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Frictional melting and fluid pressurization can play a key role in rupture 

dynamics of large earthquakes. For faulting under frictional stress ar, the 

temperature increases with cr.r and the earthquake magnitude, Mw. If the 

thickness of the heated zone, w, is of the order of a few mm, then, even for a 

modest a1, the temperature rise, ll.T, would exceed 1000° for earthquakes with 

Mw=5 to 6, and melting is likely to occur, and reduce friction during faulting. 

If fluid exists in a fault zone, a modest ll.T of 1 00 to 200° would likely 

increase the pore pressure enough to significantly reduce friction for 

earthquakes with Mw=3 to 4. The microscopic state of stress can be tied to 

macroscopic seismic parameters such as the seismic moment, M 0, and the 

radiated energy, ER, by averaging the stresses in the microscopic states. Since 

the thermal process is important only for large earthquakes, the dynamics of 

small and large earthquakes can be very different. This difference is reflected 

in the observed relation between the scaled energy e =ERIM0 and Mw. The 

observed e for large earthquakes is 1 0 to 1 00 times larger than for small 

earthquakes. Mature fault zones such as the San Andreas are at relatively 

moderate stress levels, but the stress in the plate interior can be high. Once 

slip exceeds a threshold, runaway rupture could occur, and could explain the 

anomalous magnitude-frequency relationship observed for some mature faults. 

The thermally controlled slip mechanism would produce a non-linear 

behavior, and under certain circumstances, the slip behavior at the same 

location may vary from event to event. Also, slip velocity during a large 

earthquake could be faster than what one would extrapolate from smaller 

earthquakes. 

INTRODUCTION 

Modem broad-band seismic data have allowed 
seismologists to determine important seismic source 
parameters such as seismic moment, M 0, radiated energy, 

ER, rupture parameters, and stress drops of earthquakes over 

a large magnitude range. However, at short length scales, 
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resolution of seismic methods is limited because of the 
complex propagation and wave attenuation effects near the 
Earth's surface, and it is difficult to determine the details of 
rupture process below some length scale. The complex 
wave forms at high frequency must be controlled by 
microscopic processes on a fault plane. Such microscopic 
processes include frictional melting [Jeffreys, 1942; 
McKenzie and Brune, 1972; Richards, 1977; Sibson, 
1977; Cardwell et at., 1978], fluid pressurization [Sibson, 

1973; Lachenbruch, 1980; Mase and Smith, 1985, 1987], 
acoustic fluidization [Melosh, 1979, 1996], dynamic 
unloading effects [ Schallamach, 1971; Brune et a/., 1993; 
Weertman, 1980; Ben-Zion and Andrews, 1998; Mora and 
Place, 1998, 1999] and geometrical effects [Scott, 1996]. 
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The importance of thermal processes in earthquake 
mechanics has long been recognized. Sibs on [ I977] 
discussed the implication of frictional heating for fault 

dynamics. He suggested that melt formation and transient 
increases in fluid pressure caused by frictional heating may 
decrease the friction to near-zero values once slip is 
initiated. Here, we extend the model discussed by Sibson 
in light of recent seismological data. A recent study of the 
deep Bolivian earthquake (M=8.3, depth=637 km) 

[ Kanamori et a/., 1998] presented an interesting 
observational case which suggests a dominant role of 
thermal processes during faulting. For this earthquake, the 

released potential energy, 1.4xi018 J, is at least 30 times 
larger than the radiated energy, with a large amount of non
radiated energy (comparable to the total thermal energy 

released during the I980 Mount St. Helens eruption) 
deposited in a relatively small fault zone over a time scale 
of less than a minute. 

The thermal process during faulting would cause a 
complex sequence of events including local melting, 

freezing, fluid pressurization, micro-fracturing and injection 
of fluids. Although these microscopic processes are 
important for understanding rupture dynamics, it is 

difficult to determine how these processes work in detail 
during faulting because of the limited resolution of seismic 
methods. 

In this paper, we investigate the effects of frictional 
melting and fluid pressurization and relate them to 

macroscopic seismic source parameters such as M0 and ER· 

This approach is somewhat similar to that of statistical 
mechanics in which the physics applied to small-scale 
processes is used to determine the average macroscopic 
parameters such as pressure and temperature. 

THERMAL BUDGET DURING FAULTING 

The possibility of frictional melting during faulting has 
been suggested by several investigators. In particular, 

McKenzie and Brune [ 1972] quantitatively investigated 
this problem as a one-dimensional heat conduction 
problem. They assumed that the fault surface is 
simultaneously heated during slippage (i.e. infinite rupture 
speed) over a finite time, and concluded that if both the 
frictional and driving stresses are of the order of I kbar, 

melting can occur for fault slips as small as one 
millimeter. Richards [ 1977] solved elasto-dynamic 
equations for a propagating elliptical crack, estimated 
frictional heating rate behind the rupture front, and showed 
that if the driving stress is 100 bars and the fault particle 
velocity is I 0 em/sec at nucleation, a temperature rise of 

about 1000° can occur within a few seconds. These studies 

indicate that frictional melting is likely to occur during 
seismic faulting, at least locally. 

Here we consider a gross thermal budget during faulting 

under a frictional stress a!- Let S and D be the fault area 
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Figure 1. Static stress drop of earthquakes. Modified from 
[Abercrombie and Leary, 1993]. 

and the displacement offset respectively. Then the total 
heat generated during faulting is Q=aps. If we assume 

that the heat is distributed during seismic faulting within a 
layer of thickness w around the rupture plane, the average 
temperature rise !l.T is given by 

!l.T= Q/CpSw= a1D!Cpw (1) 

where C is the specific heat, and p is the density. In 
general D increases with the earthquake magnitude, M w· 

Here we use a simple circular model in which the static 
stress drop is !l.as [Eshelby, 1957]. Then, 

where M0 is the seismic moment and J.l is the rigidity. 

