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Microscopic derivation of the Jaynes-Cummings model with cavity losses
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In this paper we provide a microscopic derivation of the master equation for the Jaynes-Cummings model
with cavity losses. We single out both the differences with the phenomenological master equation used in the
literature and the approximations under which the phenomenological model correctly describes the dynamics
of the atom-cavity system. Some examples wherein the phenomenological and the microscopic master
equations give rise to different predictions are discussed in detail.
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I. INTRODUCTION

The Jaynes-Cummings �JC� model is the fundamental
model for the quantum description of matter-light interaction
�1�. It describes the dynamics of a two-level atom strongly
interacting with a single mode of the quantized radiation
field in the rotating-wave approximation �RWA�. This model
has been extensively studied in the past three decades �2,3�.
Purely quantum effects predicted by the model, such as
Rabi oscillations and collapses and revivals of the atomic
inversion operator, have been observed in the experiments
both with microcavities �4–6� and with trapped ion systems
�7�.

In cavity quantum electrodynamics, the JC model de-
scribes the strong-coupling regime of micromasers and of
one-atom lasers. A realistic description of these systems,
however, must take into account the photon losses due
to imperfect reflectivity of the cavity mirrors. Cavity
losses have been described in the literature by means of a
phenomenological master equation of the form

�̇ = − i�HJC,�� + ��a�a† −
1

2
a†a� −

1

2
�a†a� , �1�

where � is the density matrix of the atom-cavity system, HJC
is the Jaynes-Cummings Hamiltonian, and � represents the
rate of loss of photons from the cavity, and where we have
put �=1. The second term on the right-hand side �RHS� of
Eq. �1� has been derived microscopically in the framework
of a different physical problem, i.e., the one wherein the
system is given by the quantized cavity mode only, losing
excitations because of its interaction with the surrounding
electromagnetic field in the vacuum state �9�.

In this paper we will show that, when the system consists
not only of the cavity mode, but also of the two-level atom
interacting with the cavity, the fully microscopic derivation
gets more complicated, and in general the master equation
for the atom-cavity system is not of the form given by Eq.
�1�. We will show that only under certain conditions the phe-
nomenological master equation coincides with the micro-
scopic one. These conditions are typically met in the cavity
QED experiments, and this explains the extensive and suc-

cessful use of Eq. �1� for the description of the dynamics of
the JC model with losses. The knowledge of the limitations
of the phenomenological model, however, allows us on the
one hand to point out some misuse of the model, e.g., for the
study of the damping of highly excited quasiclassical states
�8�. On the other hand it paves the way to the correct de-
scription of photon losses in the case of structured reservoirs,
e.g., for photonic bandgap cavities. Moreover, our derivation
brings to light the microscopic processes which occur in the
open system dynamics, and therefore how decoherence and
dissipation come into play.

The paper is structured as follows. In Sec. II we give a
short review on the JC model and on the usual phenomeno-
logical description of losses in this model. In Sec. III we
present the microscopic derivation of the JC model with
cavity losses, for the general case of a T temperature electro-
magnetic reservoir. In Sec. IV we describe the dynamics
for the case of one initial excitation in the atom-cavity sys-
tem, we solve the master equation and we compare it with
the solution of the phenomenological model existing in the
literature. In Sec. V we briefly discuss some situations in
which the use of the microscopic model could lead to
substantial differences compared to the phenomenological
model, suggesting experimental situations in which such
differences could be observed, and finally we present
conclusions.

II. THE JAYNES-CUMMINGS MODEL
AND THE PHENOMENOLOGICAL

DESCRIPTION OF LOSSES

Since its introduction, in 1963 �1�, the JC model has been
one of the most used models for the description of radiation-
matter interaction in quantum optics �2�, in particular in cav-
ity quantum electrodynamics �4�, and in ion traps �7�. In this
section we briefly review some of its features.

