transformed into stage coordinates and added to the
marked point list. The Python code, a test image and detailed instructions on how to
setup a simulated microscope to run this without any microscope hardware is detailed
at https://doi.org/10.5281/zenodo.5745648.

For this simple example the parameters are fixed and tuned to the data set used, and
select a subset of nuclei within a size range and with defined circularity. The current
code also doesn’t reliably detect nuclei at the edges between images in the mosaic
scan. However, it can easily detect a large number of cell positions to create a point
list which could then be run through a multi-site experiment to collect data such as a

Page 19 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://www.micron.ox.ac.uk/software/cockpit/

3D, multi-channel stack, or time lapse on a large number of cells semi-automatically.

Together with python-microscope paper, this paper introduces a new open-source solution
for microscope control and imaging acquisition. Both in the introduction and in the
discussion, Cockpit is compared to several equivalent commercial and open-source
solutions, including the well-established Micro-Manager. This comparison is important and
particularly useful for end users and imaging facility managers who need to make informed
decisions e.g. when investing in new equipment or technologies. We suggest to make the
outcome of this discussion more explicit and prominent e.g. under a form of a summary
table that would include the different available ecosystems (individual hardware solutions,
LabView, python-microscope/Microscope-Cockpit and Micro-Manager/Pycro-Manager) and
compare their respective advantages and drawbacks.

We thank the reviewers for this suggestion and we have added a table of feature comparison
between a range of microscope control options as a traffic light colour coded table and the
following text to the manuscript.

Table 1 shows a comparison between various features of the previously described
microscope control software options. We have ranked features of the control software
options with a traffic light colour scheme with green being best and red least good.
The table includes the approaches mentioned above along with Matlab, a common
alternative to LabVIEW, a more conventional programming package with a range of
extensions and with a large support base, and MetaMorph/ SlideBook included as
representatives of commercial generalised microscope control packages.

[New table included in revised version]

Table 1: A symbolic representation of the relative strengths of different microscope
control approaches in a number of areas with a traffic light colour scheme, with red
worst and green best. Separate control programs involve using a separate control
program for each piece of hardware. In general, this software is free, however some
components such as cameras might require a separate software purchase from the
manufacturer. MetaMorph and SlideBook are examples of generalised commercial
software designed for microscope control and provided by third parties, these are only
two examples of a range of such packages.

Competing Interests: No competing interests were disclosed.

Reviewer Report 14 September 2021

https://doi.org/10.21956/wellcomeopenres.18310.r45664

Page 20 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://doi.org/10.21956/wellcomeopenres.18310.r45664

© 2021 Harrington K. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Kyle Harrington
Max Delbrueck Center for Molecular Medicine, Berlin, Germany

What about the availability of open source drivers through micromanager? Although it is
somewhat recognized that the micromanager API/architecture is not ideal, it is certainly
recognized that the large number of already existing drivers is a key strength. How is the
availability of drivers for Cockpit?

How does Cockpit compare to Pycro-manager (Pycro-Manager: open-source software for
customized and reproducible microscope control, Pinkard et al., 2021, Nature Methods),1 which
enjoys the benefits of the existing micromanager ecosystem while also providing a Python
interface?

Overall, Cockpit seems like a strong contribution. I see a lot of potential, but it is not clear that it is
quite competitive with micromanager yet (which is fine, that will come with time). Integration with
a tool like napari would be a great choice for broadening the usability of Cockpit. It is nice to see
that Cockpit is being tested on multiple systems, although as mentioned it would be good to see a
fair comparison between Cockpit's current (and future planned) drivers relative to a mature
project like micromanager.

References
1. Pinkard H, Stuurman N, Ivanov I, Anthony N, et al.: Pycro-Manager: open-source software for
customized and reproducible microscope control. Nature Methods. 2021; 18 (3): 226-228 Publisher
Full Text

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Page 21 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-7237-1973
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-45664-1
https://doi.org/10.1038/s41592-021-01087-6
https://doi.org/10.1038/s41592-021-01087-6

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Image analysis, Computer science, Software engineering, Computational
biology, Python, Java, C++, Lisp

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 14 Dec 2021
Ian Dobbie, University of Oxford, South Parks Road, Oxford, UK

Response to review from Authors.

What about the availability of open source drivers through micromanager? Although it is
somewhat recognized that the micromanager API/architecture is not ideal, it is certainly
recognized that the large number of already existing drivers is a key strength. How is the
availability of drivers for Cockpit?

This is an interesting idea and we have considered it. There are two major arguments against this
approach. Firstly this would require importing the whole of the uManager infrastructure, the java
JVM etc… Secondly our brief exploration appeared to show that matching devices to the fixed
device type specific API in Python-Microscope, the library we use to interface directly to the
hardware, would involve substantial effort for each device. We felt it was more productive o apply
this effort to implementing the device directly in Python. This probably took roughly the same
effort and enabled us to avoid the uManager overhead.

How does Cockpit compare to Pycro-manager (Pycro-Manager: open-source software for
customized and reproducible microscope control, Pinkard et al., 2021, Nature
Methods), which enjoys the benefits of the existing micromanager ecosystem while also
providing a Python interface?

We thank the reviewer for pointing out this paper which was published since our original
submission and we have now added discussion about Pycro-Manager to the paper. We have
revised the manuscript by adding the following text to the discussion section:

It should be noted that Pycro-Manager [pinkard2021] has recently been developed and
released to allow much closer integration between Python and uManager. This seems
likely to fill a similar position as Microscope-Cockpit, allowing direct Python based
control of imaging experiments, integration with online analysis and a range of other
functionality. As this is a recent development we have not explored this package in
any detail.

Competing Interests: No competing interests were disclosed.

Page 22 of 22

Wellcome Open Research 2021, 6:76 Last updated: 23 MAR 2022

