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On the basis of the adiabatic self-consistent collective coordinate method, we develop an efficient microscopic

method of deriving the five-dimensional quadrupole collective Hamiltonian and illustrate its usefulness

by applying it to the oblate-prolate shape coexistence/mixing phenomena in proton-rich 68,70,72Se. In this

method, the vibrational and rotational collective masses (inertial functions) are determined by local normal

modes built on constrained Hartree-Fock-Bogoliubov states. Numerical calculations are carried out using the

pairing-plus-quadrupole Hamiltonian including the quadrupole-pairing interaction within the two major-shell

active model spaces both for neutrons and protons. It is shown that the time-odd components of the moving

mean-field significantly increase the vibrational and rotational collective masses in comparison with the

Inglis-Belyaev cranking masses. Solving the collective Schrödinger equation, we evaluate excitation spectra,

quadrupole transitions, and moments. The results of the numerical calculation are in excellent agreement

with recent experimental data and indicate that the low-lying states of these nuclei are characterized as an

intermediate situation between the oblate-prolate shape coexistence and the so-called γ unstable situation where

large-amplitude triaxial-shape fluctuations play a dominant role.
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I. INTRODUCTION

The major purpose of this article is to develop an efficient

microscopic method of deriving the five-dimensional (5D)

quadrupole collective Hamiltonian [1–4] and illustrate its

usefulness by applying it to the oblate-prolate shape coex-

istence/mixing phenomena in proton-rich Se isotopes [5–8].

As is well known, the quadrupole collective Hamiltonian,

also called the general Bohr-Mottelson Hamiltonian, contains

six collective inertia masses (three vibrational masses and

three rotational moments of inertia) as well as the collec-

tive potential. These seven quantities are functions of the

quadrupole deformation variables β and γ , which represent

the magnitude and triaxiality of the quadrupole deformation,

respectively. Therefore, we also call the collective inertial

masses “inertial functions.” They are usually calculated by

means of the adiabatic perturbation treatment of the moving

mean field [9], and the version taking into account nuclear

superfluidity [10] is called the Inglis-Belyaev (IB) cranking

mass or the IB inertial function. Its insufficiency has been

repeatedly emphasized, however (see, e.g., Refs. [11–14]).

The most serious shortcoming is that the time-odd terms

induced by the moving mean field are ignored, which breaks

the self-consistency of the theory [15,16]. In fact, one of the

most important motives of constructing microscopic theory

of large-amplitude collective motion was to overcome such a

shortcoming of the IB cranking mass [15].

As fruits of long-term efforts, advanced microscopic theo-

ries of inertial functions are now available (see Refs. [15–26]

for original articles and Refs. [27,28] for reviews). These

theories of large-amplitude collective motion have been tested

for schematic solvable models and applied to heavy-ion

collisions and giant resonances [18,26]. For nuclei with pairing

correlations, Dobaczewski and Skalski studied the quadrupole

vibrational mass with use of the adiabatic time-dependent

Hartree-Fock-Bogoliubov (ATDHFB) theory and concluded

that the contributions from the time-odd components of

the moving mean-field significantly increase the vibrational

mass compared to the IB cranking mass [16]. Somewhat

surprisingly, however, to the best of our knowledge, the

ATDHFB vibrational masses have never been used in realistic

calculations for low-lying quadrupole spectra of nuclei with

superfluidity. For instance, in recent microscopic studies

[29–34] by means of the 5D quadrupole Hamiltonian, the IB

cranking formula are still used in actual numerical calculation

for vibrational masses. This situation concerning the treatment

of the collective kinetic energies is in marked contrast with

the remarkable progress in microscopic calculation of the

collective potential using modern effective interactions or

energy density functionals (see Ref. [35] for a review).

In this article, on the basis of the adiabatic self-consistent

collective coordinate (ASCC) method [36], we formulate a

practical method of deriving the 5D quadrupole collective

Hamiltonian. The central concept of this approach is local

normal modes built on constrained Hartree-Fock-Bogoliubov

(CHFB) states [37] defined at every point of the (β,γ ) defor-

mation space. These local normal modes are determined by the

local QRPA (LQRPA) equation that is an extension of the well-

known quasiparticle random-phase approximation (QRPA)

to nonequilibrium HFB states determined by the CHFB

equations. We therefore use an abbreviation “CHFB + LQRPA

method” for this approach. This method may be used in
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conjunction with any effective interaction or energy density

functional. In this article, however, we use, for simplicity, the

pairing-plus-quadrupole (P + Q) force [38,39] including the

quadrupole-pairing force. Inclusion of the quadrupole-pairing

force is essential because it produces the time-odd component

of the moving field [40].

To examine the feasibility of the CHFB + LQRPA method,

we apply it to the oblate-prolate shape coexistence/mixing

phenomena in proton-rich 68,70,72Se [5–8,41,42]. These phe-

nomena are taken up because we obviously need to go beyond

the traditional framework of describing small-amplitude vi-

brations around a single HFB equilibrium point to describe

them; that is, they are very suitable targets for our purpose.

We shall show in this article that this approach successfully

describes large-amplitude collective vibrations extending from

the oblate to the prolate HFB equilibrium points (and vice

versa). In particular, it will be demonstrated that we can

describe very well the transitional region between the oblate-

prolate shape coexistence and the γ unstable situation where

large-amplitude triaxial-shape fluctuations play a dominant

role.

This article is organized as follows. In Sec. II, we formulate

the CHFB + LQRPA as an approximation of the ASCC

method and derive the 5D quadrupole collective Hamiltonian.

In Sec. III, we calculate the vibrational and rotational masses

by solving the LQRPA equations, and discuss their properties

in comparison with those calculated by using the IB cranking

formula. In Sec. IV, we calculate excitation spectra, B(E2),

and spectroscopic quadrupole moments of low-lying states in
68,70,72Se and discuss properties of the oblate-prolate shape

coexistence/mixing in these nuclei. Conclusions are given in

Sec. V.

II. MICROSCOPIC DERIVATION OF THE 5D

QUADRUPOLE COLLECTIVE HAMILTONIAN

A. 5D quadrupole collective Hamiltonian

Our aim in this section is to formulate a practical method

of microscopically deriving the 5D quadrupole collective

Hamiltonian [1–4]

Hcoll = Tvib + Trot + V (β,γ ), (1)

Tvib =
1

2
Dββ(β,γ )β̇2 + Dβγ (β,γ )β̇γ̇ +

1

2
Dγ γ (β,γ )γ̇ 2,

(2)

Trot =
1

2

3∑

k=1

Jk(β,γ )ω2
k, (3)

starting from an effective Hamiltonian for finite many-nucleon

systems. Here, Tvib and Trot denote the kinetic energies of

vibrational and rotational motions, while V (β,γ ) represents

the collective potential. The velocities of the vibrational

motion are described in terms of the time derivatives (β̇, γ̇ ) of

the quadrupole deformation variables (β, γ ) representing the

magnitude and the triaxiality of the quadrupole deformation,

respectively. The three components ωk of the rotational angular

velocity are defined with respect to the intrinsic axes associated

with the rotating nucleus. The inertial functions for vibrational

motions (vibrational masses), Dββ , Dβγ , and Dγ γ , and the

rotational moments of inertia Jk are functions of β and γ .

