
Microscopic current dynamics in nanoscale junctions

Na Sai,1,2 Neil Bushong,1 Ryan Hatcher,3 and Massimiliano Di Ventra1

1Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
2Department of Physics, The University of Texas, Austin, Texas 78712, USA

3Department of Physics, Vanderbilt University, Nashville, Tennessee 37235, USA

�Received 15 August 2006; revised manuscript received 7 January 2007; published 13 March 2007�

So far, transport properties of nanoscale contacts have been studied mostly within the static scattering
approach. The electron dynamics and the transient behavior of current flow, however, remain poorly under-
stood. We present a numerical study of microscopic current flow dynamics in nanoscale quantum point con-
tacts. We employ an approach that combines a microcanonical picture of transport with time-dependent
density-functional theory. We carry out atomic and jellium model calculations to show that the time evolution
of the current flow exhibits several noteworthy features, such as nonlaminarity and edge flow. We attribute
these features to the interaction of the electron fluid with the ionic lattice, to the existence of pressure gradients
in the fluid, and to the transient dynamical formation of surface charges at the nanocontact-electrode interfaces.
Our results suggest that quantum transport systems exhibit hydrodynamical characteristics, which resemble
those of a classical liquid.
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I. INTRODUCTION

Recent experimental progress has enabled imaging of co-
herent current flow dynamics in quantum point contacts
formed in semiconductor heterostructures.1–4 These advances
in experimental techniques open the possibility that current
flow through atomic or molecular junctions will be eventu-
ally imaged and controlled. Understanding the microscopic
electronic flow patterns can aid the design of novel electronic
devices. However, very few theoretical studies of current dy-
namics in nanoscale systems are currently available. Indeed,
among the recent theoretical studies of transport in nanoscale
systems, much emphasis has been placed on the steady-state
conduction properties,5–15 whereas the transient behavior of
the current remains an unexplored area.

Electronic transport in nanoscale junctions is usually for-
mulated within the stationary scattering picture, such as the
one due to Landauer,16 in which the conduction is treated as
a collection of scattering events. This stationary approach,
widely used to study transport in mesoscopic and nanoscale
systems, has led to considerable success in understanding
current-related effects other than the conductance, including,
e.g., noise, local heating, and current-induced forces.17 It has
helped our understanding of the microscopic current distri-
bution as well.18,19 Nevertheless, the stationary approach as-
sumes that the system is already in a steady state, leaving the
questions of how a steady current establishes itself and what
other phenomena are related to the dynamical formation of
steady states in a nanojunction unsolved.

The dynamical nature of the current flow is better ad-
dressed in a time-dependent approach than in the stationary
one. Time-dependent or ac transport approaches have been
previously introduced in mesoscopic conducting
systems.20–24 Recently, an increasing amount of effort has
been directed toward developing ab initio time-dependent
approaches for nanoscale systems.25–35 One such method was
developed to study the ac conductance using the time-
dependent density-functional theory36 �TDDFT� combined

with absorbing boundary conditions.26 Other methods have
been developed based on the Landauer scattering formalism
of transport that employ open boundary conditions.27,29,31,32

More recently, a microcanonical formalism that treats
electronic transport as a discharge across a nanocontact con-
necting two large but finite charged electrodes was
introduced.25 The formulation has been combined with TD-
DFT to study the dynamical formation of quasisteady cur-
rents, local chemical potentials,30 and electron-ion
interactions.28 This formalism would yield the exact total
current flowing from one electrode to the other if the exact
functional were known, regardless of whether the system
achieves a steady state. In practice, in ab initio transport
calculations, one only uses approximate forms of the func-
tional such as the adiabatic local-density approximation
�ALDA�. It has been shown recently that the electronic cor-
relation effect beyond the ALDA gives rise to additional re-
sistance in molecular junctions.37–40 The spurious self-
interaction implicit in the ALDA further complicates
calculations of the conduction properties.41–43 The sensitivity
of various transport properties to the suggested corrections
remains only partially understood.

