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The interplay between the collective dynamics of the quadrupole and octupole deformation degree of freedom

is discussed in a series of Sm and Gd isotopes both at the mean-field level and beyond, including parity symmetry

restoration and configuration mixing. Physical properties such as negative-parity excitation energies and E1 and

E3 transition probabilities are discussed and compared to experimental data. Other relevant intrinsic quantities

such as dipole moments, ground-state quadrupole moments or correlation energies associated with symmetry

restoration and configuration mixing are discussed. For the considered isotopes, the quadrupole-octupole coupling

is found to be weak and most of the properties of negative-parity states can be described in terms of the octupole

degree of freedom alone.

DOI: 10.1103/PhysRevC.86.034336 PACS number(s): 21.60.Jz, 21.10.Re, 27.70.+q

I. INTRODUCTION

The nuclear mass region with proton number Z ≈ 60
and neutron number N ≈ 90 is receiving much attention at
present, both experimental and theoretically, because it is a
region where nuclear structure collective effects of different
natures overlap [1]. Particularly interesting in this context is
the interplay between quadrupole transitional properties in
N ≈ 90 isotones and octupole deformation manifestations in
nuclei with proton Z ≈ 56 and neutron N ≈ 88 numbers. On
one hand, isotones with N ≈ 90 have been found as empirical
realizations [2] of the critical point symmetry X(5), introduced
[3] to describe analytically the first-order phase transition from
spherical [U(5)] to well-deformed [SU(3)] nuclei. Such critical
point symmetries have recently been studied within various
microscopic approaches, either relativistic or nonrelativistic
(see, for example, Refs. [4–7] and references therein).

However, it is well known [1] that there is a tendency

towards octupolarity around particular neutron/proton num-

bers, namely N/Z = 34, 56, 88, and 134. The emergence of

octupolarity in these nuclear systems can be traced back to the

structure of the corresponding single-particle spectra which

exhibit maximum coupling between states of opposite parity,

where the (N + 1, l + 3, j + 3) intruder orbitals interact

with the (N, l, j ) normal-parity states through the octupole

component of the effective nuclear Hamiltonian. When the

mixing is strong enough, the nucleus displays an octupole

deformed ground state [1]. In particular, for nuclei with Z ≈ 56

(N ≈ 88) the coupling between the proton (neutron) single-

particle states h11/2 (i13/2) and d5/2 (f7/2) has been considered

as mainly responsible for mean-field ground-state octupolarity.

The search for signatures of stable octupole deformations

in atomic nuclei has been actively pursued during the last

decades [1,8]. As a main feature, octupole deformed even-

even nuclei display particularly low-lying negative-parity 1−

states. In the case of stable octupole deformations, the 0+

and 1− states represent the members of parity doublets,

giving rise to alternating-parity rotational bands with enhanced

E1 transitions among them. These fingerprints of octupole

deformations have already been found in the particular regions

mentioned above, but especially in the rare-earth and actinide

regions [1,8].

For the sample of nuclei considered in the present study

(i.e., 146–154Sm and 148–156Gd), experimental fingerprints have

been obtained through the observation of octupole correlations

at medium spins, as well as the crossing of the octupole

and the ground-state band, pointing to the fact that reflection

symmetric and asymmetric structures coexist in 150Sm [9] and
148Sm [10]. A recent study [11] has analyzed the lowest four

negative-parity bands in 152Sm and has found an emerging

pattern of repeating excitations, built on the 0+
2 level and

similar to that of the ground state, suggesting a complex shape

coexistence in 152Sm.

The experimental findings [9–11] mentioned above already

suggest that it is timely and necessary to carry out systematic

studies of the quadrupole-octupole interplay in this and other

regions of the nuclear chart, starting from modern (global)

relativistic [12,13] and/or nonrelativistic [13–16] nuclear

energy density functionals (EDFs), with reasonable predictive

power all over the nuclear chart.

Let us remark that the microscopic study of the dynamical

(i.e., beyond mean field) quadrupole-octupole coupling in the

considered Sm and Gd isotopes is also required to better

understand the extent to which a picture of independent

quadrupole and octupole excitations persists or breaks down

for nuclei with neutron number N ≈ 88. This, together with

the available experimental fingerprints [9–11] for octupolarity

in the region, is one of the main reasons driving our choice of

the nuclei 146–154Sm and 148–156Gd as a representative sample

to test the performance of the different approximations and

EDFs considered in the present study.

