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Abstract
We present a microscopic quantization scheme for the electromagnetic field
in dispersive and lossy dielectrics of arbitrary geometry. This method also
describes anisotropic media and media driven by light field via a spatially
nonlocal permittivity. The method removes the need for complicated
diagonalization of material, reservoir and field variables and allows us to
include the effect of all the material excitations. Dissipation inside the
medium is described by considering the coupling of the polarization quanta
of the system with the reservoir oscillators in the usual Langevin approach.
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1. Introduction

To describe the quantum features of the propagation of light
through dielectric matter, such as optical fibres, dielectric
multislab devices, or ultrathin semiconductor resonant layers,
quantization of the light field is required. Dispersion in
dielectric systems is always associated to loss in accordance
with the Kramers–Krönig relations. However, the quantization
of the electromagnetic field in absorptive dielectrics is
considerably more complicated since the loss couples the
field to a reservoir, whose oscillators act as noise sources.
A microscopic consistent description of quantized radiation
in dispersive and absorptive linear bulk dielectrics was first
developed by Huttner and Barnett [1]. They described the
dielectric as a polarization field interacting with both the
light field and a continuum of reservoir fields, determining
absorption, and they diagonalized the coupled radiation-
matter Hamiltonian by a generalized Hopfield transformation.
This method has been used to calculate the vacuum field
fluctuations in absorbing dielectrics [2], and hence to obtain
the spontaneous emission rate for an excited atom. The
method has been extended to an arbitrary dielectric with
a given local complex permittivity [3]. Another approach

to the problem of quantization in lossy dielectrics uses
Langevin forces to describe noise, and has been applied to
the calculation of quantum optical processes in dielectric
slabs with local susceptibility [4, 5] and to the calculation of
Casimir forces in absorbing dielectrics [6,7]. A comprehensive
treatment of electromagnetic fields in dispersive and absorbing
dielectrics based on the Langevin forces has been given
in [8, 9]. The method has also been applied to the analysis
of propagation of nonclassical light pulses in slabs [10,11]. A
three-dimensional (3D) quantization scheme for homogeneous
absorbing dielectrics based on the Langevin forces and the
Green function method has been presented in [12]. Ho
Trung Dung et al [13] and Scheel et al [14] have extended
the quantization scheme in inhomogeneous media to include
the full 3D nature of the electromagnetic field starting from
the phenomenological Maxwell equations. In particular,
Scheel et al have proved that the fundamental equal-time
commutation relations of QED are preserved for an arbitrary
space-dependent, Kramers–Krönig consistent permittivity. A
3D quantization scheme taking explicitly into account the finite
extent of media has been recently presented by us [15, 19].

A different general 3D quantization scheme that makes use
of a set of auxiliary fields, followed by a canonical quantization
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procedure has been developed by Tip [16]. Recently, the
equivalence of the quantization schemes by Scheel et al [14]
and by Tip [16] has been demonstrated [17].

Microscopic methods require complicated diagonaliza-
tion procedures of material, reservoir and field variables. The
Langevin method has the advantage that it is valid for an arbi-
trary dielectric function and that removes the need for compli-
cated diagonalization procedures. However, this method is to
some degree phenomenological as it is not based on a micro-
scopic model for the dielectric material. As a consequence the
commutation relations for the noise currents are determined a
posteriori, by imposing that the obtained quantized fields obey
the canonical commutation relations. Gruner and Welsch, re-
inserting the Huttner and Barnett solution for the field quanti-
zation in an infinite bulk medium into the Maxwell equations,
provided a microscopic derivation of the noise current opera-
tors [18]. By this procedure one has to solve the quantization
problem before calculating the noise operators.