The dynamical establishment of a quasisteady current has
been investigated by a number of authors.28–30,44 It has been
demonstrated that a quasisteady current can establish itself
across a junction on a femtosecond time scale without the
presence of inelastic scattering.30 This is due to the geometri-
cal “squeezing” experienced by the electrons crossing the
nanojunction.25 The conductance calculated from the micro-
canonical formula was shown to be in good agreement with
that obtained from the static density-functional theory ap-
proach in prototypical atomic junctions28,30 as well as in mo-
lecular junctions.45 Nevertheless, a study of the microscopic
behavior of the electron flow, and, in particular, of the cur-
rent flow morphology in nanojunctions, is still lacking.

In this paper, we carry out real-time numerical simula-
tions of current flow in metallic nanojunctions using the mi-
crocanonical formalism, where we employ TDDFT within
the ALDA. We restrict the forthcoming discussion to the dy-
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namical behavior of electron and/or hole charges in the nano-
junctions under the linear response regime, i.e., in which the
bias is small and the current-voltage characteristics are lin-
ear. The paper is organized as follows. In Sec. II, we discuss
model transport systems and numerical methods. In Sec. III,
we present and discuss simulations of current dynamics in
jellium and atomic junctions. We also analyze the effects of
hydrodynamic pressure and electrode surface charges on the
dynamics of the flow. In Sec. IV, we summarize the main
conclusions of our work.

II. MODEL AND METHODS

The nanoscale junction geometry studied in this paper is
illustrated in Fig. 1. A narrow constriction separates two
large but finite electrodes. We begin the simulations by ap-
plying a step-function-like electric bias across the junction
such that the two electrodes bear equal and opposite poten-
tials offset relative to the potential at the center of the junc-
tion. The distance from the bias discontinuity to the center of
the junction is za �see Fig. 1�. This bias induces a charge
imbalance between the two sides of the system. At t=0, we
remove the bias and a discharge through the nanojunction
ensues. The Kohn-Sham initial state therefore corresponds to
the ground state of the Hamiltonian in the presence of the
bias. Here, we are interested in the transient behavior during
the phase in which the current is in the process of establish-
ing a quasi-steady-state and immediately thereafter, i.e., long
before the electrons that have passed through the constriction
have had a chance to reach the far boundary of the elec-
trodes.

To separate the effects of the electrons and of the atomic
lattice, we have carried out calculations using a jellium
model and an atomic model. In the jellium calculations, the
electrodes are represented by two large jellium slabs 2.8 Å
thick. The contact is a rectangular jellium block 2.8 Å wide
and as thick as the electrodes. The distance between the jel-
lium electrodes is 9.8 Å. In the atomic calculations, the junc-
tion is represented by two planar arrays of gold atoms sand-

wiching a single gold atom. We employ TDDFT and solve
the effective single-particle Schrödinger equation

i��̇�r�,t� = �−
�2

�
2

2m
+ Veff�r�,t����r�,t� , �1�

where the effective potential is given by

Veff�r�,t� = Vext�r�,t� +
e2

2
� n�r�,t�

�r� − r���
dr�� + Vxc�r�,t� . �2�

The term Vxc�r� , t� is the exchange-correlation potential
calculated within the adiabatic local-density approximation.
The external �ionic� potential is modeled using pseudopoten-
tials for the atomic calculations,46 while in the jellium model,
it is a local operator related to the uniform positive back-
ground jellium density �0 via Vext�r��= e2

2 �
n0

�r�−r���
dr��, where n0

is equal to � 4�rs
3

3
�−1

inside the jellium and zero outside, and rs

is the Wigner-Seitz radius. In the jellium model, we choose
rs=3aB �aB=Bohr radius�, which gives a good representation
of bulk gold �see also discussion below�. A “free-space”
boundary condition is implemented such that the long-range
potential is constructed only from the densities in the
supercell47; that is, the system is not periodic. Additional
numerical details can be found in the Appendix. The single-
particle time-dependent current density is calculated via

j��r�,t� = �
n

�

2mi
	�n

*�r�,t��� �n�r�,t� − ��n
*�r�,t��n�r�,t�
 , �3�

where �n denotes individual Kohn-Sham single-particle
states. Note that in TDDFT the current density is not neces-
sarily exact even if one calculates it with the exact functional
�via the continuity equation, only the divergence of the cur-
rent density would be exact�. One would need to resort to
time-dependent current density-functional theory48 �TD-
CDFT� to obtain the exact current density �with the exact
functional�. Nonetheless, due to the small viscosity of the
electron liquid, we have found that the current density one
obtains by using TDDFT within the ALDA and the one ob-
tained by TDCDFT within the Vignale-Kohn functional48 are
qualitatively similar.49