From a theoretical perspective, many different models have

been used to describe octupole correlations in atomic nuclei.
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For a detailed survey the reader is referred, for example, to

Ref. [1]. Calculations based on the shell-correction approach

with folded Yukawa deformed potentials [17,18], as well as

calculations based on Woods-Saxon potentials with various

models for the microscopic and macroscopic terms [19,20],

predicted a significant stabilization of octupole deformation

effects in various nuclear mass regions. Pioneer Skyrme-

HF + BCS calculations including the octupole constraint and

restoring parity symmetry were carried out in Ref. [21]. Sub-

sequent calculations in Ref. [22] included both quadrupole and

octupole constraints at the same time but at the mean-field level

only. However, microscopic studies of octupole correlations

with Skyrme and Gogny EDFs, both at the mean-field level

and beyond with different levels of complexity, have already

been reported (see Refs. [23–33] and references therein) for

several regions of the nuclear chart. Theoretical studies in

the Sm region include mean-field-based calculations with the

collective Hamiltonian and the Gogny force [33], the IBM

study with spdf bosons of Ref. [34] or the collective models

using a coherent coupling between quadrupole and octupole

modes [35], and new parametrizations of the quadrupole and

octupole modes [36]. Nonaxial pearlike shapes in this region

were considered, for example, in Refs. [37]. Additionally, the

isotopes 146–156Sm have been investigated very recently within

the constrained reflection-asymmetric relativistic mean-field

(RMF) approach [38] based on the parametrization PK1 [39]

for the RMF Lagrangian together with a constant gap BCS

approximation for pairing correlations.

In the present work, we investigate the interplay between

octupole and quadrupole degrees of freedom in the sample

of nuclei 146–154Sm and 148–156Gd. We use three different

levels of approximation. First, the constrained (reflection-

asymmetric) Hartree-Fock-Bogoliubov (HFB) framework is

used as a starting point providing energy contour plots in terms

of the (axially symmetric) quadrupole Q20 = 〈�|Q̂20|�〉
and octupole Q30 = 〈�|Q̂30|�〉 moments (where |�〉 is the

corresponding HFB intrinsic wave function). Within this

mean-field framework we pay attention to the shape changes

in the considered nuclei and their relation with the underlying

single-particle spectrum [1,32,40].

As is discussed later, the (Q20,Q30) mean-field potential

energy surfaces (MFPES) obtained for the nuclei 146–154Sm

and 148–156Gd are, in most of the cases, very soft along the Q30

direction, indicating that the (static) mean-field picture is not

enough and that a (dynamical) beyond-mean-field treatment

is required. Therefore, both the minimization of the energies

obtained after parity projection of the intrinsic states [21,30,33]

and quadrupole-octupole configuration mixing calculations in

the spirit of the generator coordinate method (GCM) [41]

are subsequently carried out. The analysis of the two sets

of results makes it possible to disentangle the role played

in the dynamics of the considered nuclei by the restoration

of the broken reflection symmetry and the fluctuations in the

(Q20,Q30) collective coordinates. Similar calculations with the

Skyrme functional where carried out in Ref. [26] for a lead

isotope.

To the best of our knowledge, the hierarchy of approxima-

tions [i.e., reflection-asymmetric HFB, parity projection, and

(Q20,Q30)-GCM] considered in the present work belong, at

least for the case of the Gogny-EDF, to the class of unique

and state-of-the-art tools for the microscopic description of

quadrupole-octupole correlations in atomic nuclei. Let us also

stress that the two-dimensional GCM (2D-GCM) framework

used in the present study represents an extension of the

treatment of octupolarity reported in Refs. [32,33], where a 1D

collective Hamiltonian based on several approximations and

parameters extracted from Q30-constrained HFB calculations

was considered. Here, however, the octupole and quadrupole

degrees of freedom are explored simultaneously and the

kernels involved in the solution of the corresponding Hill-

Wheeler equation [41] are computed without assuming a

Gaussian behavior of the norm overlap or a (second-order)

expansion over the nonlocality of the Hamiltonian kernel.