As seen in the recent review by Próchniak and Rohoziński

[4], there are numerous articles on microscopic approaches to

the 5D quadrupole collective Hamiltonian; among them, we

should quote at least early articles by Belyaev [2], Baranger-

Kumar [43,44], Pomorski et al. [12,13], and recent articles by

Girod et al. [33], Nikšić et al. [29,30], and Li et al. [31,32].

In all these works, the IB cranking formula is used for the

vibrational inertial functions. In the following, we outline the

procedure of deriving the vibrational and rotational inertial

functions on the basis of the ASCC method.

B. Basic equations of the ASCC method

To derive the 5D quadrupole collective Hamiltonian Hcoll

starting from a microscopic Hamiltonian Ĥ , we use the

ASCC method [36,45]. This method enables us to determine

a collective submanifold embedded in the large-dimensional

TDHFB configuration space. We can use this method in

conjunction with any effective interaction or energy density

functional to microscopically derive the collective masses

taking into account time-odd mean-field effects. For our

present purpose, we here recapitulate a two-dimensional (2D)

version of the ASCC method. We suppose the existence

of a set of two collective coordinates (q1, q2) that has a

one-to-one correspondence to the quadrupole deformation

variable set (β,γ ) and try to determine a 2D collective

hypersurface associated with the large-amplitude quadrupole

shape vibrations. We thus assume that the TDHFB states can

be written on the hypersurface in the following form:

|φ(q, p,ϕ, n)〉 = e−i
∑

τ ϕ(τ )Ñ (τ ) |φ(q, p, n)〉

= e−i
∑

τ ϕ(τ )Ñ (τ )

eiĜ(q, p,n) |φ(q)〉 , (4)

with

Ĝ(q, p, n) =
∑

i=1,2

piQ̂
i(q) +

∑

τ=n,p

n(τ )�̂(τ )(q), (5)

Q̂i(q) = Q̂A(q) + Q̂B(q)

=
∑

αβ

[
QA

αβ(q)a†
αa

†
β + QA∗

αβ (q)aβaα

+QB
αβ(q)a†

αaβ

]
, (6)

�̂(τ )(q) =
∑

αβ

[
�

(τ )A
αβ (q)a†

αa
†
β + �

(τ )A∗
αβ (q)aβaα

]
. (7)

For a gauge-invariant description of nuclei with superfluidity,

we need to parametrize the TDHFB state vectors, as previously,

not only by the collective coordinates q = (q1, q2) and conju-

gate momenta p = (p1, p2), but also by the gauge angles ϕ =
(ϕ(n), ϕ(p)) conjugate to the number variables n = (n(n), n(p))

representing the pairing-rotational degrees of freedom (for

both neutrons and protons). In the above equations, Q̂i(q)

and �̂(τ )(q) are infinitesimal generators that are written in

terms of the quasiparticle creation and annihilation operators

(a†
α, aα) locally defined with respect to the moving-frame HFB

states |φ(q)〉. Note that the number operators are defined as
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Ñ (τ ) ≡ N̂ (τ ) − N
(τ )
0 subtracting the expectation values

(N
(n)
0 , N

(p)

0 ) of the neutron and proton numbers at |φ(q)〉. In

this article, we use units with h̄ = 1.

The moving-frame HFB states |φ(q)〉 and the infinitesimal

generators Q̂i(q) are determined as solutions of the moving-

frame HFB equation

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (8)

and the moving-frame QRPA equations

δ〈φ(q)|[ĤM (q), Q̂i(q)] −
1

i

∑

k

B ik(q)P̂k(q)

+
1

2

[
∑

k

∂V

∂qk
Q̂k(q), Q̂i(q)

]
|φ(q)〉 = 0, (9)

δ〈φ(q)|
[
ĤM (q),

1

i
P̂i(q)

]
−

∑

j

Cij (q)Q̂j (q)

−
1

2

[ [
ĤM (q),

∑

k

∂V

∂qk
Q̂k(q)

]
,
∑

j

Bij (q)Q̂j (q)

]

−
∑

τ

∂λ(τ )

∂q i
Ñ (τ ) |φ(q)〉 = 0, (10)

which are derived from the time-dependent variational

principle. Here, ĤM (q) is the moving-frame Hamiltonian

given by

ĤM (q) = Ĥ −
∑

τ

λ(τ )(q)Ñ (τ ) −
∑

i

∂V

∂q i
Q̂i(q), (11)

and

Cij (q) =
∂2V

∂q i∂qj
−

∑

k

Ŵk
ij

∂V

∂qk
, (12)

with

Ŵk
ij (q) =

1

2

∑

l

Bkl

(
∂Bli

∂qj
+

∂Blj

∂q i
−

∂Bij

∂q l

)
. (13)

The infinitesimal generators P̂i(q) are defined by

P̂i(q) |φ(q)〉 = i
∂

∂q i
|φ(q)〉 , (14)

with

P̂i(q) = i
∑

αβ

[Piαβ(q)a†
αa

†
β − P ∗

iαβ(q)aβaα], (15)

and determined as solutions of the moving-frame QRPA

equations.

The collective Hamiltonian is given as the expectation value

of the microscopic Hamiltonian with respect to the TDHFB

state

H(q, p, n) = 〈φ(q, p, n)| Ĥ |φ(q, p, n)〉

= V (q) +
∑

ij

1

2
B ij (q)pipj +

∑

τ

λ(τ )(q)n(τ ),

(16)

where

V (q) = H(q, p, n)| p=0,n=0, (17)

B ij (q) =
∂2H

∂pi∂pj

∣∣∣∣
p=0,n=0

, (18)

λ(τ )(q) =
∂H

∂n(τ )

∣∣∣∣
p=0,n=0

, (19)

represent the collective potential, inverse of the collective

mass, and the chemical potential, respectively. Note that the

last term in Eq. (10) can be set to zero adopting the QRPA

gauge-fixing condition dλ(τ )/dq i = 0 [45].

The basic equations of the ASCC method are invariant

against point transformations of the collective coordinates

(q1, q2). The B ij (q) and Cij (q) can be diagonalized simulta-

neously by a linear coordinate transformation at each point of

q = (q1, q2). We assume that we can introduce the collective

coordinate system in which the diagonal form is kept globally.

Then, we can choose, without losing generality and for

simplicity, the scale of the collective coordinates q = (q1, q2)

such that the vibrational masses become unity. Consequently,

the vibrational kinetic energy in the collective Hamiltonian

(16) is written as

Tvib =
1

2

∑

i=1,2

(pi)
2 =

1

2

∑

i=1,2

(q̇ i)2. (20)

C. CHFB + LQRPA equations

The basic equations of the ASCC method can be solved

with an iterative procedure. This task was successfully

carried out for extracting a one-dimensional (1D) collective

path embedded in the TDHFB configuration space [46,47].