From (1) and (2), we obtain 

(2) 

!l.T = (16 I 7)213 (1 I 1r)a 1t1a; 13 M6 13 I pCpw (3) 

The seismic moment M0 is related to MwbY 

IogM0=1.5Mw +9.1 (M0 in Nm) (4) 

The static stress drop, !l.as, for most earthquakes is in 

the range of 1 0 to 1 00 bars, as shown in Figure 1 

[Kanamori and Anderson, 1975, Hanks, 1977, 
Abercrombie and Leary, 1993]. However, higher stress 
drops have been reported for some earthquakes for which 
the source dimension was determined well [e.g. Kanamori 
et al., 1990; Wald, 1992]. Also, there is evidence that the 
stress drop can be locally very high (up to 25 kbar) around 

small asperities [Nadeau and Johnson, 1998]. Since the 
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Figure 2. Temperature rise, .1 T, in a fault zone as a function of 

magnitude, Mw, with the frictional stress, a1 , as a parameter. 

The static stress drop .1as is assumed to be I 00 bars. 

The upper and lower figures correspond to the cases of w 
(thickness of the heated zone)=I mm and I em, respectively. 

thermal process considered here is most important at high
stress spots, we use ~0: 1 .= I 00 bars and 11=0.3 Mbar for 

estimation of ~T. 

The thickness w cannot be determined with 
seismological methods. Here, w refers to the thickness of 
the coseismic slip zone, not the width of the shear zone 
along a fault. Fault surface breaks in bed rocks are often 

extremely sharp suggesting that the coseismic slip must 
have occurred in a very narrow zone. An example of a thin 
slip surface within a fault zone is described in Hubbert and 
Rubey [1959]. Laboratory studies by Goldsby and Tullis 
[ 1998, 1999] found that when the displacement is large, 
slip tends to be localized in a thin layer. Also, some 
pseudotachylytes layers are very thin, less than a 
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millimeter [ Otsuki, 1998], suggesting that the slip zone is 

thin at least locally. 
It is true that wide shear zones are often found along a 

fault. Otsuki [1978] and Hull [1988] have shown that the 
width of the shear zone is about 1 % of the total offset of 
the fault. Also, recent seismological studies suggest a 40 
to 200 m thick zone with a low seismic velocity along 
several major faults [Li eta!. 1994, 1997]. However, these 
wide fault-zone structures are probably formed by long
term processes involving deformation, chemical alteration, 

and aftershocks, and are not directly involved in coseismic 

slip. 
If the slip zone is thin and heat is carried by thermal 

diffusion, then w would be of the order of Fa, the 

thermal diffusion distance, where k is the thermal 

diffusivity, and -r0 is the time scale of faulting. Since -r0 

is less than 10 sec for most seismic events, w would be at 
most a few mm. A simple scaling shows that D is 
proportional to the time scale of faulting, -r0, while w is 

proportional to -r0 
112 ; then, we obtain from ( 1 ), 

~T oc D112
• This means that the thermal process ·would 

become increasingly important for large earthquakes. 
Figure 2 shows ~T calculated from (3) as a function of 

magnitude Mw for two representative values of w, 1 mm 

and 1 em. We used C=1 J/g°C, and p=2.6 g/cm3. If w=1 

mm, ~T exceeds 1000 °C at Mw=5 even for a modest 

value of friction, a1 =100 bars. Even for w=1 em, ~T 

exceeds 1000 oc at Mw=1 for the same value of friction. If 

a1>100 bars, ~T exceeds 1000 °C at a lower Mw. Thus, 

thermal process becomes important for large earthquakes. 
Depending on whether fluid exists or not in a fault 

zone, two distinct thermal processes can happen. If there is 

no fluid in a fault zone, the temperature can rise to cause 
frictional melting. Figure 2 shows that if no fluid exists, 
frictional melting is likely to occur for earthquakes with 

Mw =5 to 7. This general conclusion appears unavoidable 

even ifthe values of ~G.n a1, and w used in (3) are varied 

over fairly large, but plausible, ranges. 
Many investigators have found pseudotachylytes in 

cataclasites and presented them as evidence for frictional 

melting. Although pseudotachylytes are not commonly 
found [Sibson, 1975], the following are well-document 
examples. Lin [1994a, 1994b] reported on glassy 
pseudotachylytes from the Fuyun fault zone, China, which 
he believed to have been formed during seismic faulting at 

a minimum temperature of 1,450 °C. Obata and Karato 
[1995] examined ultramafic pseudotachylytes from the 
Ivrea-Verbano zone, Italy, which are about 1 em thick, and 
exhibit evidence for melting and cooling on a time scale of 
about 100 sec or less under a differential stress of 3 kbar. 
Otsuki [1998] examined cataclasites from the Nojima fault, 
Japan, on which the 1995 Kobe earthquake occurred. 
According to Otsuki [ 1998], these cataclasites were not 
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formed during the recent Kobe earthquake, Qut they were 

formed from granites at a depth of about 3 km, and the 

original texture is exceptionally well preserved. They have 
a sandwich structure with alternating layers of 

pseudotachylytes (amorphous phase) and fme-grained rock. 

The pseudotachylyte layer, about 0.2 to 1 mm thick, 
exhibits evidence for melting at temperatures above 1, 1 00 

°C followed by rapid cooling. 

Some pseudotachylytes are believed to be formed by 
crushing during faulting rather than melting [Lin et a/., 

1994; Lin, 1996]. It is also possible that pseudotachylytes 

were formed during faulting but they have been altered to 

clay minerals or crystallized into some kind of mylonites. 