Even if the contact between the electrodes were removed,
the current between the two electrodes would not completely
vanish because of quantum tunneling. This bare tunneling
current can conveniently be used to compare the jellium and
the atomic calculations. The jellium edges are placed at half
the interplanar spacing of the lattice.50 This way, the jellium
model and the pseudopotential calculations both yield tun-
neling current densities of �0.05 �A/Å2 at a bias of 0.2 V.
The agreement indicates that the jellium model is a good
representation of two large metal electrodes. This is consis-
tent with the results of previous density-functional
calculations.51

III. RESULTS AND DISCUSSION

A. Flow dynamics through jellium model junctions

In a nanojunction such as an atomic point contact, the
dimensions of the leads are usually much larger than those of

FIG. 1. �Color online� Sketch of the nanojunction geometry that
is studied in the paper. At t�0, a bias in the form of V�z�
=V0	H�z−za�−H�−z−za�
 is applied to the junction �the central
constriction is at z=0� such that the regions �z��za bear a potential
offset from the central constriction, where H�z� is the Heaviside
step function.
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the central constriction. In addition, not far from the contact,
we expect the electron momentum to converge to the value
characteristic of the bulk leads. Therefore, the momentum of
an electron coming from the leads and entering the contact
has to change considerably. This gives rise to resistance, and
for a truly nanoscale junction, this momentum mismatch is
mainly responsible for the establishment of
quasi-steady-states.25,30,52 Using the above dynamical ap-
proach, we can now study how this translates into micro-
scopic current flow through the nanocontact and into the
leads by calculating the current density at different times.

To begin, we follow the method described in the preced-
ing section to impose a charge imbalance in the jellium
model system. A discussion of the effect of the lattice on the
flow dynamics will be presented in the following section.
The initial bias is chosen such that the discontinuity happens
at the edge of the jellium slab near the central constriction
�i.e., za�5 Å�. The flow pattern is independent of the loca-
tion of the discontinuity once the current starts to flow
through the center of the junction. In Fig. 2, we plot three
snapshots of the current density to illustrate the evolution of
the flow. Due to the bias offset near the jellium edges, a
dipolar layer forms on each of the two contact-electrode in-
terfaces. As a result, the initial current flow is uniform on
both sides as shown in Fig. 2�a�. Very little current flows in
the nanojunction at this point, however, the current steadily
rises. In Fig. 2�b�, the current density becomes convergent
toward the center of the nanojunction. Interestingly, as the
excess charge from the left electrode reaches the contact,
there is a period of adjustment during which the dominant
flow is in the lateral direction, i.e., parallel to the facing
surfaces of the electrodes.

To quantify the evolution of the angular distribution of the
electron flow, in Fig. 3 we plot a time series of the radial
component of the current density along a semicircle contour
centered on the junction as a function of the angle on the
semicircle 	see Fig. 2�a�
. One can see that initially a “wave”
of excess charge approaches the nanocontact. Then, the ra-
dial current density peaks at very large angles ��±75° �, i.e.,

the current density near the contact is dominated by the flow
along the electrode edges in the lateral direction. The peaks
then gradually move toward the central axis, and the current
density adjusts to a more “focused” pattern as shown in Fig.
2�c�. We have also examined a junction consisting of a jel-
lium circular “island” between the electrodes. We have ob-
served edge flow in this case as well. The edge flow is not a
quantum interference pattern and cannot be compared with
the fringes observed in the two-dimensional �2D� electron
gas quantum point contacts.4 Instead, we suggest that the
flow pattern is controlled by hydrodynamic effects and forces
due to surface charges. We analyze these in Sec. III C.