Here we consider the most general non-magnetic linear
scattering system that can be described by a causal nonlocal
susceptibility tensor χi,j (r, r′, ω) (of course for systems or
part of a system that can be described by a local susceptibility,
χij (r, r′) reduces to χij (r)δ(r − r′)) [19]. Electronic states
of semiconductors and semiconductor quantum structures,
and also all those systems whose susceptibility depends
on wavevectors are examples of systems driven via a
nonlocal susceptibility. We present a microscopic quantization
scheme which avoids diagonalization procedures. Our
microscopic method is analogous to the method based on
Langevin forces applied to field quantization in media with
local susceptibilities [8]. This scheme simply provides
a microscopic direct derivation of the general dielectric
function and of the Langevin forces and naturally links the
field quantization in absorbing dielectrics with the standard
Langevin approach adopted to include dissipation in the
quantum dynamics of a harmonic oscillator [20]. Moreover,
this approach extends previous treatments by allowing us to
treat anisotropic media and media driven by the light field via
a spatially nonlocal permittivity.

2. The photon–electron interaction Hamiltonian

In order to describe the interaction of light with matter inside
the dielectric medium, we will adopt the Power–Zienau–
Wolley (PZW) or multipolar interaction Hamiltonian [21] in
the dipole approximation.

The canonical coordinate for the electromagnetic field is
the transverse vector potential operator Â(r). Its conjugate
momentum in the PZW gauge is given by Π̂ = −D̂(r)/ε0,
where D̂ is the transverse displacement operator. We point out
that Â and D̂ commute with all the operators of the material
system (we refer to equal-time commutators). In order to
apply the dipole approximation to an extended system, we must
divide the whole medium into many cells of the same volume
�, and each cell is specified by a position vector r. These
cells must have a much smaller size than the wavelength of the
electric field in consideration (a possible choice is to make the
crystal unit cell such a unit). The PZW Hamiltonian, in the

extended dipole approximation, can be written as

ĤI = −�

ε0

∑
r

D̂(r) · P̂ (r) +
�

2ε0

∑
r

P̂ 2(r), (1)

where P̂ = P̂ tr(r) + P̂ L(r) is the polarization operator of the
material system, with P̂ tr(r) and P̂ L(r) respectively being the
transverse and the longitudinal polarization-density operators.
The terms D̂(r) · P̂ (r) and P̂ (r) · P̂ tr(r) describe the
interaction of the medium with the transverse electromagnetic
field, while the term P̂ (r) · P̂ L(r) describes the energy of
the longitudinal field ÊL(r) = −P̂ L(r)/ε0. Although the
results presented here can be applied to any material excitation
interacting with the electric field, such as optical phonons,
plasmons and excitons, in the following we specialize to
excitations arising from electronic interband transitions.

The electronic polarization-density operator can be
expressed as P (r) = ∑

j Pr(xj ), with the contribution of
the j th electron given by

Pr(xj ) = − 1

�

∫
�r

dx′ δ(xj − r − x′)ex′,

with integration limited to the volume of the cell, � being
the cell volume. The polarization density operator in second
quantization form is given by

P̂ (r) =
∫ ∞

−∞
dx �̂†(x)Pr(x)�̂(x), (2)

where �̂ and �̂† are fermion field operators. We expand the
field operators in terms of the wavefunctions of conduction and
valence bands

�̂(x) =
∑
λv

ψλv (x)v̂λv +
∑
λc

ψλc(x)ĉλc . (3)

We have considered a two-band direct-gap model where v(c)

labels the valence (conduction) band. In equation (3) ĉλc

(v̂λv ) are annihilation operators of electrons in the conduction
subband λc (in the valence subband λv). The one-particle
valence and conduction wavefunctions on the right-hand side
of (3), in the envelope function approximation [22], are given
by

ψλv (x) = uλv (x)ζλv (x), (4)

ψλc(x) = uλc(x)ζλc(x), (5)

where x ≡ (x1, x2, x3) labels the electron coordinates and λc

and λv are collective quantum numbers representing the set of
quantum number labelling the electronic energy levels of the
system, including eventually the 1D, 2D or 3D wavevector
according to the translational properties of the system. In
equations (4) and (5) uλv(λc)(x) is the periodic part of the
Bloch functions normalized inside the unit cell. The envelope
functions ζλv(λc)(x) are slowly varying functions with respect
to the dimensions of the cells and can be considered as constant
inside each elementary cell. They are normalized as follows:∑

r

ζ ∗
λv(λc)

(r)ζλv(λc)(r) = 1. (6)

These envelope functions describe the propagation and the
confinement of the electrons in a material systems with
eventually broken translation symmetry.