We do not necessarily think that seismic faulting always 

causes melting. If a fault zone is highly crushed, the 
thermal energy can be distributed over a large volume and 

no melting occurs. Also, if fluid exists in a fault zone or 

some dynamic process such as acoustic fluidization or 

dynamic unloading occurs, the friction may drop before 

melting occurs. However, the existence of 

pseudotachylytes indicates that melting is an important 

process, at least locally, during faulting. 

Melting does not necessarily mean reduction of friction. 

Once a thin melt layer is formed, high viscous friction may 

prevail depending on the thickness of the layer and the 

viscosity of the melt [Scholz, 1980]. In fact, Tsutsumi and 
Shimamoto [1997] performed high-velocity friction 

experiments and found a sharp increase in friction at the 

initiation of visible frictional melting. However, as shown 

by Spray [1993], the viscosity of molten pseudotachylytes 

is low and drops rapidly with the temperature so that 

friction is likely to drop eventually, though the details can 

be complex. Recent laboratory studies by Beeler et a/. 
[ 1996] and Goldsby and Tullis [ 1998, 1999] demonstrated 

that friction dropped significantly when displacement was 

large. Goldsby and Tullis [ 1998, 1999] (details described 

in Tullis and Goldsby [1998]) found that, at a normal 

pressure of 1.12 kbar, the coefficient of friction dropped to 

0.14 when a large displacement, 1.6 m, occurred at a 
relatively high slip velocity of 3.2 mm/sec. These 

experiments were performed under confining pressure and 

the condition is close to that of natural earthquakes. From 

the observations of the sliding surface, they suggested that 

melting may have occurred during sliding. 

Whether fluid exists in fault zones or not is still a 

materr of debate, but it is generally believed that some 

fault zones contain fluids and many mechanisms have been 

proposed to maintain high fluid pressure in fault zones 

[e.g. Irwine and Barnes, 1975; Byerlee, 1990; Rice, 1992]. 

If fluid exists in a fault zone, fluid pressurization could 

occur. This concept was introduced to seismology by 

Sibson [1973], and analyzed in great detail by Lachenbruch 
[1980], and Mase and Smith [1985, 1987]. Under the 

pressure-temperature conditions at the seismogenic depths, 
the thermal expansivity of water is of the order of I o-3 oc, 

and significant increase in pore pressure with temperature 

could occur. If fluid does not escape (small permeability) 

and the surrounding rock is not compressive, the pressure 
increase would be of the order of 10 bars/deg 

[Lachenbruch, 1980]. In actual fault zones, permeability 

and compressibility vary and the pressure increase may be 
less. The most important parameter controlling the 

pressure change is the permeability. The analysis of 

Lachenbruch and Mase and Smith suggests that if 
permeability is less than I0-18 m 2, fluid pressurization is 

most likely to occur with a temperature rise of less than 

200 °C, and friction will drop significantly. Permeability 
in the crust varies over a very wide range, more than a 

factor of 1010. Figure 3 shows the results for the samples 

taken from the Cajon drilling site in California [Morrow 
and Byerlee, 1992], and the Nojima fault, Japan [Ito eta/., 

1998]. Ito et a/. [ 1998] show that permeability is very 

small near the middle of the shear zone, where the grain 

size of rocks is small. Ito et al.'s results are at a pressure 

of 500 bar (corresponding to a depth of 1.5 km), and 

suggest even smaller values in the deeper seismogenic 

zone. Although the distribution of permeability can be 
complex, these results suggest that pressure fluidization 

can play an important role, at least locally, in reducing 

friction. A modest llT of 100 to 200° would likely 

increase the pore pressure enough to significantly reduce 

friction. Figure 2 shows that this can occur for 
earthquakes with Mu.r3 to 5. According to Chester and 

Chester [1998], the internal structure of the Punchbowl 
fault, California, implies that earthquake ruptures were not 

only confined to the ultracataclasite layer, but also largely 

localized to a thin prominent fracture surface. They 

suggest that mechanisms that are consistent with extreme 

localization of slip, such as thermal pressurization of pore 

fluids, are most compatible with their observations. 

Since a fault zone is probably complex and 

heterogeneous in stress, fluid content, permeability, 

porosity, and compressibility, no single process is likely 
to dominate. In other words, we do not necessarily expect 

a single continuous layer of melting and pressurization; we 

envision, instead, a fault zone that consists of many 

microfaults (subfaults) where different mechanisms are 

responsible for slip at different stress levels, producing 

complex rupture patterns as observed. 

EARTHQUAKE ENERGY BUDGET 

We consider the energy budget for each subfault. The 

energy budget of earthquakes has been extensively studied 

by many investigators [e.g. Knopojf, 1958; Dahlen, 1977; 

Kostrov, 1974; Savage and Walsh; 1978]. Following 

these studies, and referring to Orowan [1960] and Savage 
and Wood [ 1971 ], here we consider a simple stress-release 

model. The simplest case is shown in Figure 4a which 
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Figure 3. Permeability near a fault zone. a) Nojima fault, Japan [Ito et a/. 1998]. b) Cajon Pass, California 

[Morrow and Byerlee, 1992]. 

shows the stress on the fault plane as a function of slip. 
An earthquake is viewed as a stress release process on a 
surface S where, at the initiation of an earthquake, the 
initial (before an earthquake) shear stress on the fault plane 
a0 drops to a constant dynamic friction af If the 

condition for instability is satisfied [Brace and Byerlee, 

1966; Scholz, 1990], rapid fault slip motion begins and 
eventually stops. At the end, the stress on the fault plane 
is a1 (final stress) and the average slip (offset) is D. For 

the example shown in Figure 4a, a_ra1• The difference 

11as =a0-a1 is the static stress drop, and the difference 11ad 

=a0-a1 is the driving stress of fault motion and is usually 

called the dynamic stress drop or effective tectonic stress 
[Brune, 1970]. During this process, the potential energy 
(strain energy plus gravitational energy) of the system, W, 

drops to W-11W where 11W is the strain energy drop, and 
seismic wave is radiated carrying energy ER. Then the 

energy budget can be written as 

where EF is the frictional energy loss given by E1;<=a_IJS, 

and Ea is the fracture energy. Knopoff [1958], Dahlen 

[1977] and Kostrov [1974] showed that 11W =aDS where 
a = (a 0 + a 1) I 2 is the average stress during faulting. 