The structure of the current density is analogous to a clas-
sical fluid flowing across a narrow constriction. This is not
surprising because an inhomogeneous electron system can
be, indeed, characterized by a set of hydrodynamical rela-
tions expressed in terms of the particle density and velocity
field.53–56 More recently, in particular, a hydrodynamical ap-
proach was proposed for nanoscale transport systems,55 fur-
ther strengthening the analogy between the dynamics of the
electron liquid and the one of a classical liquid. We note that
the present calculations do not take into account the physical

FIG. 2. �Color online� Current flux for a series of times in a nanoscale quantum point contact system in the jellium model. The applied
bias at t�0 is 	V=0.2 V. The field lines in each panel depict the direction and amplitude of the current density vectors, while the colors give
extra electron �red� or hole �blue� density: �a� t=0.4 fs, �b� t=0.8 fs, and �c� t=1.6 fs. In �a�, the semicircle marks the contour along which
the radial component of the current density is calculated �see text and Fig. 3�.

FIG. 3. �Color online� Time series of the radial amplitude of the
current densities along a semicircle of radius 3 Å centered on the
nanojunction, as a function of angle along the contour.
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viscosity of the electron liquid.56,57 An inviscid fluid can
therefore be used as a model for the dynamical behavior of
the present electron liquid.

B. Flow dynamics through atomic junctions

The jellium model was a convenient way to probe the
microscopic current dynamics in an electron gas. To under-
stand the influence of the lattice on the flow, we carried out
simulations that included an ionic background modeled by
pseudopotentials. The atomic calculations were carried out
for 2D gold nanojunctions and were initialized in the same
way as the jellium calculations. The theoretical and experi-
mental conductances are in very good agreement for this
system.58 We chose lattice arrangements that correspond to
the �001� and �111� facets of the gold fcc lattice 	the dots in
Fig. 4 represent the atomic sites for the �001� configuration
.

Electric current streamlines at different times in the simu-
lation are plotted in Figs. 4�a�–4�d�. The streamlines are cal-
culated by integrating the current-density field upstream and
downstream, dr� /ds= ± j�(r��s�). The morphology of the cur-
rent flow in the atomic junction and in the jellium model is

remarkably similar,59 indicating that the jellium model is a
good representation of the gold electrodes. Nevertheless, a
number of different features appear in the atomic calcula-
tions.

Figure 4�c� shows that once a steady flow through the
junction is established, the current spreads into a wedge-
shaped region inside the electrodes. The flow morphology
for each of the two different lattice arrangements is similar
except that the flow spreads over a broader wedge-shaped
region in the �111� lattice. Another common feature in the
atomic calculations is the presence of a stagnant zone at the
corner of the electrode boundary. There is little current flow
into or out of this zone. This is similar to a classical fluid
where a stagnant zone can sometimes be located at the en-
trance or exit of a channel.

One profound difference between the atomic and the jel-
lium calculations is the formation of eddies evident in the
former but not in the latter. In the jellium calculations carried
out within the linear-response bias regime, the current flux
lines are laminar. In contrast, in the atomic calculations, the
eddies appear as localized circular flow that can be observed
in Fig. 4�d�. The eddies develop in both electrodes and the
size of the eddies is comparable to the interatomic distance.

FIG. 4. �Color online� Time sequence of electron current streamlines in the atomic junction described in Sec. II. �a�–�d� correspond to
t=0.2, 0.25, 0.3, and 0.35 fs, respectively. The dots denote atomic sites that correspond to the �001� facets of the gold fcc lattice. The applied
bias at t�0 is 	V=0.2 V.
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The eddies are reminiscent of the vortices that form in a
classical fluid at higher Reynolds number when the fluid en-
counters obstacles. As is well known, vortices can also occur
when velocity shear is present within a continuous fluid
�Kelvin-Helmholtz instability�. We suggest that the lattice
ionic obstacles and the boundaries separating the flow zone
and the stagnant zone facilitate the formation of the observed
eddies in our simulations.

The formation of current vortices has been previously re-
ported in 2D ballistic quantum billiards.60,61 In these quan-
tum systems, a rich variety of flow patterns ranging from
regular to chaotic is possible.62 While we cannot draw direct
analogies with these open and mesoscopic transport systems,
an unstable and turbulent flow has been recently predicted in
nanoscale systems.55 We have argued that the ALDA electron
liquid in our simulations corresponds approximately to an
inviscid fluid. We therefore suggest that in the presence of a
lattice, hydrodynamical instabilities or turbulence can occur
in nanotransport systems even in the absence of a physical
viscosity.