By considering only interband transitions, thus assuming
that ∫ ∞

−∞
dx ψ�

λv(λc)
(x) Pr(x) ψλv(λc)(x) = 0, (7)

and introducing the field operators (3) into (2), we obtain

P̂ (r) =
∑
λc,λv

c
†
λc

vλv

∫ ∞

−∞
dx ψ�

λc
(x)Pr(x)ψλv (x) + H.c. (8)

We introduce in equation (8) the explicit electronic
wavefunctions given in (4) and (5). We then write the integral
in (8) as a sum of integrals limited to the volume of each cell.
We can thus take advantage of the slowly varying character of
the function ζλv(λc)(x) considering this envelope function as a
constant ζλv(λc)(r) inside each cell. We obtain

P̂ (r) =
∑

β

µβρβ(r)ĉ
†
λc

v̂λv + H.c., (9)

where
ρβ(r) = ζ̃ ∗

λc
(r)ζ̃λv (r),

where β ≡ (λc, λv) and ζ̃ = ζ/
√

�. µβ is the interband-
dipole matrix element given by

µβ = −
∫

�j

dx u∗
λc

(x)exuλv (x). (10)

If the medium is isotropic the interband-dipole matrix is simply
given by a scalar ((µβ)i = µβ). By replacing the valence band
operators vλv with hole operators h

†
λv

, P̂ (r) can be written as

P̂ (r) =
∑

β

µβB̂βρ∗
β(r) + H.c. = P̂ +(r) + P̂ −(r) (11)

where we have defined the excitation operator as

B̂β = cλchλv , (12)

and
P̂ +(r) = [P̂ −(r)]† =

∑
β

P̂ +
β (r), (13)

with
P̂ +

β (r) = µβB̂βρ∗
β(r). (14)

We have now determined the second quantization form
of the polarization in terms of the excitations of the material
system, and hence we have explicitly determined the second
quantization form of HI .

As the wavelength of the field at optical frequencies is
much larger than the dimensions of the unit cell, we can
perform the continuum limit. The second quantization form
of (1) can be thus written as

ĤI = − 1

ε0

∫
d3r D̂(r) · P̂ (r) +

1

2ε0

∫
d3r P̂ 2(r) (15)

where integration is extended to the whole volume of the
system. Analogously to the total polarization operator, the
electric field operator can also be separated into the positive and
negative frequency components in the usual way, Ê(r, t) =

Ê+(r, t)+Ê−(r, t) [20]. For future use it is useful to introduce
the time Fourier transforms

Ê+(r, t) =
∫ ∞

0
dω e−iωtÊ+(r, ω),

P̂ +(r, t) =
∫ ∞

0
dω e−iωt P̂ +(r, ω).

The negative frequency components are given by the Hermitian
conjugate of the positive frequency operators [8]. In the usual
rotating wave approximation [20], equation (15) becomes

ĤI =
(

− 1

ε0

∫
d3r D̂+(r) · P̂ −(r)

+
1

2ε0

∫
d3r P̂ +(r)P̂ −(r)

)
+ H.c. (16)

3. Heisenberg–Langevin equations for the material
system

When analysing the linear response, i.e. when considering a
regime of low optical excitation, the excitation operators can be
assumed to be Boson operators. In the absence of interaction
with light, the Hamiltonian describing the electronic excitation
of the medium can be written simply in terms of Boson
excitation operators,

Ĥm =
∑

β

h̄ωβB̂
†
βB̂β, (17)

where h̄ωβ are the energy levels of the system. The total
Hamiltonian acting on the material system is given by

Ĥtot = Ĥm + ĤI . (18)

By using the rotating wave approximation (16) for HI , the
Heisenberg equations of motion for the excitation operators,

i
∂

∂t
B̂β = 1

h̄

[
B̂β, Ĥtot

]
(19)

are given by

i
∂

∂t
B̂β = ωβB̂β − (µβ)l

h̄

∫ ∞

−∞
dx′ ρβ(x′)Ê+

l (x′, t), (20)

where we have used the relation

Ê±(r, t) = 1

ε0
(D̂±(r, t) − P̂ ±(r, t)).