Therefore, the present study for the selected set of Sm and Gd

nuclei, to the best of our knowledge the first of this kind for

the case of the Gogny-EDF, may also be regarded as a proof

of principle concerning the feasibility of the calculations to

be discussed later. Pioneer calculations along the same lines

considered in the present study, but based on the Skyrme-EDF,

have been carried out in Refs. [26,42].

In addition to the standard Gogny-D1S [15] parametriza-

tion, which is taken as a reference, the D1M parametrization

[43] is also considered. The functional Gogny-D1S has a

longstanding tradition and it has been able to describe many

low-energy experimental data all over the nuclear chart with

reasonable predictive power at both the mean-field level

and beyond (see, for example, Refs. [15,27–31,44–54] and

references therein). However, the D1M parametrization [43]

that was tailored to provide a better description of masses

is now proving its merits in nuclear structure studies not

only in even-even nuclei [40,43,54–58], but also in odd

nuclei in the framework of the equal filling approximation

(EFA) [54,56–58]. In this paper the results of both D1S and

D1M are compared to verify the robustness of our predictions

with respect to the particular version of the interaction and

to test the performance of D1M in the present context of

quadrupole-octupole coupling.

The paper is organized as follows. In Secs. II, III, and IV

we briefly describe the theoretical formalisms used in the

present work and, subsequently, the results obtained with

them. Mean-field calculations are discussed in Sec. II. Parity

projection and configuration mixing results are presented

in Secs. III and IV, respectively. In particular, in Sec. IV

special attention is paid to beyond-mean-field properties in the

considered nuclei—dynamical octupole and dipole moments,

correlation energies, reduced transition probabilities B(E1)

and B(E3), as well as energy splittings—and their comparison

with available experimental data. Finally, Sec. V is devoted to

the concluding remarks and work perspectives.

II. MEAN-FIELD SYSTEMATICS

The aim of the present work is the study of the quadrupole-

octupole dynamics in selected Sm and Gd isotopes with

neutron number 84 � N � 92. Three different levels of

approximation are considered: the HFB method with con-

straints in the relevant degrees of freedom, parity projection

034336-2
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(with minimization of the energy after projection), and the

GCM with Q20 and Q30 as collective coordinates. For a

detailed survey on the three techniques, the reader is referred

to Ref. [41]. The Gogny EDF is used consistently in the three

methods both with the D1S and D1M parametrizations.

First, (Q20,Q30)-constrained HFB calculations are per-

formed for the nuclei 146–154Sm and 148–156Gd to obtain a

set of states |�(Q)〉 labeled by their corresponding multipole

moments Q = (Q20,Q30). The K = 0 quadrupole Q20 and

octupole Q30 moments are given by the average values

Q20 = 〈�|z2 − 1
2
(x2 + y2)|�〉 (1)

and

Q30 = 〈�|z3 − 3
2
(x2 + y2)z|�〉. (2)

Axial and time reversal are self-consistent symmetries in

the mean-field calculations. As a consequence of the axial

symmetry imposed on the HFB wave functions |�〉, the mean

values of the multipole operators Q̂2μ and Q̂3μ with μ �= 0

are zero by construction. Aside from the constraints on the

quadrupole and octupole moments, a constraint on the center-

of-mass operator is used to place it at the origin of coordinates

to prevent spurious effects associated with center-of-mass

motion. The HFB quasiparticle operators (α̂
†
k, α̂k) [41] have

been expanded in an axially symmetric harmonic-oscillator

(HO) basis (ĉ
†
l , ĉl) containing 13 major shells as to grant

convergence for all the observable quantities. For the solution

of the HFB equation, an approximate second-order gradient

method [59] is used.

The MFPES have been computed in a grid with Q20 in the

range from −30 b to 30 b in steps of 0.6 b and the octupole

moment Q30 in the range from 0 b3/2 to 3.75 b3/2 in steps

of 0.25 b3/2. Negative values of the octupole moment are not

computed explicitly as the corresponding wave function can

be obtained from the positive Q30 one by applying the parity

operator. As the Gogny EDF is invariant under parity (see

Refs. [44,45] for a discussion of the meaning of symmetry

invariance for density dependent “forces”) the energy has the

property EHFB(Q20,Q30) = EHFB(Q20,−Q30) and therefore

is an even function of the octupole moment. For this reason,

in the graphical representation of the PES only positive values

of Q30 are considered.