Let us consider a two-level atom and denote by �g� and
�e� the ground and excited state, respectively. The energy
separation between the two states is given by ��0, with
�0 the Bohr frequency. The resonant interaction between
the atom and a mode of the electromagnetic field, in the
RWA and in units of �, is described by the following Hamil-
tonian �1�:*Electronic address: matteo.scala@fisica.unipa.it
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HJC =
�0

2
�z + �0a†a + ��a�+ + a†�−� , �2�

where a† �a� is the creation �annihilation� operator of the
mode, �−= �g�	e�, �+= �e�	g�, and �z= �e�	e�− �g�	g�.

It is straightforward to show that the total number of ex-
citations in the atom-cavity system, given by N= 	a†a+�z

+1/2�, is a constant of motion. This allows us to diagonalize
easily the Hamiltonian HJC. One finds the following
eigenstates and eigenvalues �2�:

�EN,±� =
1

2

��N,g� ± �N − 1,e�� ,

EN,± = �N −
1

2
��0 ± �
N , �3�

for N�1, while the ground state and the corresponding
energy eigenvalue are

�E0� = �0,g�, E0 = −
�0

2
, �4�

respectively, where �N , i�= �N��i�, with i=e ,g, indicates the
tensor product of the Fock state �N� and the electronic states
�i�.

From the eigenstates and the eigenvalues of HJC one can
calculate the evolution of the system given any initial condi-
tions. Well known examples of system dynamics are Rabi
oscillations of the atomic state population, and collapses and
revivals of the oscillations when the mode is initially in a
coherent state �2�.

In cavity quantum electrodynamics the main source of
dissipation originates from the leakage of cavity photons due
to imperfect reflectivity of the cavity mirrors. A second
source of dissipation and decoherence, namely, spontaneous
emission of photons by the atom, is mostly suppressed by the
presence of the cavity, and therefore its effect is usually
neglected.

The dissipative dynamics of the quantized modes of the
radiation field inside the cavity in absence of the atom, i.e.,
when the atom is not inside the cavity, can be derived mi-
croscopically assuming that the cavity modes are coupled
with the electromagnetic field outside the cavity, which rep-
resents a reservoir at temperature T �9�. The typical approach
to the description of the losses in the JC model consists in
assuming that the presence of the atom inside the cavity does
not modify strongly the mechanism of cavity losses, which
therefore can be modeled by the above mentioned master
equation. It is worth stressing further, however, that this ap-
proach is purely phenomenological, since it does not take
into account, in the microscopic derivation, the presence of
the atom inside the cavity. The phenomenological master
equation has the form

�̇ = − i�HJC,�� + ��n��0� + 1��a�a† −
1

2
�a†a� + �a†a��

+ �n��0��a†�a −
1

2
�aa†� + �aa†�� , �5�

with n��0� the average number of quanta of the reservoir in
the mode of frequency �0, and � the rate of loss of cavity
photons. We note that for a zero-T reservoir the master equa-
tion above reduces to the one given by Eq. �1�. Equations �1�
and �5� have been assumed to be valid in most of the earlier
studies dealing with the JC model with losses, for example,
in Refs. �3,5,10–14�.

The use of the master equations given by Eqs. �1� and �5�
has also been motivated by the fact that in many cavity QED
experiments the atoms fly through the cavity and actually
remain inside the cavity only for a short time. This could
induce one to think that the effect of their presence inside the
cavity might be negligible. We believe, however, that a com-
parison with a microscopic master equation describing the
coupling of the entire atom-cavity system with a reservoir of
electromagnetic modes at T temperature is highly desirable
and it may both provide a justification of the validity of the
phenomenological model under the typical experimental
conditions and put into evidence the physical contexts where
the use of such a model may be unjustified. This is the main
motivation of the results we will describe in the following
sections.

We begin, in the next section, by presenting the general
formalism, reviewed, e.g., in Ref. �15�, to derive a master
equation for the open quantum system of interest starting
from the microscopic Hamiltonian of the total closed system
�system�environment�. We will then compare the master
equation we obtain with the one given by Eq. �5�.