From (5), we obtain 

(6) 

where M0=pDS is the seismic moment, and )1 is the 

rigidity. This is a simple but fundamental relationship 
which does not involve major assumptions. As we will 
show later, the fracture energy Ea can be ignored for large 

shallow earthquakes, and ( 6) can be written as 

(6') 

This relation can be derived with a simple analogous 
(5) spring system, and can be shown to be consistent with that 
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Figure 4. Illustration of simple stress release patterns during 
faulting. a) Simple case. b) Slip-weakening model. Hatched 
and cross-hatched areas indicate the fracture energy and 
frictional energy loss, respectively. 

derived from more rigorous relations for continuum. A 

similar relation has been used in seismology [e.g. Savage 

and Wood, 1971], but this particular form introduced here 

is useful because ER is expressed in terms of the specific 

physical parameters ll.CJ5 and /l.(Jd which directly 

characterize the stress release process on the fault plane. 
The variation of stress during faulting can be more 

complex than shown in Figure 4a. For example, the stress 

may increase in the beginning of the slip motion (curve (1) 

in Figure 4a) because of loading caused by advancing 

rupture, or of a specific friction law such as the state-rate 

dependent friction law [Dieterich, 1979a, 1979b]. In fact, 

seismological inversion studies have shown this increase 

[Quin, 1990; Miyatake, 1992; Mikumo and Miyatake, 

1993; Beroza and Mikumo, 1996; Ide, 1997; Bouchon, 
1997]. However, this increase is of short duration and the 

amount of slip during this stage is small so that little 

energy is radiated. Thus, we will not include it in our 

energy budget. 

Also, the friction may not be constant during faulting. 

It may drop drastically in the beginning and later resume a 
somewhat larger value (curve (2) in Figure 4a), or it may 

decrease gradually to a constant level (Figure 4b ). The 

latter is called a slip-weakening process. These models 
have been considered in Brune [1970], Heaton [1990], 

Kikuchi and Fukao [1988], Kikuchi [1992], Kanamori 

[1994], Winslow and Ruff[1999], and Thio [1996]. 
If the friction is not constant, the rupture dynamics is 

complicated, but for the energy budget considered here, we 

formulate this problem referring to a simple case shown in 

Figure 4b. The friction CJ 1 gradually drops to a constant 

value CJ 10 until the slip becomes D c· In general the final 

stress CJ1 can be different from CJ 10 . Then, we define the 

average friction (f 
1 

by 

(7) 

where u is the slip (offset) on the fault plane. Then, 

equation ( 6') can be written as 

where 

(9) 

Here, ll.a d defined by (9) can be called the average 

dynamic stress drop. If friction drops rapidly, ll.a d is the 

same as ll.CJ d• but if friction drops very gradually to CJ1, 

then fault motion becomes quasi-static with no energy 

radiation, and (f 1 defmed above would be close to the 

average stress (CJ0+CJ1)/2. Then ll.ad = (1/2)1l.CJ
5

, and ER 

:::::0 from (8). We will use ll.ad in this paper, but the 

following alternative interpretation is also useful. 

We can interpret the slip weakening process in terms of 

the breakdown process at the advancing front of an 
earthquake rupture. Then the total energy loss, (f 1 DS can 

be divided into two parts, 

The first term can be interpreted as frictional energy (cross

hatched area in Figure 4b ), and the second term, the 

fracture energy (hatched area in Figure 4b ). Then, equation 

( 6') can be written as 

(11) 

where 

ll.CJ d = CJo - CJ JO (12) 

Here, the definition of the dynamic stress drop is the same 

as the traditional one, but the fracture energy 

EG = S foDc { CJ 
1 

( u) - CJ 10 )du needs to be subtracted from 

the right-hand side of (6') to obtain ER. 

FRACTURE ENERGY 

The estimates of fracture energy for earthquakes vary 

over a wide range. The specific fracture energy G* (fracture 

energy per unit area) ranges from 1 to 108 J/m2 [Kostrov 



and Das, 1988]. The largest values are derived from 
seismic data on the assumption that rupture is arrested by a 

barrier [Aki, 1979] and may not be representative of the 

average fracture energy of earthquakes. Husseini [1977] 
estimated G* to be on the order of 105 J/m2. Scholz 

[1990] quotes a range 106 to 107 J/m2. 

The fracture energy can be related to the rupture 
velocity. For simplicity, we use a Mode III (longitudinal 

shear) crack model in the following, but we can 
qualitatively develop a similar argument for other crack 

geometries. 

We take a Cartesian coordinate system (x, y, z), and 

consider an infinitely long crack extending in z direction. 

The crack growth is in x direction. Let 2c be the width of 

the crack in x direction. The crack is under uniform stress 

a0 and friction O"fi both in z direction. In actual faulting, 

a1 is likely to vary during faulting, but here we assume it 

to be constant. Then, 

AW=( O"o+ar )DS/2=( 0"0 -a1 )DS/2+a1 DS 

(13) 

where 

In the above, the relations S=2c and ( a0-a.r)=2J1Dircc 

[Knopoff, 1958] are used. 
The static energy release rate (specific fracture energy) 

G* is given by 

where K = ( 0" 0 - 0" 1 )( nc) 112 is the stress intensity factor 

[Dmowska and Rice, 1986; Lawn, 1993; Freund, 1998]. 