The MFPESs obtained for the nucleus 150Sm, with the

parametrizations D1S and D1M of the Gogny-EDF, are shown

in Fig. 1 as an illustrative example of our mean-field results.

For the sake of presentation, quadrupole and octupole moments

have been constrained in the plots to the ranges −10b �

Q20 � 20b and 0b3/2 � Q30 � 3.75b3/2, respectively. The

similitude between the D1S and D1M results in the Q20

and Q30 directions is remarkable. In previous calculations

in other regions and looking at different physical effects

[40,54,56–58] we have already noticed the same similitude

between D1S and D1M results. Focusing on the MFPES, the

absolute minimum is located in the prolate side at a finite

value of the octupole moment. The minimum is very shallow

along the Q30 direction. Another minimum is observed in

the oblate side, but this time centered at Q30 = 0. For the

other nuclei considered the energies look similar and therefore
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FIG. 1. MFPESs computed with the Gogny-D1S EDF in panel (a)

and Gogny-D1M EDF in panel (b) for the nucleus 150Sm. Taking the

lowest energy as a reference, the contour lines extend from 0.25 MeV

up to 4 MeV in steps of 0.25 MeV. Solid, long-dashed, and short-

dashed contours are used successively to help identify contours more

easily. Dotted lines correspond to contours starting at 5 MeV and

extending to 8 MeV in steps of 1 MeV.

they are not shown. The most relevant mean-field quantities

for the ground states are summarized in Tables I and II. To

better understand the quadrupole deformation properties of

the studied nuclei, the reflection symmetric (i.e., Q30 = 0)

mean-field potential energy curves (MFPECs) are depicted for

all the considered nuclei in Fig. 2. A transition from weakly

deformed ground states in the N = 84 nuclei 146Sm and 148Gd

to well (quadrupole) deformed ground states in 152,154Sm and
154,156Gd (prolate moments 6.6b � Q20 � 7.8b) is observed.

In most of the isotopes except the lightest ones an additional

minimum is observed in the oblate side. This minimum may

become a saddle point (see Ref. [6] for examples) once

the γ degree of freedom is considered. Nevertheless, the

simultaneous consideration of triaxial quadupole and octupole

moments lies outside of the scope of the present study.

Investigation along these lines is in progress and will be

reported elsewhere.

From Tables I and II, we observe the onset of an octupole

deformed regime at the N = 88 nuclei 150Sm and 152Gd.

These nuclei mark the borders of another shape transition

from octupole deformed ground states in 148Sm and 150Gd to

quadrupole deformed and reflection symmetric ground states

in 152Sm and 154Gd. Consistent with the breakdown of the

left-right symmetry in their ground states, the 148,150Sm and
150,152Gd isotopes exhibit a nonzero (static) dipole moment

D0. It is computed as the ground-state average value of the

dipole operator

D̂0 =
N

A
ẑprot −

Z

A
ẑneut (3)

034336-3
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TABLE I. Proton Ep(Z) (MeV) and neutron Ep(N ) (MeV) pairing energies, dipole D0 (efm) moment, quadrupole Q20 (b) and octupole

Q30 (b3/2) moments at the minima of the MFPESs for the isotopes 146–154Sm. Results are given for both Gogny-D1S and Gogny-D1M EDFs.

Nucleus Ep(Z) Ep(N ) D0 Q20 Q30 Ep(Z) Ep(N ) D0 Q20 Q30

D1S D1M

146Sm −14.64 −3.58 0.00 1.20 0.00 −15.67 −5.20 0.00 0.60 0.00
148Sm −12.41 −3.34 0.18 3.00 1.25 −13.92 −4.52 0.14 3.00 0.75
150Sm −10.98 −1.53 0.41 4.80 1.50 −11.80 −2.99 0.35 4.80 1.25
152Sm −6.58 −5.57 0.00 7.20 0.00 −8.24 −6.18 0.00 6.60 0.00
154Sm −5.91 −3.27 0.00 7.80 0.00 −6.38 −4.63 0.00 7.80 0.00

along the symmetry z axis. The values of D0 tend to be smaller

for D1M than for D1S. This is not surprising owing to the

delicate balance between single-particle orbital properties that

enter in the definition of the dipole moment [29]. Another

quantity of interest is the mean-field octupole correlation

energy EMF
corr = E

g.s.