III. MICROSCOPIC DERIVATION OF THE QUANTUM
MASTER EQUATION

A. The general formalism

We assume that the open quantum system of interest, e.g.,
the atom-cavity system, is part of a larger system whose
dynamics is unitary and governed by the Hamiltonian H. The
external environment is that part of the total closed system
other than the system of interest. The Hamiltonian of the
total closed system is given by

H = HS + HE + Hint, �6�

where HS and HE, are the system and environment Hamilto-
nians, respectively, and Hint is the system-environment
interaction Hamiltonian which is taken to be of the form

Hint = A � E , �7�

with A=A† and E=E† Hermitian operators acting on the
system and on the environment Hilbert spaces, respectively.

We expand the interaction Hamiltonian Hint by means of
the relations

A = 

�

A��� ,
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A��� = 

	�−	=�


�	�A
�	�� , �8�

where 
�	� is the projector onto the eigenspace correspond-
ing to the eigenvalue 	 of the operator HS and the sum is
taken over all the Bohr frequencies relative to HS.

Following the standard procedure, i.e., writing down
the Liouville–von Neumann equation for the total density
operator in the interaction picture with respect to HS+HE,
performing the Born-Markov and the rotating wave
approximations, tracing out the environmental degrees of
freedom and then going back to the Schrödinger picture, one
obtains the following master equation for the reduced density
operator � of the system �15�:

�̇�t� = − i�HS,��t��

+ 

��0

�����A�����t�A†��� −
1

2
�A†���A���,��t���

+ 

��0

��− ���A†�����t�A��� −
1

2
�A���A†���,��t��� ,

�9�

where the relation A�−��=A†��� has been used and where
we have neglected the renormalization term �15�. The coef-
ficients ���� are given by the Fourier transform of the
correlation functions of the environment:

���� = �
−�

+�

d
ei�
	E†�
�E�0�� , �10�

where the environment operators are in the interaction pic-
ture.

We stress once more that the formalism presented above
is valid as long as we can perform three approximations:
weak coupling or Born approximation, Markovian approxi-
mation, and rotating wave approximation. It is worth recall-
ing that the Markovian approximation can be seen as a
coarse graining in time, and therefore holds as long as the
correlation time of the reservoir 
 is much smaller than the
characteristic time scale of the system dynamics t

t � 
 . �11�

The RWA, instead, is valid as long as the relaxation time of
the system is much longer than the typical time scale of the

free evolution of the quantum system, i.e., when the maxi-
mum of the rates ���� is much smaller than the minimum
difference between the Bohr frequencies relative to HS �15�:

�max � ��min. �12�

In the rest of this section we will apply this general formal-
ism to the description of cavity losses in the Jaynes-
Cummings model.

B. Application of the general formalism
to the Jaynes-Cummings model

We model the environment as a collection of quantum
harmonic oscillators in thermal equilibrium at T temperature
and we assume that the interaction Hamiltonian is linear in
both the electromagnetic field of the cavity mode and the
position operators of the harmonic oscillators, i.e.,

HS = HJC, HE = 

k

�kb
†b ,

Hint = �a + a†�

k

gk�bk + bk
†� , �13�

with �k the frequencies of the environment oscillators, bk
†

�bk� the creation �annihilation� operator of quanta in the kth
environmental mode, and gk the coupling constants.

For this system, the operators A���, defined in Eq. �8�, are
given by

A�EN�,l − EN,m� = �EN,m�	EN,m��a + a†��EN�,l�	EN�,l�

=
1

2
�N,N�−1�
N + 1 + lm
N��EN,m�	EN+1,l�

�14�

for N�1 and

A�E1,± − E0� =
1

2

�E0�	E1,±� , �15�

for N=1. In Eq. �14� we indicate the states �EN,±� by �EN,±1�
and the energy eigenvalues EN,± by EN,±1. Accordingly l and
m take the values ±1.