To determine a 2D hypersurface, however, the numerical

calculation becomes too demanding at the present time.

We therefore introduce practical approximations as follows:

First, we ignore the curvature terms [the third terms in

Eqs. (9) and (10)], which vanish at the HFB equilibrium

points where dV/dq i = 0, assuming that their effects are

numerically small. Second, we replace the moving-frame

HFB Hamiltonian ĤM (q) and the moving-frame HFB state

|φ(q1, q2)〉 with a CHFB Hamiltonian ĤCHFB(β,γ ) and a

CHFB state |φ(β,γ )〉, respectively, on the assumption that the

latter two terms are good approximations to the former two

terms.

The CHFB equations are given by

δ〈φ(β,γ )|ĤCHFB(β,γ )|φ(β,γ )〉 = 0, (21)

ĤCHFB(β,γ ) = Ĥ −
∑

τ

λ(τ )(β,γ )Ñ (τ )

−
∑

m=0,2

µm(β,γ )D̂
(+)
2m , (22)

with four constraints

〈φ(β,γ )|N̂ (τ )|φ(β,γ )〉 = N
(τ )
0 , (τ = n, p), (23)

〈φ(β,γ )|D̂(+)
2m |φ(β,γ )〉 = D

(+)
2m , (m = 0, 2), (24)
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where D̂
(+)
2m denotes the Hermitian quadrupole operators D̂20

and (D̂22 + D̂2−2)/2 for m = 0 and 2, respectively (see

Ref. [46] for their explicit expressions). We define the

quadrupole deformation variables (β, γ ) in terms of the

expectation values of the quadrupole operators

β cos γ = ηD
(+)
20 = η 〈φ(β,γ )| D̂(+)

20 |φ(β,γ )〉 , (25)

1
√

2
β sin γ = ηD

(+)
22 = η 〈φ(β,γ )| D̂(+)

22 |φ(β,γ )〉 , (26)

where η is a scaling factor (to be discussed in Sec. III A).

The moving-frame QRPA Eqs. (9) and (10) then reduce to

δ 〈φ(β,γ )| [ĤCHFB(β,γ ), Q̂i(β,γ )]

−
1

i
P̂i(β,γ ) |φ(β,γ )〉 = 0, (i = 1, 2), (27)

and

δ 〈φ(β,γ )|
[
ĤCHFB(β,γ ),

1

i
P̂i(β,γ )

]

−Ci(β,γ )Q̂i(β,γ )|φ(β,γ )〉 = 0. (i = 1, 2) (28)

Here the infinitesimal generators, Q̂i(β,γ ) and P̂i(β,γ ), are

local operators defined at (β,γ ) with respect to the CHFB state

|φ(β,γ )〉. These equations are solved at each point of (β,γ ) to

determine Q̂i(β,γ ), P̂i(β,γ ), and Ci(β,γ ) = ω2
i (β,γ ). Note

that these equations are valid also for regions with negative

curvature [Ci(β,γ ) < 0] where the QRPA frequency ωi(β,γ )

takes an imaginary value. We call the above equations “local

QRPA (LQRPA) equations.” There exist more than two

solutions of LQRPA Eqs. (27) and (28) and we need to

select relevant solutions. A useful criterion for selecting two

collective modes among many LQRPA modes will be given in

Sec. III C with numerical examples. Concerning the accuracy

of the CHFB + LQRPA approximation, some arguments will

be given in Sec. III F.

D. Derivation of the vibrational masses

Once the infinitesimal generators Q̂i(β,γ ) and P̂i(β,γ ) are

obtained, we can derive the vibrational masses appearing in

the 5D quadrupole collective Hamiltonian (1). We rewrite

the vibrational kinetic energy Tvib given by Eq. (20) in

terms of the time derivatives β̇ and γ̇ of the quadrupole

deformation variables in the following way. We first note

that an infinitesimal displacement of the collective coordinates

(q1, q2) brings about a corresponding change

dD
(+)
2m =

∑

i=1,2

∂D
(+)
2m

∂q i
dq i, (m = 0, 2), (29)

in the expectation values of the quadrupole operators. The

partial derivatives can be easily evaluated as

∂D
(+)
20

∂q i
=

∂

∂q i
〈φ(β,γ )|D̂(+)

20 |φ(β,γ )〉

= 〈φ(β,γ )|
[
D̂

(+)
20 ,

1

i
P̂i(β,γ )

]
|φ(β,γ )〉, (30)

∂D
(+)
22

∂q i
=

∂

∂q i
〈φ(β,γ )|D̂(+)

22 |φ(β,γ )〉

= 〈φ(β,γ )|
[
D̂

(+)
22 ,

1

i
P̂i(β,γ )

]
|φ(β,γ )〉 , (31)

without the need of numerical derivatives. Accordingly, the

vibrational kinetic energy can be written

Tvib = 1
2
M00[Ḋ

(+)
20 ]2 + M02Ḋ

(+)
20 Ḋ

(+)
22 + 1

2
M22[Ḋ

(+)
22 ]2, (32)

with

Mmm′ (β,γ ) =
∑

i=1,2

∂q i

∂D
(+)
2m

∂q i

∂D
(+)
2m′

. (33)

Taking the time derivative of the definitional equations of

(β,γ ), Eqs. (25) and (26), we can straightforwardly transform

expression (32) to the form in terms of (β̇, γ̇ ). The vibrational

masses (Dββ , Dβγ , Dγ γ ) are then obtained from (M00, M02,

M22) through the following relations:

Dββ = η−2

(
M00 cos2 γ +

√
2M02 sin γ cos γ

+
1

2
M22 sin2 γ

)
, (34)

Dβγ = βη−2

[
−M00 sin γ cos γ +

1
√

2
M02(cos2 γ − sin2 γ )

+
1

2
M22 sin γ cos γ

]
, (35)

Dγ γ = β2η−2

(
M00 sin2 γ −

√
2M02 sin γ cos γ

+
1

2
M22 cos2 γ

)
. (36)

E. Calculation of the rotational moments of inertia

We calculate the rotational moments of inertia Jk(β,γ )

using the LQRPA equation for the collective rotation [46] at

each CHFB state

δ 〈φ(β,γ )| [ĤCHFB, �̂k] −
1

i
(Jk)−1Îk |φ(β,γ )〉 = 0, (37)