From (14) and (15), 

(16) 

Following Kostrov [1966], Eshelby [1969], and Freund 

[1972], the energy release rate, G, for a crack growing at a 

rupture speed V is given approximately by 

G=G*g(V) (17) 

where g(V) is a universal function of V. For a Mode ill 
crack, it is given by 

g( V)=[ ({3-V)/({3+ V)] 112 (18) 
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where f3 is S-wave velocity. Then, the fracture energy 

is 

EG = J GdS = 2 s:G• g(V)dc 

= g(V) J d(A"')) = g(V)A"') (19) 

which becomes small compared with the strain energy 

involved as V increases to the limiting velocity /3, because 

g(V) approaches 0 in this limit. For most large shallow 

earthquakes, it is generally established that the rupture 

velocity is about 75 to 85 % of /3, [Heaton, 1990] and we 

can neglect EG. 

LINK BETWEEN MICROSCOPIC AND 

MACROSCOPIC PROCESSES 

Our fault model consists of many faults (microfaults or 

subfaults) each one of which radiates seismic energy 

following the stress release process described above. We 

cannot distinguish every fault, but what we observe 

seismologically is the total energy radiated from all of 

them. Using equation (8), the total energy is given by 

ER = LER; =LMo;{2ACfd; -AasJI2J1 

= M0{2ACfd -Aas)I2J1 (20) 

where the average dynamic stress drop, ACfd, and the 

average static stress drop, AO"s, are the macroscopic 

parameters defmed by 

(21) 

and 

(22) 

Here subscript i denotes the i-th subfault. Equations 21 

and 22 show that the macroscopic stress drops ACfd and 

AO"s are given as weighted averages of the stress drops for 

each subfault. The weight is the seismic moment of each 

subfault. 

With this interpretation, we can tie the microscopic 

processes occurring on a fault plane to the macroscopic 

parameters, such as M0 and E R, measurable with 

seismological methods. This is similar to the treatise in 

the kinetic theory of gas, in which macroscopic 

thermodynamic parameters like temperature and pressure 
are tied to the kinetic energy of molecules. 
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Since the rupture pattern on a fault plane .is so complex 
that we cannot use a simple stress pattern shown in Figure 
4 to represent the entire faulting. However, we can use the 
static and dynamic stress drops defined by (21) and (22) to 
represent the overall state of stress during seismic rupture. 

INTERPRETATION 

We use the macroscopic seismic parameters, M0 and ER, 

which are now tied to microscopic processes through 
equations 20, 21 and 22 for interpreting seismic data. 
Specifically, we use the ratio e =ERIM0 . This ratio, e, 

multiplied by J1 was introduced in seismology in the 
1960's as "apparent stress" [Aki, 1966; Wyss and Brune, 
1968; Wyss, 1970a, 1970b]. It is usually expressed as a 
product of the efficiency 1J and the average stress 
a = (a 0 + a 1) I 2, neither of which can be directly 

determined seismologically. Nevertheless, the apparent 
stress, combined with static stress drop, provided useful 
information for the state of stress in different regions. 
Wyss [1970a] showed that the apparent stress of 
earthquakes on ridges do not differ much from those in 
trenches. The difficulty with the apparent stress was in 
difficulty in accurately computing the radiated energy. 
Although this difficulty still exists [e.g. Singh and Ordaz, 
1994], the accuracy of energy estimates has improved 
[Choy and Boatwright, 1995], and we revive the use of e. 
In this paper, using equation 20, the relationship is cast in 
terms ofthe static and dynamic stress drops as follows. 

(23) 

The quantity e can be interpreted as a non-dimensional 
radiated energy scaled with M0, the static size of the 

earthquake, and is called the scaled energy. 
Qualitatively, if the friction drops rapidly, fault motion 

would be accelerated rapidly, and more energy will be 
radiated for a given M0, and results in large e . In contrast, 

if the friction drops gradually, the fault motion is 
accelerated slowly thereby radiating less energy than the 
case for sudden drop in friction; this would result in small 
e . Thus, e which can be determined with the 
conventional seismological method can be used to infer the 
rupture behavior. 

We can state the above behavior more quantitatively as 
follows. As shown in Figure 4a, if the friction drops 
rapidly, !:iad is comparable, or larger than !:ias, and e 
given by equation 23 is of the order of !:1a/2J1. In 

contrast, if friction drops gradually, a 
1 

defined by (7) 

approaches the average stress (a0+a1)/2; then !:iad-z 

(1 12)!:1as, and e -:::=0. 

Figure 5a shows the observed relation between ER and 

M0, and Figure 5b shows e as a function of Mw. 

Although the determination of M0 can be made accurately, 

the determination of ER is still subject to large 

uncertainties. The values of ER estimated for the same 

earthquake by different investigators often differ by more 
than a factor of 10 [Singh and Ordaz, 1994; Mayeda and 
Walter, 1996]. In particular, the values determined from 
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Figure 5. a). Relation between the radiated energy ER and the 

seismic moment M0• The data for large earthquakes (solid 
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are taken from Abercrombie [1995]. b) The scaled energy, 
e=ER IM0, computed as a function of Mw. Note that the values 

of e for small earthquakes are I 0 to I 00 times smaller than 
those for large earthquakes. 