HFB,Q30=0 − E
g.s.

HFB corresponding to the en-

ergy gain by allowing octupole deformation. For example, the

values obtained for 150Sm and 152Gd are 204 and 43 keV (105

and 6 keV) for the functional D1S (D1M), respectively. These

very low values are a clear indication of the softness of the

octupole minima in those nuclei. Because the minima are also

soft along the Q20 direction, both the quadrupole and octupole

degrees of freedom have to be considered at the same time in

a dynamical treatment of the problem [9–11].

In Tables I and III, the proton Ep(Z) and neutron Ep(N )

pairing energies are also listed. They are computed in the

usual way as Ep(τ ) = −1/2Tr[�(τ )κ∗(τ )] in terms of the

pairing field � and the pairing tensor κ for each isospin

τ = Z,N . Moving along isotopic chains, the smallest neutron

pairing energy corresponds to the N = 88 nuclei 150Sm and
152Gd, which are precisely the ones providing the largest

values of the mean-field octupole correlation energy EMF
corr.

The significant lowering of the neutron pairing energies in

these nuclei is a consequence of the low-level density typical

of deformed (quadrupole or octupole) minima, the Jahn-Teller

effect. However, proton pairing energies tend to decrease as

a function of the neutron number. In general, the proton and

neutron pairing energies for the two Gogny-EDFs considered

follow the same trend, the only relevant difference being in

their absolute values that tend to be slightly larger for D1M.

Before concluding this section, we turn our attention

to single-particle properties. The appearance of quadrupole

and/or octupole deformation effects is strongly linked to the

position of the Fermi energy in the single-particle spectrum

[1,32,40,55,61]. Therefore, the evolution of the the single-

particle energies (SPEs) for both protons and neutrons with

deformation is an interesting piece of information. In HFB

calculations the concept of SPE is assigned to the eigenvalues

of the Routhian h = t + Ŵ − λQ20
Q20 − λQ30

Q30, with t being

the kinetic energy operator and Ŵ the Hartree-Fock field. The

term λQ20
Q20 + λQ30

Q30 contains the Lagrange multipliers

used to enforce the corresponding quadrupole and octupole

constraints.

Proton and neutron SPEs for the nucleus 150Sm, computed

with both the Gogny-D1S and Gogny-D1M EDFs are pre-

sented in Fig. 3. The SPEs are plotted first as functions of the

quadrupole moment Q20 up to the value corresponding to the

ground-state minimum obtained with the Q30 = 0 constraint.

From there on, the plot continues with the representation

of the SPEs as a function of the octupole moment Q30.

The given SPEs as a function of the octupole moment have

the self-consistently determined quadrupole moment which,

in the present case, does not depart significantly from the

ground-state value at Q30 = 0.

The first significant conclusion drawn from Fig. 3 is that

the D1S and D1M SPE plots look rather similar near the Fermi

level (thick red dashed line): Both the ordering of the levels

at sphericity and their behavior with Q20 and Q30 are rather

similar. For this reason we from now on focus only on the D1M

SPEs. For protons, the positive-parity d5/2 orbital strongly

interacts with the negative-parity h11/2 one by means of the

l = 3 octupole component of the interaction. The position of

the proton’s Fermi level in the considered nucleus is located

in the center of a small gap in the single-particle spectrum that

favors octupole deformation (Jahn-Teller effect [62]). In the

neutron’s spectrum a fairly large gap near the Fermi level

also opens up when the octupole moment is switched on.

The neighboring levels come from the negative-parity f7/2

orbital and the positive-parity i13/2 intruder orbital. It is also

worth mentioning the occurrence of “quasi-j” orbitals in the

TABLE II. The same as Table I but for the isotopes 148–156Gd.