〈φ(β,γ )| [�̂k(β,γ ), Îk′ ] |φ(β,γ )〉 = iδkk′, (38)

where �̂k(β,γ ) and Îk represent the rotational angle and the

angular momentum operators with respect to the principal axes

associated with the CHFB state |φ(β,γ )〉. This is an extension

of the Thouless-Valatin equation [48] for the HFB equilibrium

state to nonequilibrium CHFB states. The three moments of

inertia can be written as

Jk(β,γ ) = 4β2Dk(β,γ ) sin2 γk (k = 1, 2, 3), (39)

with γk = γ − (2πk/3). If the inertial functions Dk(β,γ )

above are replaced with a constant, thenJk(β,γ ) reduces to the

well-known irrotational moments of inertia. In fact, however,

we shall see that their (β,γ ) dependence is very important. We

call Jk(β,γ ) and Dk(β,γ ) determined by the above equation

“LQRPA moments of inertia” and “LQRPA rotational masses,”

respectively.
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F. Collective Schrödinger equation

Quantizing the collective Hamiltonian (1) with the Pauli

prescription, we obtain the collective Schrödinger equation [2]

{T̂vib + T̂rot + V }�αIM (β,γ,�) = EαI�αIM (β,γ,�), (40)

where

T̂vib = −
1

2
√

WR

{
1

β4

[(
∂ββ2

√
R

W
Dγ γ ∂β

)

− ∂β

(
β2

√
R

W
Dβγ ∂γ

)]

+
1

β2 sin 3γ

[
−∂γ

(√
R

W
sin 3γDβγ ∂β

)

+ ∂γ

(√
R

W
sin 3γDββ∂γ

)]}
, (41)

T̂rot =
3∑

k=1

Î 2
k

2Jk

, (42)

with

R(β,γ ) = D1(β,γ )D2(β,γ )D3(β,γ ), (43)

W (β,γ ) = {Dββ(β,γ )Dγ γ (β,γ ) − [Dβγ (β,γ )]2}β−2.

(44)

The collective wave function in the laboratory frame

�αIM (β,γ,�) is a function of β, γ , and a set of three Euler

angles �. It is specified by the total angular momentum I , its

projection onto the z axis in the laboratory frame M , and α

that distinguishes the eigenstates possessing the same values

of I and M . With the rotational wave function DI
MK (�), it is

written as

�αIM (β,γ,�) =
∑

K=even

�αIK (β,γ )〈�|IMK〉, (45)

where

〈�|IMK〉 =

√
2I + 1

16π2(1 + δk0)

[
DI

MK (�) + (−)IDI
M−K (�)

]
.

(46)

The vibrational wave functions in the body-fixed frame

�αIK (β,γ ) are normalized as
∫

dβdγ |�αI (β,γ )|2|G(β,γ )|
1
2 = 1, (47)

where

|�αI (β,γ )|2 ≡
∑

K=even

|�αIK (β,γ )|2, (48)

and the volume element |G(β,γ )| 1
2 dβdγ is given by

|G(β,γ )|
1
2 dβdγ = 2β4

√
W (β,γ )R(β,γ ) sin 3γ dβdγ. (49)

Thorough discussions of their symmetries and the boundary

conditions for solving the collective Schrödinger equation are

given in Refs. [1–3].

III. CALCULATION OF THE COLLECTIVE POTENTIAL

AND THE COLLECTIVE MASSES

A. Details of numerical calculation

The CHFB + LQRPA method outlined in the preceding

section may be used in conjunction with any effective

interaction (e.g., density-dependent effective interactions like

Skyrme forces or modern nuclear density functionals). In this

article, as a first step toward such calculations, we use a version

of the P + Q force model [38,39] that includes the quadrupole-

pairing interaction in addition to the monopole-pairing interac-

tion. Inclusion of the quadrupole-pairing is essential because

neither the monopole-pairing nor the quadrupole particle-hole

interaction contributes to the time-odd mean-field effects on

the collective masses [16]; that is, only the quadrupole-pairing

interaction induces the time-odd contribution in the present

model. Note that the quadrupole-pairing effects were not

considered in Ref. [16]. In the numerical calculation for
68,70,72Se presented in the following, we use the same notations

and parameters as in our previous work [47]. The shell

model space consists of two major shells (Nsh = 3, 4) for

neutrons and protons and the spherical single-particle energies

are calculated using the modified oscillator potential [49,50].

The monopole-pairing interaction strengths (for neutrons and

protons) G
(τ )
0 and the quadrupole-particle-hole interaction

strength χ are determined such that the magnitudes of the

quadrupole deformation β and the monopole-pairing gaps

(for neutrons and protons) at the oblate and prolate local

minima in 68Se approximately reproduce those obtained in

the Skyrme-HFB calculations [51]. The interaction strengths

for 70Se and 72Se are then determined assuming simple

mass-number dependence [39]; G
(τ )
0 ∼ A−1 and χ ′ ≡ χb4 ∼

A− 5
3 (b denotes the oscillator-length parameter). For the

quadrupole-pairing interaction strengths (for neutrons and

protons), we use the Sakamoto-Kishimoto prescription [52] to

derive the self-consistent values. Following the conventional

treatment of the P + Q model [53], we ignore the Fock term so

that we use the abbreviation HB (Hartree-Bogoliubov) in place

of HFB in the following. In the case of the conventional P + Q

model, the HB equation reduces to a simple Nilsson + BCS

equation (see, e.g., Ref. [37]). The presence of the quadrupole-

pairing interaction in our case does not allow such a reduction,

however, and we directly solve the HB equation. In the

P + Q model, the scaling factor η in Eqs. (25) and (26) is

given by η = χ ′/h̄ω0b
2, where ω0 denotes the frequency of

the harmonic-oscillator potential. Effective charges (en, ep) =
(0.4, 1.4) are used in the calculation of quadrupole transitions

and moments.

To solve the CHB + LQRPA equations on the (β,γ ) plane,

we employ a 2D mesh consisting of 3600 points in the region

0 < β < 0.6 and 0◦ < γ < 60◦. Each mesh point (βi, γj ) is

represented as

βi = (i − 0.5) × 0.01, (i = 1, . . . , 60), (50)

γj = (j − 0.5) × 1◦, (j = 1, . . . , 60). (51)

One of the advantages of the present approach is that we

can solve the CHB + LQRPA equations independently at each
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mesh point on the (β,γ ) plane, so that it is suited to parallel

computation.

Finally, we summarize the most important differences be-

tween the present approach and the Baranger-Kumar approach

[43]. First, as repeatedly emphasized, we introduce the LQRPA

collective massess in place of the cranking masses. Second, we

take into account the quadrupole-pairing force (in addition to

the monopole-pairing force), which brings about the time-odd

effects on the collective masses. Third, we exactly solve the

CHB self-consistent problem, Eq. (21), at every point on the

(β, γ ) plane using the gradient method, while in the Baranger-

Kumar works the CHB Hamiltonian is replaced with a Nilsson-

like single-particle model Hamiltonian. Fourth, we do not

introduce the so-called core contributions to the collective

masses, although we use the effective charges to renormalize

the core polarization effects (outside of the model space

consisting of two major shells) into the quadrupole operators,

We shall see that we can well reproduce the major character-

istics of the experimental data without introducing such core

contributions to the collective masses. Fifth, most importantly,

the theoretical framework developed in this article is quite

general, that is, it can be used in conjunction with modern

density functionals going far beyond the P + Q force model.