teleseismic data tend to be consistently smaller than those 
determined from regional data. This difficulty is mainly 
due to the complex propagation effects. Because of these 
uncertainties, the relation between ER and M0 has not been 

given close attention. 
Figures 5a and 5b include two data sets. The data for 

large earthquakes (M,r-3.5) are obtained in southern 

California using broad-band seismic data. The results 
obtained by Kanamori et a/. [1993] have been slightly 
revised and updated using more recent data from TriNet, a 
broad-band seismic network in southern California [Mori et 

a/., 1998]. In these studies, broad-band data at relatively 
short distances were used, and the propagation and site 
effects were removed empirically. The results of a recent 
study by Mayeda and Walter [1996] who used coda waves 
to determine the radiated energy agree with those of 
Kanamori eta/. [1993] within a factor of 2, with Mayeda 
and Walter's values being slightly larger. With the recent 
deployment of a large number of broad-band instruments in 
southern California (TriNet, Mori et a/. [1998]), the 
propagation and site effects can be calibrated more 
accurately with many high-quality data at short distances. 
The new calibration data suggest that the results obtained 

earlier with TERRAscope are probably accurate within a 
factor of3. 

The data for smaller earthquakes in Figures 5a and 5b 
were obtained by Abercrombie [1995] using the down-hole 
(2.5 km deep) seismic data recorded in the Cajon drilling 
site in southern California [Zoback and Lachenbruch, 

1992]. A distinct advantage of using down-hole data is 
that they are free from the complex free-surface effects and 
the large attenuation near the recording site. These are the 
main factors that cause the large uncertainties in the results 
obtained with surface instruments, especially for small 
earthquakes. Although only one station was available, the 
data set covers a fairly large azimuthal range 
(approximately 150°) so that the effects of radiation pattern 
and directivity were averaged out. Most events are within 
relatively short distances, 25 km, and the wave forms 
exhibit clean impulsive characters. Thus, these 
observations are considered among the most reliable for 
small earthquakes. 

Large (M,r-4. 5) Earthquakes 

Figure 5b shows that the values of e is about 5x 1 o-5 to 
2x 1 o-4 for large earthquakes. If the static stress drop 11 O"s 

is 10 to 100 bars, this result indicates (equation 8) that the 
dynamic stress drop, !lad, is 20 to 110 bars for large 

earthquakes, comparable to, or slightly larger than, the 
static stress drop llO"s. 

Our interpretation is that, for large earthquakes, melting 
and fluid pressurization reduce dynamic friction thereby 
causing rapid brittle failure resulting in a relatively large 
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e . Since both lla.v and lla d are of the order of 100 bars, 

and the friction is low, the entire process must be occurring 
at a stress level comparable to the static and dynamic stress 
drops, about 100 bars (Figure 4a). This is consistent with 
the result of Beroza and Zoback [1993] and Zoback and 

Beroza [1993] who found from the diversity of aftershock 
mechanisms that the friction during the 1969 Lorna Prieta, 
California, earthquake was very low. Also Spudich [1992] 
and Spudich et a/. [ 1998] inferred from the rotation of slip 
vectors that the absolute stress during faulting of several 
earthquakes is comparable to stress drops. The assumption 
in these studies is that the slip direction is subparallel to 
the frictional stress on the fault plane. 

Small (Mw<2) Earthquakes 

A striking feature seen in Figures 5b is that the ratio, 
e' for small earthquakes is approximately 10 to 100 times 
smaller than that for large earthquakes, i.e. small 
earthquakes appear to be less efficient in wave radiation 
than large earthquakes. Even if we allow for the 
potentially large uncertainties in energy estimation, this 

difference appears to be too large to be attributed to 
experimental errors, and probably reflects the real difference 
in the rupture dynamics between small and large 
earthquakes. The transition occurs between Mw=2.5 and 5. 

Although Figures 5a and 5b show the results only from the 
two specific data sets, many other studies show a similar 
transition over this magnitude range [e.g. Thatcher and 

Hanks, 1973; Fletcher and Boatwright, 1991; Boatwright 

eta/., 1991; Mayeda and Walter, 1996; Thio, 1996; Zhu, 

1998]. It is interesting to note that figure 7 of Thatcher 

and Hanks [1973] showing the relation between M0 and 

Mr. if combined with their figure 10 (ER vs. Mr), could be 

interpreted as showing this transition. 
Referring to equations 7 and 9, we interpret this result 

in terms of a gradual drop in friction. Because the thermal 
energy involved is not large enough to reduce friction, the 
stress change can be gradual as shown in Figure 4b. This 
means that fracture energy, Ea, given in equation 6 or that 

defmed by the second term of equation 10 is large for 
small earthquakes. As mentioned earlier, the fracture 
energy for large earthquakes is considered to be small but, 
for small earthquakes, there is no direct evidence for small 
fracture energy, i.e. small earthquakes could be 
significantly less brittle than large earthquakes. 

McGarr [ 1999] suggests, on the basis of the data for the 
apparent stress, that the upper bound of efficiency of 
earthquakes is about 0.06. Our conclusion on small 
earthquakes is qualitatively consistent with McGarr's 

[ 1999]. However, our conclusion suggests that the 
efficiency for large earthquakes (e.g. Mw>6) could be 

considerably higher than that for small earthquakes. 
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Models for Small and Large Earthquakes 

Using the results obtained above, we present here a 
schematic model contrasting small and large earthquakes. 

First we assume that <Jo is the same everywhere along a 

fault zone. Then, Figure 6 illustrates representative stress 
variations for small and large earthquakes. We assume that 
the stress on the fault plane drops linearly from <Jo until 

the slip reaches a critical value, De, where the stress is 

equal to a constant frictional stress <J.fO . The stress 

eventually drops to almost 0 if slip exceeds Dr when 

melting or pressurization reduces friction. Figure 5b 
shows that this transition occurs at Mw=2.5 to 5, which 

suggests that Dr=2 to 30 em (equation 2). 