C. Hydrodynamics and the formation of surface charges

To understand what drives the edge flow along the elec-
trode surfaces, we examine the evolution of the charge dis-
tribution near the surfaces of the junction. For this purpose,
we apply a step-function bias such that the potential discon-
tinuity in each electrode occurs at za�10 Å, which cuts
across the electrode, as illustrated in Fig. 1. In Fig. 5�a�, we
plot a time series of the x-y plane-averaged excess charge
density along the z axis. At t=0, two symmetric dipolar lay-
ers form inside the electrodes as a result of the bias offsets.
As the current starts to flow through the contact and gradu-
ally reaches a quasi-steady-state, a global charge redistribu-
tion becomes apparent. The dipolar layers gradually vanish
and are replaced by surface charge layers that form at the
contact-electrode interfaces. The charge contour plots of
Figs. 5�b� and 5�c� further illustrate the formation of surface
charges as a result of current flow.

The formation of surface charges around the central con-
striction is reminiscent of the formation of residual-
resistivity dipoles introduced by Landauer.16 It has been sug-
gested that a continuous current flow arriving at a junction
must be accompanied by self-consistently formed charges at
the electrode surfaces.51 The effect should be taken into ac-
count to correctly characterize the electrostatic potential and
the nonequilibrium conducting properties in a transport
calculation.63 In this work, we provide a numerical demon-
stration of the dynamical formation of these surface charges
using a time-dependent approach.

We have already observed that, as the surfaces of the elec-
trodes are populated by excess charges, a lateral flow starts
to develop along the surfaces. This behavior is illustrated in
Fig. 3, where the radial current flux at t=0.8 fs shows two
pronounced peaks at very large angles. We attempt to inter-
pret this behavior within the framework of an effective clas-
sic hydrodynamic model of an inviscid charged fluid. The
acceleration of the fluid is then given by Euler’s equation

�v� /�t+ �v� ·�� �v� =−�� P /men−e�� 
 /me, where v� is the fluid ve-

locity, n is the fluid particle density, me is the electron mass,
and 
 is the electrostatic potential. The first term on the
right-hand side is the acceleration due to a gradient in elec-
tron pressure. The second term is the acceleration due to the
electric field of the excess charges on the surfaces of the
electrode. The electric field drives the electrons and/or holes
toward the surfaces to cancel out the excess charges.

The inertial term in the above equation can be estimated

as ��v� ·�� �v� ��v
2 /L�106 m2 / s2 L−1. Here, L denotes the

characteristic length scale over which we expect a departure
from uniform flow, so that ��L−1. Velocity of the flow in
the simulation reaches v�103 m/s�vF, where vF1.4
�106 m/s is the Fermi velocity of bulk gold. The hydrody-
namical pressure can be calculated from the derivative of the
ground-state energy with respect to rs, P /n=−�rs /3���rs�,
where �rs� is the energy per particle.64 Therefore,

��� P� /men��1/5�vF
2 ��� n� /n. Here, we included only the

ground-state energy of a noninteracting electron gas, 0�rs�
= 3

5F.65 Let �n denote the change of the particle density as a
result of the current or the formation of the surface charges.
For the present junctions at these biases, we find that typi-
cally �n /n�0.01. Then, the acceleration due to the pressure
gradient is

�a�P� =
��� P�

men
�

1

5

vF
2

L

�n

n
� 3 � 109 m2

s2 L−1. �4�

FIG. 5. �a� Planar averaged charge density from t=0 to t

=0.6 fs for a jellium junction. The change in the peaks indicates the
dynamic process in which excess charge builds up at the surfaces.
The sign of the surface charges indicates that electron charges ac-
cumulate on the right and hole charges on the left. 	�b� and �c�

Excess charge in the vicinity of the contact at t=0 and t=0.6 fs. The
thick solid lines indicate excess electrons, while thick dashed lines
indicate excess holes. The thin dashed lines mark the edges of the
jellium electrodes and the contact.
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To estimate the magnitude of the electrostatic accelera-
tion, we treat the layer of charge induced on the facing sur-
faces of the electrodes 	as illustrated in Fig. 5�c�
 as an infi-
nite uniformly charged wire. The electric field of the wire is

given by ��� 
�=� /2��0L,66 where � is the linear density of
excess charge, L is the distance to the wire, and �0 is the
vacuum permittivity. The linear charge-density is calculated
by averaging the charge-density difference e�n between the
configuration with and without the current flow over the
layer in which the charge accumulated at the contact-
electrode interfaces. For the same junctions, we find �
�0.016 e /Å. The acceleration of charges due to this electric
field can be calculated as