From equation (20) we can directly derive a set of equations
for the Fourier components P̂ +(r, ω),

(ω − ωβ)P̂ +
β,m(r, ω) = − (µβ)m(µβ)l

h̄
ρ�

β(r)

×
∫ ∞

−∞
dx′ ρβ(x′)Ê+

l (x′, ω). (21)

We now introduce the effect of dissipation due to the degrees
of freedom internal to the material system. We introduce
a set of harmonic oscillators interacting with the excitation
operators. Following the usual Langevin approach, the
resulting Heisenberg–Langevin equations for the electronic
excitations can be derived from equation (20) by including



a damping term −iγβB̂β and a quantum noise Langevin
operator −i

√
2γβF̂β(t) [20]. The noise Langevin operator,

F̂β(t), has zero expectation values and satisfies the following
commutation relations:[

F̂β(t), F̂
†
β ′(t

′)
] = δβ,β ′δ(t − t ′), (22)

[
F̂β(t), F̂β ′(t ′)

] = 0. (23)

For a zero-temperature reservoir, force–force correlations are
given by

〈F̂β(t)F̂
†
β ′(t

′)〉 = δβ,β ′ δ(t − t ′),

and
〈F̂β(t)F̂β ′(t ′)〉 = 〈F̂ †

β (t)F̂β ′(t ′)〉 = 0.

Introducing the Fourier transform for the noise operator,

F̂β(t) = 1√
2π

∫ ∞

0
dω e−iωt F̂β(ω)

into equation (22) we obtain[
F̂β(ω), F̂

†
β ′(ω

′)
] = δβ,β ′ δ(ω − ω′).

Introducing the effects of the interaction with the reservoir into
equation (21), we obtain the Heisenberg–Langevin equations
of motion for the polarization operators

(ω − ωβ + iγβ)P̂ +
β,m(r, ω) = − (µβ)m(µβ)l

h̄
ρ�

β(r)

×
∫ ∞

−∞
dx ρβ(x′)Ê+

l (x′, ω)

−i(µβ)m

√
γβ

π
F̂β ′(ω)ρ∗

β(x′). (24)

Inverting equation (24) and summing over the e–h levels β we
obtain an expression for the total positive component of the
electronic polarization,

P̂ +
m(r, ω) = ε0

∫ ∞

−∞
dr′ χm,l(r, r′, ω)Ê+

l (r′, ω)

+

√
h̄

π
f̂m(r, ω), (25)

where the linear nonlocal susceptibility is given by

χm,l(r, r′, ω) =
∑

β

(χ̃β)m,lρ
∗
β(r)ρβ(r′), (26)

with

(χ̃β)m,l = − 1

ε0h̄

(µβ)m(µβ)l

ω − ωβ + iγβ

, (27)

and where the noise operator is given by

f̂m(r, ω) =
∑

β

ξβ,m(r, ω)F̂β(ω), (28)

with

ξβ,m(r, ω) = −i

√
γβ

h̄

(µβ)m

ω − ωβ + iγβ

ρ∗
β(r).