We let Ds and DL be the total displacement for small and 

large earthquakes, respectively. For small earthquakes, 
Dc<Ds<Dn and for large earthquakes, DL>>Dr. Then for 

large earthquakes, 

ER =~W-EF-EG 

=DL{Go;G1 -G 1 o(~) Go~Gto(~:)] (24) 

(25) 

In contrast, for small earthquakes, 

ER =~W-EF-EG 

= Ds{ Go :G fO Gto _Go~ Gto ( ~: )] 

=D S(<Jo-<Jfo)(t- De) (26) 
s 2 Ds 

Thus, 

e = ~<J s (1 - De)· where ~<Js = <J o - <J JO (27) 
2p Ds 

In this case, ~<Js(small earthquakes)<~o:s(large 

earthquakes), but the difference would be small, about a 
factor of 2 or so. On the other hand, the scaled energy, e , 
can be very different. If Ds is comparable to De for small 

earthquakes, then e can be very small. This is the reason 
why we have the large difference in e between large and 

Energy Budget of Earthquakes 
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Figure 6. Schematic stress release patterns for small (left) 
and large earthquakes (right). Hatched, cross-hatched, and 
dotted areas represent the fracture energy, frictional energy 
loss and radiated energy, respectively. 

small earthquakes, even if the static stress drop is about the 
same. Actually, <Jo may vary considerably along a fault 

zone. If <Jo is large for small earthquakes, then we can 

have ~<Js(small)=~<Js(large), yet e can be still very small 

for small earthquakes if Ds =De. Actually, a large <J0 for 

small earthquakes may not be unreasonable considering the 
possibility of local stress concentration. In any case, the 
actual condition can be very heterogeneous, but as a whole, 
some mechanism as illustrated in Figure 6 is probably 
responsible for the difference between large and small 
earthquakes. 

IMPLICATIONS 

State of Stress 

The results obtained for large earthquakes suggest that 
the average stress level along mature faults where large 
earthquakes occur must be low because of the dominant 
thermal effects such as frictional melting and fluid 

pressurization. Because of melting or pressurization, a 
fault zone is self-organized into a low stress state. That is, 
even if the stress was high in the early stage of fault 
evolution, it would eventually settle in a low stress state 
after many large earthquakes. This state of stress is 
consistent with the generally held view that the absence of 
heat flow anomaly along the San Andreas fault suggests a 
shear strength of about 200 bars or less [Brune et a/., 
1969; Lachenbruch and Sass, 1980]. 

The stress in the crust away from active mature faults 
can be high as has been shown by many in-situ 
measurements of stress [McGarr, 1980; Brudy et a/., 
1997]. The stress difference is large, and a kbar type stress 
may be involved in small earthquakes, but the events are in 
general so small that it is hard to determine the stress 
parameters accurately. What is important, though, is that 
as long as the length of the fault is small, the state of 



intraplate fault 

Figure 7. Schematic diagram showing the magnitude of the 
stresses in Earth's crust. Modified from [Kanamori, 1980). 

stress in the fault zone would not affect the regional stress 
drastically. However, as the fault grows to some length 
(e.g. Japanese intra-plate earthquakes like Tango, Tottori, 
Nobi etc.), then some sort of self-organization occurs and 
the fault settles at a stress level somewhat higher than that 
on more active plate boundaries. 

This type of stress distribution has been suggested from 
seismic data [Figure 7, Kanamori, 1980], and from stress 
orientations near major plate boundaries [Mount and 

Suppe, 1987; Zoback eta/., 1987]. 

Magnitude-frequency Relationship for Mature Faults 

One probable consequence of sudden reduction in 
friction when slip exceeds a threshold value would be 
runaway rupture. In this context, an interesting 
observation is the magnitude-frequency relationship for 
some mature plate boundaries such as the San Andreas 
fault and some subduction zones. For example, the 
absence of events with magnitude between 6.5 and 7.5 on 
the San Andreas fault in southern California, despite the 
occurrence of magnitude 8 earthquake in 1957 (Fort Tejon 
earthquake) and the average repeat time of about a few 
hundred years [Sieh, 1984], has been thought somewhat 
odd. Figure Sa shows the magnitude-frequency relation 
taken from Wesnousky [1994]. Earthquakes with M from 6 
to 7 appear to be fewer than expected for the conventional 
magnitude-frequency relationship. A similar observation 
has been made for the Nankai trough in Japan [Masataka 

Ando, 1999, personal communication] as shown in Figure 
8b. In this region, many earthquakes with .i\.£8 are 
documented well (Figure 9), but almost no earthquakes 
with 7<M<8 have occurred there since 1900. These 
observations can be interpreted in terms of the runaway 
process discussed above. As the magnitude exceeds a 
threshold value, about 6.5 for the San Andreas and 7 for 
the Nankai trough, the friction drops and fault slip cannot 
stop until it reaches some limit imposed by the regional 
seismogenic structure or loading geometry. This is a 
runaway situation caused by dynamic effects of faulting. 

If the specific fracture energy, G*, is constant, the 
Griffith type cracks are inherently unstable, i.e. if the crack 
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length exceeds a threshold, the crack will runaway. So, in 
this sense all earthquakes, small and large, can get into 
runaway rupture. However, G* is not constant in real fault 
zones, and the place where G* is large acts as a barrier to 
stop rupture propagation [Aki, 1979]. Then the question is 
what is the probability of some barriers stopping the 
rupture. The easiest way to look at this situation is to use 
the stress intensity factor K which is given by 

(cr0 - cr 1 )(nl)112 for a Mode III crack [e.g. Dmowska and 

Rice, 1986] where I is the crack length. As the fault 
grows, I and D increase. When D exceeds DT, friction, a-1, 

drops (see Figure 6). The combined effect of the 
decreasing cr1 and increasing I increases K. Since the crack 

extension force is proportional to K2, the fault rupture 
becomes harder to stop and runaway rupture is more likely 
to occur. 