Nucleus Ep(Z) Ep(N ) D0 Q20 Q30 Ep(Z) Ep(N ) D0 Q20 Q30

D1S D1M

148Gd −15.22 −4.27 0.00 0.66 0.00 −16.11 −5.35 0.00 0.00 0.00
150Gd −14.22 −3.63 0.19 3.60 0.75 −15.43 −5.03 0.05 3.00 0.25
152Gd −12.69 −3.02 0.27 4.80 1.00 −13.18 −4.76 0.15 4.80 0.50
154Gd −7.63 −6.26 0.00 7.20 0.00 −9.25 −6.88 0.00 6.60 0.00
156Gd −7.18 −4.86 0.00 7.80 0.00 −7.66 −6.20 0.00 7.80 0.00
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FIG. 2. In panel (a) the reflection symmetric (i.e., Q30 = 0)

MFPECs for 146–154Sm and in panel (b) for 148–156Gd are plotted as

functions of the axially symmetric quadrupole moment Q20. Results

for both Gogny-D1S with solid lines and Gogny-D1M with dashed

lines are given. In each panel the energies are referred to the D1S

ground-state energy of the heavier isotope.

neutron spectrum for the Q30 values corresponding to the

minimum at around 2 b3/2. A j = 7/2 is formed at an energy

of around −4 MeV; one with j = 5/2 is located at around

−6 MeV and finally another one with j = 3/2 shows up at

an energy of −8 MeV. The same grouping of levels can also

be observed in the SPEs for protons at similar values of the

octupole moment. These quasi-j orbitals are the consequence

of the relationship between classical closed periodic orbits

for specific octupole deformed shapes and the corresponding

quantum orbitals that have to show an integer ratio between

the radial and angular frequencies (see Ref. [61], Vol II, p.

587, for a general discussion and also Ref. [29] for specific

examples in rare-earth nuclei).

III. PARITY PROJECTION

Although the HFB framework discussed in the previous

section is a valuable starting point, it produces MFPESs

with very soft minima along the Q30 direction in the nuclei

considered. This suggests the important role played by both

types of dynamical correlations: the one associated with

symmetry restoration and the other to configuration mixing.

Symmetry restoration is considered in this section while

configuration mixing is presented in the next section.

There are two spatial symmetries broken in the present

calculations. One is rotational symmetry with the quadrupole

moment as the relevant parameter and the other is reflection

symmetry (parity) with the octupole moment as the relevant

quantity. From the discussion of the mean-field results it

is clear that the softest mode is the octupole moment and

therefore the most relevant symmetry to be restored is

parity. Obviously, it would be desirable to restore also the

rotational symmetry as well as particle number. This combined

symmetry restoration is feasible but, when combined with

the configuration mixing of the next section, becomes a very

demanding computational task not considered in this paper.

The quantum interference typical of the GCM framework

could be directly used to restore the parity symmetry by

choosing appropriate weights for the configurations with

multipole moments (Q20,Q30) and (Q20,−Q30) [33]. How-

ever, to disentangle the relative contribution of the parity

restoration correlations as compared with the ones of the

GCM configuration mixing, we have carried out explicit parity

projection calculations.

To restore parity symmetry [21,30] we build positive

(π = +1) and negative (π = −1) parity-projected states

|�π (Q20,Q30)〉 = P̂π |�(Q20,Q30)〉 by applying the parity

projector P̂π to the intrinsic configuration. The parity projector

is a linear combination of the identity and the parity operator

�̂ given by

P̂π = 1
2
(1 + π�̂). (4)

The projected energies, used to construct parity-projected

potential energy surfaces (to be called PPPES in what follows),

are labeled with the multipole moments Q = (Q20,Q30) of the

intrinsic state and read [63]

Eπ (Q) =
〈�(Q)|Ĥ [ρ(�r)]|�(Q)〉

〈�(Q)|�(Q)〉 + π〈�(Q)|�̂|�(Q)〉

+π
〈�(Q)|Ĥ [θ (�r)]�̂|�(Q)〉

〈�(Q)|�(Q)〉 + π〈�(Q)|�̂|�(Q)〉
. (5)

The parity-projected mean value of proton and neutron

number, 〈�(Q)|ẐP̂π |�(Q)〉

〈�(Q)|P̂π |�(Q)〉
and 〈�(Q)|N̂P̂π |�(Q)〉

〈�(Q)|P̂π |�(Q)〉
usually differ from

the nucleus’ proton Z0 and neutron N0 numbers. To correct the

energy for this deviation we have replaced Ĥ by Ĥ − λZ(Ẑ −
Z0) − λN (N̂ − N0), where λZ and λN are chemical potentials

for protons and neutrons, respectively [30,64,65].