B. Collective potentials and pairing gaps

We show in Fig. 1 the collective potentials V (β,γ )

calculated for 68,70,72Se. It is seen that two local minima always

appear both at the oblate (γ = 60◦) and prolate (γ = 0◦)

shapes and, in all these nuclei, the oblate minimum is lower

than the prolate minimum. The energy difference between

them is, however, only several hundred keV and the potential

barrier is low in the direction of the triaxial shape (with respect

to γ ) indicating the γ -soft character of these nuclei. In Fig. 1

we also show the collective paths (connecting the oblate and

prolate minima) determined by using the 1D version of the

ASCC method [47]. It is seen that they always run through the

triaxial valley and never go through the spherical shape.

In Fig. 2, the monopole-pairing and quadrupole-pairing

gaps calculated for 68Se are displayed. They show a sig-

nificant (β,γ ) dependence. Broadly speaking, the monopole

pairing decreases while the quadrupole pairing increases as β

increases.

C. Properties of the LQRPA modes

In Fig. 3 the frequencies squared ω2
i (β,γ ) of various

LQRPA modes calculated for 68Se are plotted as functions

of β and γ . In the region of the (β,γ ) plane where the

collective potential energy is less than about 5 MeV, we can

easily identify two collective modes among many LQRPA

modes, whose ω2
i (β,γ ) are much lower than those of other

modes. Therefore we adopt the two lowest-frequency modes

to derive the collective Hamiltonian. This result of the

numerical calculation supports our assumption that there exists

a 2D hypersurface associated with large-amplitude quadrupole

shape vibrations, which is approximately decoupled from other

degrees of freedom. The situation changes when the collective

potential energy exceeds about 5 MeV and/or the monopole-

pairing gap becomes small. A typical example is presented in

FIG. 1. (Color online) Collective potential V (β,γ ) for 68,70,72Se.

The regions higher than 3 MeV (measured from the oblate HB

minima) are drawn by the rose-brown color. 1D collective paths

connecting the oblate and prolate local minima are determined by

using the ASCC method and depicted with bold red lines.

the bottom panel of Fig. 3. It becomes hard to identify two

collective modes that are well separated from other modes

when β > 0.4, where the collective potential energy is high

(see Fig. 1) and the monopole-pairing gap becomes small

(see Fig. 2). In this example, the second-lowest LQRPA

mode in the 0.4 < β < 0.5 region has pairing-vibrational

character, but becomes noncollective for β > 0.5. In fact,

many noncollective two-quasiparticle modes appear in its

neighborhood. This region in the (β,γ ) plane is not important,

however, because only tails of the collective wave function

enter into this region.
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FIG. 2. (Color online) Monopole-pairing and quadrupole-pairing

gaps for neutrons of 68Se are plotted in the (β,γ ) deformation plane.

(upper left) Monopole pairing gap �
(n)
0 . (lower left) Quadrupole

pairing gap �
(n)
20 . (lower right) Quadrupole pairing gap �

(n)
22 . See

Ref. [46] for definitions of �
(n)
0 ,�

(n)
20 , and �

(n)
22 .

It may be useful to set up a prescription that works even in

a difficult situation where it is not apparent how to choose

two collective LQRPA modes. We find that the following

prescription always works well for selecting two collective

modes among many LQRPA modes. This may be called a

minimal metric criterion. At each point on the (β,γ ) plane,

we evaluate the vibrational part of the metric W (β,γ ) given

by Eq. (44) for all combinations of two LQRPA modes, and

find the pair that gives the minimum value. We show in

Fig. 4 how this prescription actually works. In this figure,

the W (β,γ ) values are plotted as functions of β and γ for

many pairs of the LQRPA modes. In the situations where

the two lowest-frequency LQRPA modes are well separated

from other modes, this prescription gives the same results

as choosing the two lowest-frequency modes (see the top and

middle panels). However, a pair of the LQRPA modes different

from the lowest two modes is chosen by this prescription in the

region mentioned previously (the bottom panel). This choice

may be better than that using the lowest-frequency criterion

because we often find that a normal mode of pairing vibrational

character becomes the second-lowest LQRPA mode when the

monopole-pairing gap significantly decreases in the region of

large β. The small values of the vibrational metric implies that

the direction of the infinitesimal displacement associated with

the pair of the LQRPA modes has a large projection onto the

(β,γ ) plane. Therefore, this prescription may be well suited

to our purpose of deriving the collective Hamiltonian for the

(β,γ ) variables. It remains as an interesting open question for

the future to examine whether or not the explicit inclusion of

the pairing vibrational degree of freedom as another collective

variable will give us a better description in such situations.

D. Vibrational masses

In Fig. 5 the vibrational masses calculated for 68Se are

displayed. We see that their values exhibit a significant
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FIG. 3. Frequencies squared ω2 of the LQRPA modes calculated

for 68Se are plotted as functions of β or γ . The LQRPA modes

adopted for calculation of the vibrational masses are connected with

solid lines. (top) Dependence on γ at β = 0.3. (middle) Dependence

on β along the γ = 0.5◦ line. (bottom) Dependence on β along the

γ = 30.5◦ line.

variation in the (β,γ ) plane. In particular, the increase in the

large β region is remarkable.

Figure 6 shows how the ratios of the LQRPA vibrational

masses to the IB vibrational masses vary on the (β,γ ) plane.

It is clearly seen that the LQRPA vibrational masses are

considerably larger than the IB vibrational masses and their

ratios change depending on β and γ . In this calculation, the IB

vibrational masses are evaluated using the well-known formula

D
(IB)
ξiξj

(β,γ ) = 2
∑

µν̄

〈µν̄| ∂ĤCHB

∂ξi
|0〉 〈0| ∂ĤCHB

∂ξj
|µν̄〉

[Eµ(β,γ ) + Eν̄(β,γ )]3
,

(ξi = β or γ ), (52)

where Eµ(β,γ ), |0〉, and |µν̄〉 denote the quasiparticle energy,

the CHB state |φ(β,γ )〉, and the two-quasiparticle state

064313-7



NOBUO HINOHARA et al. PHYSICAL REVIEW C 82, 064313 (2010)

10
2

10
3

10
4

10
5

10
6

10
7

 0  10  20  30  40  50  60

W
(β

,γ
)/

β
2
 (

M
e
V

-2
) 

γ(deg) [β0=0.305] 

LQRPA
IB

10
2

10
3

10
4

10
5

10
6

10
7

 0  0.1  0.2  0.3  0.4  0.5  0.6

W
(β

,γ
)/

β
2
 (

M
e
V

-2
) 

β [γ0=0.5(deg)] 

LQRPA
IB

10
2

10
3

10
4

10
5

10
6

10
7

 0  0.1  0.2  0.3  0.4  0.5  0.6

W
(β

,γ
)/

β
2
 (

M
e
V

-2
) 

β [γ0=30.5(deg)] 

LQRPA
IB

FIG. 4. Dependence on β and γ of the vibrational part of the

metric W (β,γ ) calculated for 68Se. (top) Dependence on γ at

β = 0.3. (middle) Dependence on β along the γ = 0.5◦ line. (bottom)

Dependence on β along the γ = 30.5◦ line. The cross symbols

indicate values of the vibrational metric calculated for various choices

of two LQRPA modes from among the lowest 40 LQRPA modes; the

lowest mode is always chosen and the other is from the remaining

39 modes. The smallest vibrational metric is shown by solid line. For

reference, the vibrational metric calculated using the IB vibrational

mass is indicated by broken lines.

a†
µa

†
ν̄ |φ(β,γ )〉, respectively (see Ref. [46] for the meaning

of the indices µ and ν̄).