Having in mind Eq. �9� we can write the Markovian RWA
master equation for the JC model interacting with a thermal
bath at T temperature as follows:

�̇ = − i�HJC,�� + 

l=±1

��E1,l − E0�
2

��E0�	E1,l���E1,l�	E0� −
1

2
��E1,l�	E1,l�,���

+ 

l,m=±1



N=1

�
��EN+1,l − EN,m�

4
�
N + 1 + lm
N�2��EN,m�	EN+1,l���EN+1,l�	EN,m� −

1

2
��EN+1,l�	EN+1,l�,���

+ 

l=±1

��E0 − E1,l�
2

��E1,l�	E0���E0�	E1,l� −
1

2
��E0�	E0�,���

+ 

l,m=±1



N=1

�
��EN,m − EN+1,l�

4
�
N + 1 + lm
N�2��EN+1,l�	EN,m���EN,m�	EN+1,l� −

1

2
��EN,m�	EN,m�,��� . �16�

MICROSCOPIC DERIVATION OF THE JAYNES-CUMMINGS… PHYSICAL REVIEW A 75, 013811 �2007�

013811-3



The Kubo-Martin-Schwinger condition �16�

��− �� = exp�−
�

kBT
����� , �17�

ensures that the stationary state reached at time t= +� is the
thermal state �15�

�th =

exp�−
HJC

kBT
�

Tr�exp�−
HJC

kBT
��

, �18�

as expected from statistical mechanical considerations and as
can be easily justified by the detailed balance principle and
by means of Eq. �17�.

It is worth underlining a first difference between our mi-
croscopic master equation, given by Eq. �16�, and the
phenomenological one given by Eq. �5�. While the thermal
stationary state predicted by the phenomenological model is
given by

�th
ph =

exp�−

�0

2
�z + �0a†a

kBT
�

Tr�exp�−

�0

2
�z + �0a†a

kBT
��

, �19�

our microscopic approach predicts that the stationary state is
the one given by Eq. �18�, which differs from Eq. �19� for the
presence of the interaction energy term in HJC �see Eq. �2��.

We conclude this section noting the limit of validity of
our microscopic master equation. From Eqs. �3� and �12� we
deduce that the RWA we have performed is valid as long as
the smallest difference between Bohr frequencies relative to
HJC is much larger than the highest decay rate of the system,
i.e.,

2� � �max, �20�

since the typical evolution timescale of the system is given
by the inverse of the Rabi frequency 2�.

IV. COMPARISON BETWEEN THE TWO MASTER
EQUATIONS

A. The phenomenological master equation in the dressed-state
approximation and its relation with the experiments

In the first part of this section we examine an important
feature of the phenomenological master equation given by
Eq. �1� which explains its success in describing accurately
most of the cavity QED experiments. In Refs. �11–13� it has
been shown that, in a regime very close to the one in which
our microscopic master equation is valid, i.e., for ���, one

can approximate the phenomenological master equation by
means of the so-called dressed-state approximation. In a later
paper �8� the validity of this approximation was carefully
analyzed and it was discovered that it actually requires the
stronger condition ��� / �2N3/2� in order to be valid. The
dressed-state approximation amounts at neglecting, in the in-
teraction picture with respect to the Hamiltonian HJC, all the
time-dependent terms oscillating at frequencies which are
multiple of �, under the hypothesis that this frequency is
much larger than the decay rate �.

In the Schrödinger picture, the set of coupled differential
equations for the matrix elements, in the dressed-state ap-
proximation, 	EN,+��̇�EN,+�, 	EN,−��̇�EN,−� and 	EN,±��̇�EN,��
coincide with the corresponding set of equations obtained
from our master equation �16� at zero temperature, when the
spectrum of the environment is flat, i.e., in the case of white
noise. In other words, our microscopic approach justifies the
validity of the dressed-state approximation in terms of a mi-
croscopic system-reservoir interaction model, and explains
the success of the phenomenological master equation in fit-
ting the experimental data in the strong coupling regime, i.e.,
when the relaxation time is much longer than the frequency
of the Rabi oscillations �5�. It is worth stressing, however,
that if the spectrum of the environment is not flat the predic-
tions of the two master equations differ also in the limit of
weak damping since, in this case, the differential equations
for the relevant matrix elements obtained from our micro-
scopic master equation do not coincide with the differential
equations obtained from the phenomenological master equa-
tion after performing the dressed-state approximation
�11,12�.