In the case of the Gogny-EDF, as well as for Skyrme-like

EDFs, the definite expression for the projected energy (5)

depends on the prescription used for the density-dependent part

of the functional. In this work, we resort to the so-called mixed
density prescription that amounts to consider the standard

intrinsic density

ρ(�r) =
〈�(Q)|ρ̂(�r)|�(Q)〉

〈�(Q)|�(Q)〉
(6)

and the density

θ (�r) =
〈�(Q)|ρ̂(�r)�̂|�(Q)〉

〈�(Q)|�̂|�(Q)〉
(7)

in the evaluation of the first and second terms in Eq. (5), re-

spectively. The mixed density prescription has been widely and

successfully used in the context of projection and/or configu-

ration mixing techniques (see, for example, [13,44,45,65–68]

and references therein). In fact, this is the only prescription that

guarantees various consistency requirements within the EDF

framework [44,63,69]. Even though this prescription has some

drawbacks, as put into evidence recently [69–71], the use of
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FIG. 3. (Color online) Single-particle energies (see text for details) in 150Sm are plotted as a function of the quadrupole moment Q20

(in barns) up to the value corresponding to the ground-state minimum. From there on, the plot continues with the representation of the SPEs as

a function of the octupole moment Q30. In the part of the plot where the SPEs are plotted versus Q20, solid (dashed) curves stand for positive

(negative) parity levels. The thick (red) dashed line in each plot represents the chemical potential. In the part of the plot where the SPEs are

plotted versus Q30, some levels around the Fermi level are labeled with twice their Jz value. Panels (a) and (b) [(c) and (d)] correspond to

results obtained with D1S [D1M] EDFs. Panels (a) and (c) [(b) and (d)] correspond to protons [neutrons].

other prescriptions, like the one based on the projected density,

are pathologically ill defined when applied to the restoration

of spatial symmetries [72].

As an illustrative example of PPPES, we show in Fig. 4 the

results for the nucleus 150Sm obtained with both the D1S and

D1M parametrizations of the Gogny force. Along the Q30 = 0

axis, the projection onto positive parity π = +1 is unnecessary

because the corresponding (quadrupole deformed) intrinsic

configurations are already parity eigenstates with eigenvalue

π = +1. For the same reason, the negative parity π = −1

projected wave function makes sense along the Q30 = 0 axis

only when a limiting procedure is considered. The evaluation

of physical quantities in this case is subject to numerical

inaccuracies as a consequence of evaluating the ratio of

two small quantities (the denominator is the norm of the

projected negative-parity state that is zero in this case) and

alternative expressions, obtained by considering explicitly

the Q30 = 0 limit [30], are required for a sound numerical

evaluation of those quantities. Note, however (see Fig. 5), that

the negative-parity projected energy increases rapidly while

approaching the Q30 = 0 configuration, and therefore it does

not play a significant role in the subsequent discussion of the

corresponding PPPESs. As a consequence, we have omitted

this quantity along the Q30 = 0 axis.

As in the mean-field case, the results with D1S and D1M

show a striking similarity and therefore only the D1S results

are discussed. The comparison between the MFPESs in Fig. 1

and the PPPESs in Fig. 4 clearly illustrates the topological

changes induced by the restoration of the reflection symmetry.

In general, the quadrupole moments Q20 corresponding to

the absolute minima of the PPPESs, remain quite close to

the ones obtained at the HFB level (see Tables I and II),
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FIG. 4. Positive π = +1 (top panels) and negative π = −1 (bottom panels) parity-projected potential energy surfaces (PPPES) computed

with the Gogny-D1S (left panels) and Gogny-D1M (right panels) EDFs for the nucleus 150Sm. See caption of Fig. 1 for the contour-line patterns.

increasing their values as more neutrons are added for

each of the Sm and Gd chains. However, the situation is

quite different along the Q30 direction. To obtain a more

quantitative understanding of the evolution of the PPPESs,

we have plotted in Fig. 5 the parity-projected energy curves

for self-consistent Q20 values, as a function of the octupole

moment Q30 for the nucleus 150Sm. The corresponding HFB

energy curves are also included for comparison. For 150Sm,

and all the other nuclei considered in the present study,

the negative-parity curves always show a well developed

minimum at Q30 values in the range 1.50–1.75 b3/2. However,

and regardless of the particular version of the Gogny-EDF

employed, the π = +1 curves always display a characteristic

pocket [1,23,30] with a minimum at Q30 = 0.50–0.75b3/2.