The vibrational masses calculated for 70,72Se exhibit behav-

iors similar to those for 68Se.

E. Rotational masses

In Fig. 7, the LQRPA rotational masses Dk(β,γ ) cal-

culated for 68Se are displayed. Similarly to the vibra-

tional masses discussed previously, the LQRPA rotational

masses also exhibit a remarkable variation over the (β,γ )

FIG. 5. (Color online) Vibrational masses Dββ (β,γ ),

Dβγ (β,γ )/β, and Dγ γ (β,γ )/β2, in units of MeV−1 calculated

for 68Se.

plane, indicating a significant deviation from the irrotational

property.

Figure 8 shows how the ratios of the LQRPA rotational

masses Dk(β,γ ) to the IB cranking masses D
(IB)
k (β,γ ) vary on

the (β,γ ) plane. The rotational masses calculated for 70,72Se

exhibit behaviors similar to those for 68Se.

As we have seen in Figs. 5 through 8, not only the

vibrational and rotational masses, but also their ratios to

the IB cranking masses exhibit an intricate dependence on

β and γ . For instance, it is clearly seen that the ratios,

Dk(β,γ )/D
(IB)
k (β,γ ), gradually increase as β decreases. This

result is consistent with the calculation by Hamamoto and

Nazarewicz [54], where it is shown that the ratio of the Migdal

term to the cranking term in the rotational moment of inertia

(about the first axis) increases as β decreases. Needless to say,

the Migdal term (also called the Thouless-Valation correction)

corresponds to the time-odd mean-field contribution taken into

account in the LQRPA rotational masses so that the result of

Ref. [54] implies that the ratio D1(β,γ )/D
(IB)
1 (β,γ ), increases
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FIG. 6. (Color online) Ratios of the LQRPA vibrational masses

to the IB vibrational masses Dββ/D
(IB)
ββ and Dγ γ /D(IB)

γ γ , calculated for
68Se.

as β decreases, in agreement with our result. To understand

this behavior, it is important to note that, in the present

calculation, the dynamical effect of the time-odd mean-field

on D1(β,γ ) is associated with the K = 1 component of

the quadrupole-pairing interaction and it always works and

increase the rotational masses, in contrast to the behavior of the

static quantities like the magnitude of the quadrupole-pairing

gaps �20 and �22, which diminish in the spherical shape

limit. Obviously, this qualitative feature holds true irrespective

of the details of our choice of the monopole-pairing and

quadrupole-pairing interaction strengths.

The previous results of the calculation obviously indicate

the need to take into account the time-odd contributions to

the vibrational and rotational masses by going beyond the IB

cranking approximation. In Refs. [29–32], a phenomenologi-

cal prescription is adopted to remedy the shortcoming of the

IB cranking masses; that is, a constant factor in the range 1.40–

1.45 is multiplied to the IB rotational masses. This prescription

is, however, insufficient in the following points. First, the

scaling only of the rotational masses (leaving the vibrational

masses aside) violates the symmetry requirement for the 5D

collective quadrupole Hamiltonian [1–3] (a similar comment

is made in Ref. [4]). Second, the ratios take different values for

different LQRPA collective masses (Dββ,Dβγ ,Dγ γ ,D1,D2,

and D3). Third, for every collective mass, the ratio exhibits

an intricate dependence on β and γ . Thus, it may be quite

insufficient to simulate the time-odd mean-field contributions

to the collective masses by scaling the IB cranking masses

with a common multiplicative factor.

FIG. 7. (Color online) Rotational masses Dk(β,γ ) in units of

MeV−1, calculated for 68Se. See Eq. (39) for the relation with the

rotational moments of inertia Jk(β,γ ).

F. Check of self-consistency along the collective path

As discussed in Sec. II, the CHB + LQRPA method is a

practical approximation to the ASCC method. It is certainly

desirable to examine the accuracy of this approximation by

carrying out a fully self-consistent calculation. Although, at

the present time, such a calculation is too demanding to carry

out for a whole region of the (β,γ ) plane, we can check

the accuracy at least along the 1D collective path. This is

because the 1D collective path is determined by carrying out

a fully self-consistent ASCC calculation for a single set of the
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FIG. 8. (Color online) Ratios of the LQRPA rotational masses to

the IB rotational masses, Dk(β,γ )/D
(IB)
k (β,γ ), calculated for 68Se.

collective coordinate and momentum. The 1D collective paths

projected onto the (β,γ ) plane are displayed in Fig. 1. Let us

use a notation |φ(q)〉 for the moving-frame HB state obtained

by self-consistently solving the ASCC equations for a single

collective coordinate q [46,47]. To distinguish from it, we write

the CHB state as |φ(β(q), γ (q))〉. This notation means that

the values of β and γ are specified by the collective coordinate

q along the collective path. In other words, |φ(β(q), γ (q))〉
has the same expectation values of the quadrupole operator as

those of |φ(q)〉. It is important to note, however, that they

are different from each other because |φ(β(q), γ (q))〉 is a

solution of the CHB equation, which is an approximation of the

moving-frame HB equation. Let us evaluate various physical

quantities using the two state vectors and compare the results.
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FIG. 9. (Color online) Comparison of physical quantities eval-

uated with the CHB + LQRPA approximation and those with the

ASCC method. Both calculations are carried out along the 1D

collective path for 68Se and the results are plotted as a function

of γ (q). From the top to the bottom: (a) the collective potential,

(b) monopole-pairing gaps, �
(n))
0 and �

(p)

0 , for neutrons and protons,

(c) frequencies squared ω2 of the lowest and the second-lowest

modes obtained by solving the moving-frame QRPA and the LQRPA

equations, and (d) vibrational masses, Dββ , Dβγ /β, and Dγ γ /β2,

and (e) rotational masses Dk . In almost all cases, the results of the

two calculations are indistinguishable because they agree within the

widths of the line.