In the next subsection we present a comparison between
the predictions of the phenomenological and microscopic
master equations at zero temperature when the system has
one initial excitation. We will concentrate on a finite �three�
dimensional subspace using the phenomenological model
without the dressed-state approximation, because the restric-
tion of Eq. �1� to such a subspace gives rise to an exactly
solvable dynamical case.

Since our microscopic model gives the same predictions
of the dressed-state approximation for the phenomenological
model, the examples we are going to consider in the next
subsection will give us also insight in the limits of validity of
the dressed-state approximation itself.

As we will see in the following, the discrepancy between
the phenomenological master equation �without dressed-state
approximation� and the microscopic master equation is
indeed appreciable already at the first order in � /�. Conse-
quently, for the value of the parameters considered in
our examples, the applicability of the dressed state approxi-
mation to the phenomenological model appears to be
questionable.

B. Dynamics at T=0 with one initial excitation

1. Decay of the Rabi oscillations with the atom initially excited

We assume the initial state of the system is �0,e�. In ab-
sence of cavity losses one would observe a continuous ex-
change of energy between the atom and the cavity mode,
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namely, the Rabi oscillations. The interaction between the
cavity and the environment causes the loss of energy from
the atom-cavity system to the external environment. Since in
the system there is only one initial excitation and the envi-
ronment is at zero temperature, the number of excitations
cannot increase in time and Eq. �16� reduces to the following
simplified master equation:

�̇ = − i�HJC,�� + ���0 + ���1

2
�E0�	E1,+���E1,+�	E0� −

1

4
��E1,+�

�	E1,+�,��� + ���0 − ���1

2
�E0�	E1,−���E1,−�	E0�

−
1

4
��E1,−�	E1,−�,��� , �21�

obtained from Eq. �16� neglecting all the terms which do not
contribute to the evolution of the system.

In the Appendix we provide the solution of both Eqs. �1�
and �21� based on the method of the damping basis �14�. In
Fig. 1 we plot the time evolution of the population of the
state �0,g� predicted by both the phenomenological and the
microscopic master equations, with ���0−��=���0+��
=�=� /5. This condition legitimates the use of our RWA
master equation, while it does not assure the validity of the
dressed-state approximation on the phenomenological
model, in accordance to �8�. The populations are given by

P0,g�t� = 	0,g���t��0,g� = 1 − e−��/2�t, �22�

for the predictions of Eq. �21� �microscopic model�, as one
can see from Eq. �A8� in the Appendix putting �a=�b=�,
and by

P0,g
ph �t� = 	0,g���t��0,g� = 1 −

16�2

16�2 − �2e−��/2�t

+
�2 + �
�2 − 16�2

2�16�2 − �2�
e��−�+
�2−16�2�/2�t

+
�2 − �
�2 − 16�2

2�16�2 − �2�
e��−�−
�2−16�2�/2�t, �23�

for the predictions of Eq. �1� �phenomenological master
equation�.

In both cases, the ground state population of the atom-
cavity system increases in time with the same exponential
rate, due to the cavity losses. There is, however, an important
difference in the behavior predicted by the two equations.
Indeed, while our microscopic master equation predicts a
purely exponential increase, the phenomenological master
equation predicts the presence of oscillations at the Rabi fre-
quency superimposed to the exponential increase. As antici-
pated, the amplitude of these oscillations is of the order of
� /�. This difference in the ground state population dynam-
ics reflects different physical mechanisms in the dissipation
process. According to the phenomenological master equa-
tion, given by Eq. �1�, only the cavity can directly lose ex-
citations, as one can see from the form of the dissipator. The
rate of loss is indeed proportional to the population of the
state �1,g� only, while the state �0,e� does not directly decay.
In this sense the oscillating behavior of the population of the
ground state is a signature of the Rabi oscillations which
induce the system decay via the coupling of the state �0,e� to
the state �1,g�.

The microscopic master equation given by Eq. �16�, with
���0−��=���0+��, predicts instead that both the states
�1,g� and �0,e� decay with the same rate, since they are both
superpositions of the states �E1,+� and �E1,−�. For this reason
there is no oscillating behavior in the time evolution of the
population of �0,g�.