�a�el� =
e

me

�

2��0L
� 5 � 1011 m2

s2 L−1. �5�

These crude estimates imply that over the same distance
L,

��v� · �� �v� � � �a�P� � �a�el� , �6�

which suggests that the hydrodynamic pressure gradients
dominate over the inertia of the fluid �the flow is subsonic
and compressible�, while the maximum electrostatic force
due to the surface charges is comparable to or larger than the
pressure gradient force before the surface charge has been
passivated. Therefore, it is plausible that the lateral flow ob-
served in the simulation is primarily of electrostatic origin.
In different junction geometries or in a different conductance
regime, the ordering in Eq. �6� may be different.

We have also carried out a similar simulation using a
parabolically shaped constriction that resembles a quantum
point contact in the 2D electron gas. At a similar bias as in
the nonparabolic junctions, we find similar surface charge
accumulation along the boundaries of the electrodes in the
vicinity of the contact. We believe that the analysis we have
provided on the surface charge formation applies to this case
as well. To the best of our knowledge, the accumulation of
the surface charges has not been reported in adiabatic quan-
tum point contacts before. It would thus be interesting to
develop experimental techniques to explore the surface re-
gion of the quantum point contact in a 2D electron gas and
the charge accumulation that we observe in our simulations.

IV. CONCLUSIONS

In this paper, we have used the microcanonical approach25

to study the time-dependent current flow morphology and the
charge distribution in discharging nanojunctions represented
by both a jellium model and pseudopotentials. We have
shown that the electron flow in the nanojunctions exhibits
hydrodynamic features analogous to a classical fluid. We
have found that in the atomic case, the current flow evolves
into a wedge-shaped pattern flanked by stagnant zones. The
flow develops nonlaminar features including eddy currents.

We suggest that the ionic lattice at the junction plays the role
of “obstacles” in the dynamics of the electron liquid, with
consequent development of these features. We have also
demonstrated that excess surface charges accumulate dy-
namically along the electrodes. In addition, we have ob-
served that for a period of time, there is strong current flow
in the transverse direction. By employing an order-of-
magnitude argument, we suggest that this flow is driven by
both hydrodynamic forces due to the electron pressure and
electrostatic forces due to the surface charge distributions.
The latter forces dominate the initial dynamics in the junc-
tions at hand.

The present study and a previous study30 demonstrate that
the microcanonical approach combined with time-dependent
density-functional theory can be used to probe the transient
behavior of the current in nanojunctions such as atomic-scale
point contacts or molecular junctions.45 The present ap-
proach supplements existing methods that are based on the
static scattering picture and provides another tool to study
relatively unexplored nanoscale transport phenomena from
first principles.

The flow patterns we observe in metallic nanojunctions
can be generalized to a number of other systems, such as
molecular junctions, although many details may vary. In
view of the recent advances in microscopic imaging tech-
niques of coherent current flow in quantum point contacts in
a 2D electron gas,4 we hope that new experimental work
exploring the behavior of current flow in atomic contacts and
molecular junctions would soon emerge to supplement our
studies.
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APPENDIX: NUMERICAL DETAILS

We performed time-dependent density-functional calcula-
tions using the program SOCORRO �Ref. 46� and an in-house
program which implements TDDFT within the jellium
model. The gold ions were modeled by norm-conserving Ha-
mann pseudopotentials with 6s electrons as valence
electrons.67 We used the Perdew-Zunger local-density ap-
proximation exchange-correlation functional.68 The atomic
calculation employed a plane-wave basis set with an energy
cutoff of 204 eV, which corresponds to a grid spacing of
0.2 Å. The energy eigenvalues vary by less than 1% by in-
creasing the cutoff by 66%. In the jellium case, the calcula-
tions were performed using a real-space basis set where the
space is uniformly discretized and the grid spacing is 0.7 Å.
The eigenvalues vary by less than 3% by decreasing the grid
spacing by 66%. The time evolution operator is represented
using the Chebyshev method,69 with a time step of 5
�10−4 fs in the atomic case and 5�10−3 fs in the jellium
case.
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