In Fig. 9 various physical quantities (the pairing gaps,

the collective potential, the frequencies of the local normal

modes, the rotational masses, and vibrational masses) cal-

culated using the moving-frame HB state |φ(q)〉 and the

CHB state |φ(β(q), γ (q))〉 are presented and compared. These

calculations are carried out along the 1D collective path

for 68Se. Apparently, the results of the two calculations are

indistinguishable in almost all cases because they agree within

the widths of the line. This good agreement implies that the

CHB + LQRPA is an excellent approximation to the ASCC

method along the collective path on the (β,γ ) plane. As

we shall see in the next section, collective wave functions

distribute around the collective path. Therefore, it may be

reasonable to expect that the CHB + LQRPA method is a

good approximation to the ASCC method and suited, at least,

for describing the oblate-prolate shape mixing dynamics in
68,70,72Se.
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FIG. 10. Excitation spectra and B(E2) values calculated for 68Se by means of the CHB + LQRPA method (denoted CHB + LQRPA) and

experimental data [5–7]. For comparison, results calculated using the IB cranking masses (denoted CHB + IB) and those obtained using the

(1 + 3)D version of the ASCC method [denoted (1 + 3)D ASCC] are also shown. Only B(E2)’s larger than 1 Weisskopf unit [in the (1+3)D

ASCC and/or the CHB + LQRPA calculations] are shown in units of e2fm4.

IV. LARGE-AMPLITUDE SHAPE-MIXING

PROPERTIES OF 68,70,72Se

We calculated collective wave functions solving the col-

lective Schrödinger equation (40) and evaluated excitation

spectra, quadrupole transition probabilities, and spectroscopic

quadrupole moments. The results for low-lying states in
68,70,72Se are presented in Figs. 10–15.

In Figs. 10, 12, and 14, excitation spectra and B(E2) values

for 68Se, 70Se, and 72Se, calculated with the CHB + LQRPA

method, are displayed together with the experimental data.

The eigenstates are labeled with Iπ = 0+, 2+, 4+, and 6+. In

these figures, results obtained using the IB cranking masses

are also shown for the sake of comparison. Furthermore, the

results calculated with the (1 + 3)D version of the ASCC

method reported in our previous article [47] are shown also for

FIG. 11. (Color online) Vibrational wave functions squared β4|�Ik(β,γ )|2, calculated for 68Se.
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FIG. 12. Same as Fig. 10 but for 70Se. Experimental data are taken from Refs. [8,41].

comparison with the 5D calculations. We use the abbreviation

(1 + 3)D to indicate that a single collective coordinate along

the collective path describing large-amplitude vibration and

three rotational angles associated with the rotational motion

are taken into account in these calculations. The classification

of the calculated low-lying states into families of two or

three rotational bands is made according to the properties

of their vibrational wave functions. These vibrational wave

functions are displayed in Figs. 11, 13, and 15. In these

figures, only the β4 factor in the volume element (49) are

multiplied to the vibrational wave functions squared leaving

the sin 3γ factor aside. This is because all vibrational wave

functions look triaxial and the probability at the oblate and

prolate shapes vanish if the sin 3γ factor is multiplied by

them.

Let us first summarize the results of the CHB + LQRPA

calculation. The most conspicuous feature of the low-lying

states in these proton-rich Se isotopes is the dominance of

the large-amplitude vibrational motion in the triaxial shape

degree of freedom. In general, the vibrational wave function

FIG. 13. (Color online) Same as Fig. 11 but for 70Se.
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FIG. 14. Same as Fig. 10 but for 72Se. Experimental data are taken from Refs. [8,42].

extends over the triaxial region between the oblate (γ = 60◦)

and the prolate (γ = 0◦) shapes. In particular, this is the case

for the 0+ states causing their peculiar behaviors; for instance,

we obtain two excited 0+ states located slightly below or

above the 2+
2 state. Relative positions between these excited

states are quite sensitive to the interplay of large-amplitude

γ -vibrational modes and the β-vibrational modes. This result

of the calculation is consistent with the available experimental

data where the excited 0+ state has not yet been found, but

more experimental data are needed to examine the validity of

the theoretical prediction. In the following, let us examine the

characteristic features of the theoretical spectra more closely

for individual nuclei.

For 68Se, we obtain the third band in low energy. The

0+
2 and 2+

3 states belonging to this band are also shown in

Fig. 10. Their vibrational wave functions exhibit nodes in the

β direction (see Fig. 11) indicating that a β-vibrational mode

is excited on top of the large-amplitude γ vibrations. As a

matter of course, this kind of state is outside of the scope

of the (1 + 3)D calculation. The vibrational wave functions

FIG. 15. (Color online) Same as Fig. 11 but for 72Se.
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FIG. 16. Spectroscopic quadrupole moments for 68,70,72Se. Values

calculated with the LQRPA collective masses are shown with the

triangles. For comparison, values calculated with the IB collective

masses and those obtained with the (1 + 3)D version of the ASCC

method are also shown with the squares and the circles, respectively.

The filled symbols show the values for the yrast states, while the open

symbols those for the yrare states.

of the yrast 2+
1 and 4+

1 states exhibit localization in a region

around the oblate shape, while the yrare 2+
2 , 4+

2 , and 6+
2 states

localize around the prolate shape. It is apparent, however, that

all the wave functions significantly extend from γ = 0◦ to

60◦ over the triaxial region, indicating the γ -soft character of

these states. In particular, the yrare 4+
2 and 6+

2 wave functions

exhibit a two-peak structure consisting of the prolate and oblate

peaks. The peaks of the vibrational wave function gradually

shift toward a region of larger β as the angular momentum

increases. This is a centrifugal effect decreasing the rotational

energy by increasing the moment of inertia. In the (1 + 3)D

calculation, this effect is absent because the collective path is

fixed at the ground state. Thus, the 5D calculation yields,

for example, a much larger value for B(E2; 6+
1 → 4+

1 ) in

comparison with the (1 + 3)D calculation. Actually, in the

5D CHB + LQRPA calculation, the wave function of the yrast

6+
1 state localizes in the triaxial region (see Fig. 11) where

the moment of inertia takes a maximum value. This leads to

a small value for the spectroscopic quadrupole moment (see

Fig. 16) because of the cancellation between the contributions

from the oblate-like and prolate-like regions. This cancel-

lation mechanism due to the large-amplitude γ fluctuation

is effective also in other states; although the spectroscopic

quadrupole moments of the yrast 2+
1 and 4+

1 (yrare 2+
2 , 4+

2 , and

6+
2 ) states are positive (negative) indicating their oblate-like

(prolate-like) character, their absolute magnitudes are rather

small.