The difference between the predictions of the phenomeno-
logical master equation and those of the microscopic master
equation can be revealed by performing joint measurements
on both the atom and the cavity, in order to get the popula-
tion of the state �0,g� of the composite system. We can ob-
serve a difference in the system dynamics also measuring the
population of the atomic ground state, given by Pg�t�
= 	0,g���t��0,g�+ 	1,g���t��1,g�. This type of measurement
can be performed with standard techniques �5�. With the
help of Eq. �21� one finds �see Eqs. �A8� and �A9� in the
Appendix�

Pg�t� = 1 −
1

2
e−��/2�t −

1

4
�e�2i�−�/2�t − e�−2i�−�/2�t� , �24�

while using Eq. �1� one finds, from Eqs. �23� and ��A10�� in
the Appendix,

Pg
ph�t� = 1 −

8�2

16�2 − �2e−��/2�t

+
2�2 + 2�
�2 − 16�2 − 16�2

4�16�2 − �2�
e��−�+
�2−16�2�/2�t

+
2�2 − 2�
�2 − 16�2 − 16�2

4�16�2 − �2�
e��−�−
�2−16�2�/2�t.

�25�

In this case, however, the behavior predicted by the phe-
nomenological master equation is very similar to the one
predicted by the microscopic one, as one can see from Fig. 2.

FIG. 1. Populations P0,g�t� and P0,g
ph �t� vs 
=2�t, when the sys-

tem starts from the state �0,e�, with � /2�=0.1. The solid line refers
to the predictions given by the phenomenological master equation,
while the dashed line refers to the predictions given by the micro-
scopic one. In the inset it is shown the long time behavior of the
same quantities, for 0�
�100.
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The only difference, indeed, is the presence of a fre-
quency shift in the Rabi oscillations, as predicted by the
phenomenological model. However, since such a shift is of
the order of �� /��2 �10�, the differences in the predicted
behavior may be difficult to detect.

2. Decay of a Bell state: exponential vs. oscillatory behavior

We now consider the case in which the atom-cavity sys-
tem is initially prepared in a Bell state, such as the state
�E1+�, as given by Eq. �3�. Contrarily to the case considered
in the previous subsection, this time the measurement of the
atomic ground state population Pg�t� would allow to bring to
light the differences in the predictions of the phenomenologi-
cal and microscopic master equations. For the case of the
initial state �E1+� the ground state population is given by

Pg�t� = 1 −
1

2
e−��/2�t, �26�

for the microscopic model �see Eq. �16�� and

Pg
ph�t� = 1 −

8�2

16�2 − �2e−��/2�t

+
�2 + �
�2 − 16�2

4�16�2 − �2�
e��−�+
�2−16�2�/2�t

+
�2 − �
�2 − 16�2

4�16�2 − �2�
e��−�−
�2−16�2�/2�t, �27�

for the phenomenological model �see Eq. �1��. Details on the
derivation of the above formulas are given in the Appendix.

As we see from Fig. 3, the atomic ground state popula-
tion, as predicted by the microscopic master equation given
by Eq. �16�, exhibits a purely exponential behavior while the
phenomenological master equation, given by Eq. �1�, pre-
dicts the presence of oscillations at the Rabi frequency with

amplitude of the order of � /�. In other words, in the
microscopic approach, the atom-cavity system as a whole is
subjected to cavity losses and therefore the atom dressed by
the cavity mode can directly decay, although it is only the
cavity which is directly coupled to the environment.

We stress that, although the generation of a Bell state may
be more complicated than the generation of a Fock state, the
set of measurements necessary to distinguish between the
predictions of the two master equations when the initial state
is �E1,+� is simpler than the set of joint measurements needed
in the case of the initial state �0,e�. In fact in the case of the
Bell state we just need a way to experimentally distinguish
between the atomic excited and ground state, for example, by
means of a static electric field which ionizes the excited state
only, as shown in Ref. �5�.