The magnitude-frequency relationship is usually 
understood as a manifestation of heterogeneity of fault 
structure [Scholz and Aviles, 1986; Okubo and Aki, 1987; 
Aviles eta/., 1987]. In addition to this static feature, slip
controlled dynamic runaway process could be an important 
element that determines the earthquake statistics for mature 
faults. 

Seismic Breakaway Phase 

In a series of papers, Ellsworth and Beroza [ 1995, 
1998] and Beroza and Ellsworth [1996] showed that the 
moment rate of many earthquakes is initially low but after 
some time it grows rapidly. They called this sudden 
increase in the moment rate a breakaway phase. The 
breakaway phase could be a manifestation of the slip
controlled runaway rupture. However, our model has a 
highly heterogeneous distribution of strength and would 
not explain the scaling relation proposed by Ellsworth and 

Beroza [1995, 1998] and Beroza and Ellsworth [1996]. 
Similar observations, on various time scales, have been 
made by Umeda [1990, 1992], and Kikuchi [1997]. 

Slip Behavior of a Plate Boundary 

The thermally-controlled model discussed above is 
inherently non-linear in the sense that slip controls the slip 
behavior. In such a non-linear system, it is possible that 
an infinitesimally small perturbation in the initial 
condition may lead to a significantly different behavior. In 
this context, the historical sequence along the Nankai 
trough is interesting. Figure 9 shows the sequence 
determined by a series of studies of Imamura [1928], Ando 

[1975], and Ishibashi [1998]. An interesting event is the 

one in 1605. This event caused widespread tsunami along 
the Japanese coast, but no significant evidence for shaking 
has been documented [Ishibashi, 1981]. Although the 
evidence is qualitative, the historical data for this region 
are generally considered reliable. This evidence suggests 
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that the 1605 earthquake was a tsunami earthquake in the 
sense defined by Kanamori [1972]. We suggest that the 
general style of earthquakes along a plate boundary (i.e. 

brittle ordinary earthquake, slow tsunami earthquake, or 
creep) is determined by the properties of the boundary (e.g. 

age of the subducting plate, sediment structure, roughness 
of the subducting plate, convergence rate etc., [Ruff and 
Kanamori, 1983; Uyeda and Kanamori, 1979; Scholz and 
Campos, 1995]), but considerable perturbation from the 
average behavior could occur because of the non-linear 

nature of thermally-controlled mechanism. A slow 
tsunami earthquake could occasionally occur at a plate 
boundary where ordinary earthquakes regularly occur. This 
is a speculative interpretation, and the possibility that the 
1605 earthquake was caused by some other mechanisms 
remains, but considering the significant thermal effects on 
fluid-filled subduction boundaries, this interpretation is 
plausible. Yamashita [ 1998] showed that fluid migration 
in a porous fault zone with spatially heterogeneous fracture 
strength can produce irregular event sequences. Although 



Yamashita's model is for a quasi-static case, and is not 
directly applicable to dynamic rupture propagation, a 
similar model would produce variable dynamic rupture 
patterns. 

Ground Motion from Large Earthquakes 

The effect of a pulse-like near-field ground motion on 
large structures is becoming an important engineering 
problem [Heaton, 1990; Heaton et al., 1995; Hall et al., 

1995]. However, very few recordings of near-field ground 
motion from large earthquakes exist. In modeling studies, 
the records from small earthquakes are used to estimate 
ground motions from hypothetical large earthquakes. This 
is a reasonable approach but the possibility exists that the 
slip velocity during very large earthquakes could be 
significantly larger than that for small earthquakes because 
of reduction of friction caused by large displacement. 

CONCLUSION 

The thermal budget during seismic slip suggests that 
frictional melting and fluid pressurization can play a key 
role in rupture dynamics of large earthquakes. In a simple 
model of faulting under frictional stress a1, the temperature 

increases with a1 and the earthquake magnitude, Mw. If the 

slip zone is thin and heat transfer is mainly by conduction, 
the thickness of the heated zone, w, is of the order of a few 
mm for a seismic time scale of about 1 0 sec. Then, even 
for a modest a1, the temperature rise, ~ T, would exceed 

1000° for earthquakes with Mw=5 to 7, and melting is 

likely to occur, and reduce friction during faulting. 
Another important process is fluid pressurization. If fluid 
exists in a fault zone, a modest ~ T of 100 to 200° would 
likely increase the pore pressure enough to significantly 
reduce friction for earthquakes with Mw=3 to 5. The 

microscopic state of stress caused by local melting and 
pressurization can be tied to macroscopic seismic 
parameters such as, M0 and ER, by averaging the stresses in 

the microscopic states. Since the thermal process is 
important only for large earthquakes, the dynamics of 
small and large earthquakes can be very different. This 
difference is reflected in the observed relation between the 
ratio e =ER IM0 and Mw. The available seismic data show 

that e for large earthquakes is 10 to 100 times larger than 
for small earthquakes. According to this model, mature 
fault zones such as the San Andreas are at relatively 
moderate stress levels, but the stress in the plate interior 
can be high. The fault dynamics described here suggests 
that once slip exceeds a threshold, runaway rupture could 
occur. This could explain the anomalous magnitude
frequency relationship observed for some mature faults. 
Since the thermal state is controlled by the amount of slip, 
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the slip behavior is controlled by the slip itself. This 
would produce a non-linear behavior, and under certain 
circumstances, the slip behavior at the same location may 
vary from event to event. Another important implication 
is that slip velocity during a large earthquake could be 
faster than what one would extrapolate from smaller 

earthquakes. 
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