The E2-transition probabilities exhibit a pattern reminis-

cent of the γ -unstable situation; for instance, B(E2; 6+
2 →

6+
1 ), B(E2; 4+

2 → 4+
1 ), and B(E2; 2+

2 → 2+
1 ) are much larger

than B(E2; 6+
2 → 4+

1 ), B(E2; 4+
2 → 2+

1 ), and B(E2; 2+
2 →

0+
1 ); see Fig. 10. Thus, the low-lying states in 68Se may be

characterized as an intermediate situation between the oblate-

prolate shape coexistence and the Wilets-Jean γ -unstable

model [55]. Using the phenomenological Bohr-Mottelson

collective Hamiltonian, we showed in Ref. [56] that it is

possible to describe the oblate-prolate shape coexistence and

the γ -unstable situation in a unified way varying a few

parameters controlling the degree of oblate-prolate asymmetry

in the collective potential and the collective masses. The

two-peak structure seen in the 4+
2 and 6+

2 states may be

considered as one of the characteristics of the intermediate

situation. It thus appears that the excitation spectrum for
68Se (Fig. 10) serves as a typical example of the transitional

phenomena from the γ -unstable to the oblate-prolate shape

coexistence situations.

Let us make a comparison between the spectra in Fig. 10

obtained with the LQRPA collective masses and that with

the IB cranking masses. It is obvious that the excitation

energies are appreciably overestimated in the latter. This result

is as expected from the too low values of the IB cranking

masses. The result of our calculation is in qualitative agree-

ment with the HFB-based configuration-mixing calculation

reported by Ljungvall et al. [8] in that both calculations

indicate the oblate (prolate) dominance for the yrast (yrare)

band in 68Se. Quite recently, the B(E2; 2+
1 → 0+

1 ) value

was measured in the experiment [7]. The calculated value

(492 e2fm4) is in fair agreement with the experimental data

(432 e2fm4).

The result of the calculation for 70Se (Figs. 12 and 13)

is similar to that for 68Se. The vibrational wave functions of

the yrast 2+
1 , 4+

1 , and 6+
1 states localize in a region around

the oblate shape, exhibiting, at the same time, long tails

in the triaxial direction. We note here that, differently from

the 68Se case, the 6+
1 wave function keeps the oblate-like

structure. However, the yrare 2+
2 , 4+

2 , and 6+
2 states localize

around the prolate shape, exhibiting, at the same time, small

secondary bumps around the oblate shape. For the yrare 2+
2

state, we obtain a strong oblate-prolate shape mixing in the

(1 + 3)D calculation [47]. This mixing becomes weaker in

the present 5D calculation, resulting in the reduction of the

B(E2; 4+
1 → 2+

2 ) value. Similarly to 68Se, we obtain two

excited 0+ states in low energy. We see considerable oblate-

prolate shape mixings in their vibrational wave functions,

but, somewhat differently from those in 68Se, the second and

third 0+ states in 70Se exhibit clear peaks at the oblate and

prolate shapes, respectively, Their energy ordering is quite

sensitive to the interplay of the large-amplitude γ vibration

and the β vibrational modes. The calculated spectrum for
70Se is in fair agreement with the recent experimental data

[41], although the B(E2) values between the yrast states are

overestimated.

The result of the calculation for 72Se (Figs. 14 and 15)

presents a feature somewhat different from those for 68Se and
70Se; that is, the yrast 2+

1 , 4+
1 , and 6+

1 states localize around

the prolate shape instead of the oblate shape. The localization

064313-14
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develops with increasing angular momentum. Nevertheless,

similarly to the 68,70Se cases, the yrare 2+
2 , 4+

2 , and 6+
2 states

exhibit the two-peak structure. The spectroscopic quadrupole

moments of the 2+
1 , 4+

1 , and 6+
1 states are negative, and their

absolute magnitude increases with increasing angular momen-

tum (see Fig. 16) reflecting the developing prolate character in

the yrast band, while those of the yrare states are small because

of the two-peak structure of their vibrational wave functions,

that is, due to the cancellation of the contributions from the

prolate-like and oblate-like regions. Also for 72Se, we obtain

two excited 0+ states in low energy, but they show features

somewhat different from the corresponding excited 0+ states

in 68,70Se. Specifically, the vibrational wave functions of the

second and third 0+ states exhibit peaks at the prolate and

oblate shape, respectively. As seen in Fig. 14, our results of

the calculation for the excitation energies and B(E2) values are

in good agreement with the recent experimental data [8] for the

yrast 2+
1 , 4+

1 , and 6+
1 states in 72Se. Experimental E2-transition

data are awaited for understanding the nature of the observed

excited band.

V. CONCLUSION

On the basis of the ASCC method, we developed a practical

microscopic approach, called CHFB + LQRPA, of deriving

the 5D quadrupole collective Hamiltonian and confirmed

its efficiency by applying it to the oblate-prolate shape

coexistence/mixing phenomena in proton-rich 68,70,72Se. The

results of the numerical calculation for the excitation energies

and B(E2) values are in good agreement with the recent

experimental data [7,8] for the yrast 2+
1 , 4+

1 , and 6+
1 states

in these nuclei. It is shown that the time-odd components of

the moving mean-field significantly increase the vibrational

and rotational collective masses and make the theoretical

spectra in much better agreement with the experimental data

than calculations using the IB cranking masses. Our analysis

clearly indicates that low-lying states in these nuclei possess

a transitional character between the oblate-prolate shape

coexistence and the so-called γ -unstable situation where large-

amplitude triaxial-shape fluctuations play a dominant role.

Finally, we would like to list a few issues for the future

that seem particularly interesting. First, a fully self-consistent

solution of the ASCC equations for determining the 2D

collective hypersurface and examination of the validity of the

approximations adopted in this article in the derivation of the

CHFB + LQRPA scheme. Second, the application to various

kinds of collective spectra associated with large-amplitude

collective motions near the yrast lines (as listed in Ref. [28]).

Third, the possible extension of the quadrupole collective

Hamiltonian by explicitly treating the pairing vibrational

degrees of freedom as additional collective coordinates.

Fourth, the use of the Skyrme energy functionals + density-

dependent contact pairing interaction in place of the

P + Q force and then modern density functionals currently

under active development. Fifth, the application of the

CHFB + LQRPA scheme to fission dynamics. The LQRPA

approach enables us to evaluate, without the need of numerical

derivatives, the collective inertia masses including the time-

odd mean-field effects.

ACKNOWLEDGMENTS

Two of the authors (K.S. and N.H.) are supported by

the Junior Research Associate Program and the Special

Postdoctoral Researcher Program of RIKEN, respectively. The

numerical calculations were carried out on Altix3700 BX2 at

Yukawa Institute for Theoretical Physics in Kyoto University

and RIKEN Cluster of Clusters (RICC) facility. This work is

supported by Grants-in-Aid for Scientific Research (Grants

No. 20105003, 20540259, and 21340073) from the Japan

Society for the Promotion of Science and the JSPS Core-

to-Core Program “International Research Network for Exotic

Femto Systems.”

[1] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,

Reading, MA, 1975), Vol. II.

[2] S. T. Belyaev, Nucl. Phys. 64, 17 (1965).

[3] K. Kumar and M. Baranger, Nucl. Phys. A 92, 608 (1967).
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