V. DISCUSSION AND CONCLUSIVE REMARKS

In the previous section we have seen that our derivation of
the dissipative dynamics of the JC model with losses, taking
into account the presence of the atom inside the cavity, al-
lows us to give a microscopic description of the interaction
between the atom-cavity open quantum system and the ex-
ternal electromagnetic field. It appears evident from our re-
sults that, although the source of the losses is the escape of
photons through the cavity mirrors, it is the atom-cavity sys-
tem as a whole, i.e., the atom dressed by the cavity mode,
which comes into play in the dissipative dynamics. Stated
another way, while the jump operators appearing in the phe-
nomenological master equations, given by Eq. �1�, are the
annihilation and creation operators of photons in the cavity
�a, and a†�, those appearing in the microscopic master equa-
tion �see, e.g., Eq. �21�� describe transitions between the
dressed states of the atom-cavity system.

A noteworthy point emerging from our analysis is that the
deviations of the exactly solved phenomenological model
from our microscopic model �coinciding with the one ob-
tained from the phenomenological model with the dressed-
state approximation� are of the first order in � /�. For this
reason it should be possible to check experimentally the pre-

FIG. 2. Populations Pg�t� and Pg
ph�t� vs 
=2�t for the initial

state �0,e�, with � /2�=0.1. The solid line refers to the predictions
given by the phenomenological master equation, while the dashed
line refers to the predictions given by the microscopic one. In the
large panel, where one can see the long time behavior, the two lines
are indistinguishable, while in the inset we have emphasized the
dynamics for 21�
�26, to put into evidence the presence of the
frequency shift.

FIG. 3. Populations Pg�t� and Pg
ph�t� vs 
=2�t, when the system

starts from the state �E1,+�, with � /2�=0.1. The solid line refers to
the predictions given by the phenomenological master equation,
while the dashed line refers to the predictions given by the micro-
scopic one. In the inset one can see the long time behavior of the
same quantities for 0�
�100.
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dictions of the microscopic model with the set up currently
used in cavity QED experiments.

It is worth stressing that in Eq. �1� only one cavity loss
rate �����0�, with ���� given by Eq. �10�, appears. On the
contrary, in Eq. �21�, the loss rates corresponding to jump
operators connecting the ground state with the states �E1,+�
and �E1,−� are different, and more precisely they are given
by ���0+�� and ���0−��, respectively. This clearly indi-
cates that, when the spectrum of the reservoir is not flat, the
phenomenological master equation does not provide a
description which can be justified in terms of a microscopic
system-reservoir interaction model as the one we have
considered.

In the light of the considerations made above we expect
that, already in the weak coupling regime, differences be-
tween our approach and the phenomenological one should
become evident in those physical contexts where the reser-
voir is structured, e.g., in photonic band gap materials and
hybrid solid-state cavity QED systems �17–19�.
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APPENDIX

In this appendix we recall the method of the damping
basis introduced in Ref. �14� to solve master equations, and
we apply it to Eq. �21�.

Given a master equation of the form

�̇ = L� , �A1�

where L is a time-independent linear superoperator acting on
�, one considers the following eigenvalue problem:

L�� = ���, �A2�

where �� is a right eigenoperator of the superoperator L with
eigenvalue �. When the set of right eigenoperators ���� is a
basis for the space of linear operators acting on the Hilbert
space of the system, as in the case analyzed in this paper, any
density operator can be expanded with respect to this set.

It is easy to show that if the system starts from the initial
condition

��0� = 

�

c���, �A3�

then the time evolution of the system is then given by

��t� = 

�

c�e�t��. �A4�

The coefficients �c�� of the decomposition in Eq. ��A3�� are
given by

c� = Tr��̌���0�� , �A5�

where �̌� is the solution of the left eigenvalue problem

�̌�L = ��̌�, �A6�

where the set of left eigenvalues ��� is the same as in the
right eigenvalue problem �14�.

When the dimension of the Hilbert space one considers is
finite and equal to n, the superoperator can be represented by
a non-Hermitian n2�n2 matrix. The right eigenoperators, if
they exist, are represented by n2-component column vectors,
while the left eigenoperators are represented by
n2-component row vectors.