The quantum noise operators f̂m(r, ω), defined in equa-
tion (28), obeys the following commutation relations:[

f̂l(r, ω), f̂ †
m(r′, ω′)

] = ε0χI
lm(r, r′, ω)δ(ω − ω′). (29)

[
f̂l(r, ω), f̂m(r′, ω′)

] = 0. (30)

The relations that we have obtained in this section can be
applied to specific cases. If we consider an anisotropic system
driven by the local susceptibility

χI
lm(r, r′, ω) = χI

lm(r, ω)δ(r − r′)

equation (29) becomes

[
f̂l(r, ω), f̂ †

m(r′, ω′)
] = ε0χI

lm(r, ω)δ(r−r′)δ(ω−ω′). (31)

The susceptibility of an isotropic local system is

χI
lm(r, r′, ω) = χI (r, ω)δlmδ(r − r′),

and we obtain

[
f̂l(r, ω), f̂ †

m(r′, ω′)
] = χI (r, ω)δlmδ(r − r′)δ(ω − ω′).

(32)

4. A Fredholm equation for the light field

The total Hamiltonian acting on the electromagnetic field is
given by

H = Hph + HI .

Hph is the photon Hamiltonian in the absence of the material
system. In the multipolar form of the interaction, adopted
here, the field coordinate is given by the vector potential,
while the conjugate momentum is given by the displacement
operator. From the Heisenberg equations of motions for the
field variables we can obtain an operator wave equation for the
electric field operator Ê(r, t),

∇ × ∇ × Ê+(r, ω) − ω2

c2
Ê+(r, ω) = ω2

ε0c2
P̂ +(r, ω). (33)

Introducing into equation (33) the expression (25) obtained for
the electronic polarization, we obtain in Cartesian components

[∇ × ∇ × Ê+(r, ω)
]

i
= ω2

c2

∫ ∞

−∞
dz′ χij (r, r′, ω)Ê+

j (r′, ω)

+iωµ0ĵi (r, ω) (34)

where

ĵi (r, ω) = −iω

√
h̄

π
f̂i(r, ω).

Equation (34) is a Fredholm integral equation with a source
term. This Fredholm equation, together with the commutation
relations of the noise operators,

[
ĵi (r, ω), ĵ

†
j (r′, ω′)

] = h̄

πµ0

ω2

c2
χI

i,j (r, r′, ω)δ(ω − ω′),

[
ĵi (r, ω), ĵj (r′, ω′)

] = 0,

(35)
is the starting point for field quantization in systems described
by a general 3D absorbing and dispersive material system
which can even be anisotropic and/or driven via a nonlocal
susceptibility.



This quantization scheme, which allowed us to obtain
equations (29) and (34), is based on a microscopic linear two-
band model. However, since the influence of the medium can
be described only in terms of the complex frequency-dependent
and nonlocal susceptibility of the medium, equations (34)
and (35) establish a quantization scheme which can be applied
beyond this model.

5. Conclusions

We have presented a microscopic scheme for field quantization
in absorbing and dispersive dielectrics. It provides a simple
microscopic derivation of the general dielectric function and
of the noise currents that act as source terms in the operator
wave equation for the electromagnetic field. This approach
naturally links the field quantization in absorbing dielectrics
with the standard Langevin approach adopted to include dissi-
pation in the quantum dynamics of a harmonic oscillator [20].
Furthermore, this approach produces equations of motion and
a dielectric function which are in close analogy with the cor-
responding quantities obtained in the framework of classical,
or semiclassical treatments of linear light–matter interaction,
thus providing a direct precise link with the well known classi-
cal theories. By this approach we have derived for the first time
noise current operators for general anisotropic and/or spatially
nonlocal media.
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[4] Knöll L and Leonhardt U 1992 J. Mod. Opt. 39 1253
[5] Leonhardt U 1993 J. Mod. Opt. 40 1123
[6] Kupiszewska D 1992 Phys. Rev. A 46 2286
[7] Matloob R 1999 Phys. Rev. A 60 3421
[8] Matloob R, Loudon R, Barnett S M and Jeffers J 1995 Phys.

Rev. A 52 4823
[9] Di Stefano O, Savasta S and Girlanda R 2001 J. Mod. Opt. 48

67–84
[10] Artoni M and Loudon R 1997 Phys. Rev. A 55 1347
[11] Artoni M and Loudon R 1999 Phys. Rev. A 59 2279
[12] Matloob R 1999 Phys. Rev. A 60 50
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