Applying this method to Eq. �21�, we have to look for the
nine right eigenoperators of its superoperator. For simplicity
we call �a=���0−�� and �b=���0+��.

Six of the nine right eigenoperators are given by the co-
herences �E0�	E1,−�, �E0�	E1,+�, �E1,−�	E1,+� and their Hermit-
ian conjugates, with eigenvalues, respectively, equal to
i��0−��−�a /2, i��0+��−�b /2, i�2��− ��a+�b� /4 and
their complex conjugates. The other three right eigenopera-
tors are given by �E0�	E0�, ��E1,−�	E1,−�− �E0�	E0��,
��E1,+�	E1,+�− �E0�	E0�� with eigenvalues, respectively, equal
to 0, −�a /2 and −�b /2.

By expanding the initial state with respect to these nine
eigenoperators, one can then compute the evolution of the
system under the initial conditions given in Sec. IV B. When
the initial state is ��0�= �0,e�	0,e� one obtains the following
density operator at time t

��t� = �1 −
1

2
e−��a/2�t −

1

2
e−��b/2�t��E0�	E0�

+
1

2
e−��a/2�t�E1,−�	E1,−� +

1

2
e−��b/2�t�E1,+�	E1,+�

−
1

2
e−���a+�b�/4�t�e2i�t�E1,−�	E1,+� + H.c.� , �A7�

which allows us to express the population of the state �0,g�
as follows:

P0,g�t� = 	0,g���t��0,g� = 1 −
1

2
e−��a/2�t −

1

2
e−��b/2�t.

�A8�

The population of the state �1,g� is given by

P1,g�t� = 	1,g���t��1,g� =
1

4
�e−��a/2�t + e−��b/2�t

− e�2i�−���a+�b�/4��t − e�−2i�−���a+�b�/4��t� . �A9�

Using the two equations above one can calculate
Pg�t�= 	g���t��g�= 	0,g���t��0,g�+ 	1,g���t��1,g� given in
Eq. �24�.

Equation �A8� and Eq. �A9� are to be compared with the
corresponding quantities computed using the phenomeno-
logical master equation, given by Eq. �1�, and considering
the same initial condition. Following the same lines one
derives Eq. �23� for the population of the ground state �0,g�
and
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P1,g
ph �t� = 	1,g���t��1,g� =

8�2

16�2 − �2e−��/2�t

−
16�2

4�16�2 − �2�
e��−�+
�2−16�2�/2�t

−
16�2

4�16�2 − �2�
e��−�−
�2−16�2�/2�t, �A10�

for the population of state �1,g�.
In the same way one can derive the time evolution pre-

dicted by the microscopic master equation �21� when the
initial condition is ��0�= �E1,+�	E1,+�:

��t� = �1 − e−��b/2�t��E0�	E0� + e−��b/2�t�E1,+�	E1,+� ,
�A11�

which gives the following expressions for the populations of
states �0,g� and �1,g�:

P0,g�t� = 	0,g���t��0,g� = 1 − e−��b/2�t,

P1,g�t� = 	1,g���t��1,g� =
1

2
e−��b/2�t. �A12�

Once more, we must compare these expressions with the
corresponding ones obtained by means of the phenomeno-

logical master equation given by Eq. �1�. Using this equation
one obtains

P0,g
ph �t� = 	0,g���t��0,g� = 1 −

16�2

16�2 − �2e−��/2�t

+
�2

2�16�2 − �2�
e��−�+
�2−16�2�/2�t

+
�2

2�16�2 − �2�
e��−�−
�2−16�2�/2�t, �A13�

for the population of �0,g�, and

P1,g
ph �t� = 	1,g���t��1,g� =

8�2

16�2 − �2e−��/2�t

−
�2 − �
�2 − 16�2

4�16�2 − �2�
e��−�+
�2−16�2/2��t

−
�2 + �
�2 − 16�22

4�16�2 − �2�
e��−�−
�2−16�2/2��t,

�A14�

for the population of �1,g�.
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