In the spirit of the variation after projection procedure, the

configuration yielding the minimum of the positive (negative)-

parity-projected energy as a function of Q20 and Q30 is to

be associated with the positive (negative)-parity state. As

a consequence of this “minimization after projection” the

intrinsic states for each parity have different deformations. The

positive-parity ground state gains an amount of energy E
parproj
corr

given by

Eparproj
corr = E

g.s.

HFB − E
g.s.

π=+1, (8)

where, E
g.s.

π=+1 corresponds to the absolute minima of the

positive-parity PPPESs and E
g.s.

HFB to the HFB ground-state

energies, that is, the absolute minima of the MFPESs.

Regardless of the Gogny-EDF employed, they are always

smaller than 900 keV in each of the considered nuclei. This

correlation energy has to be compared to the correlation energy

gained by configuration mixing (see also Fig. 10 below).

IV. GENERATOR COORDINATE METHOD

According to the discussions in previous sections, it can be

concluded that not only the plain HFB results of Sec. II, but

even the parity-projection ones, may not be sufficient to decide

whether, as suggested in Ref. [38], there exists a transition

to an octupole deformed regime in the considered nuclei in

addition to the transitional behavior along the Q20 direction

[5,6]. Within this context, (Q20,Q30)-GCM calculations are

needed to verify the stability of the quadrupole and/or octupole

deformation effects encountered in both the MFPESs and the

PPPESs for the considered Sm and Gd nuclei. One should

also keep in mind that in the framework of such a dynamical

2D-GCM treatment, not only the mean-field energy surface

but also the underlying collective inertia plays a role.

The superposition of HFB states

∣

∣�π
σ

〉

=

∫

dQf π
σ (Q)|�(Q)〉 (9)

is used to define the GCM wave functions |�π
σ 〉. In the integra-

tion domain both positive and negative octupole moments Q30

are included. The GCM amplitudes f π
σ (Q) are the solutions of

the Hill-Wheeler (HW) equation [41],

∫

dQ
′[

H(Q, Q
′

) − Eπ
σ N (Q, Q

′

)
]

f π
σ (Q

′

) = 0. (10)

The GCM Hamiltonian H(Q, Q
′
) and norm N (Q, Q

′
) kernels

are given by

H(Q, Q
′

) = 〈�(Q)|Ĥ [ρGCM(�r)]|�(Q
′

)〉,
(11)

N (Q, Q
′

) = 〈�(Q)|�(Q
′

)〉,
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ative (dotted line) parity-projected energies as a function of the

octupole moment Q30 for self-consistent Q20 values for the nucleus
150Sm. Energies are referred to the D1S HFB ground-state energy.

where in the evaluation of H(Q, Q
′
) the mixed-density pre-

scription is used,

ρGCM(�r) =
〈�(Q)|ρ̂(�r)|�(Q

′
)〉

〈�(Q)|�(Q′
)〉

. (12)

As in the parity-projection case, the Hamiltonian kernel

H(Q, Q
′
) is also supplemented with first-order corrections in

both proton and neutron numbers [30,64,65].

The solution of the HW equation (10) provides the energies

Eπ
σ corresponding to the ground (σ = 1) and excited (σ =

2, 3, . . .) states. The parity of each of these states is given

by the behavior of f π
σ (Q) under the Q30 → −Q30 exchange.

This is a consequence of the invariance under reflection

symmetry of the GCM Hamiltonian kernels. For details on the

solution of Eq. (10), the reader is referred, for example, to

Refs. [41,44,65]. Because the |�(Q)〉 basis states are not

orthogonal, the functions f π
σ (Q) of Eq. (9) cannot be inter-

preted as probability amplitudes. One then introduces (see, for

example, Refs. [41,44]) the collective wave functions

Gπ
σ (Q) =

∫

dQ
′

N
1
2 (Q, Q

′

)f π
σ (Q

′

), (13)

which are orthogonal, and therefore their modulus squared

|Gπ
σ (Q)|2 has the meaning of a probability amplitude. It is

easy to show that the parity of the collective wave functions

Gσ (Q20,Q30) under the exchange Q30 → −Q30 corresponds

to the spatial parity operation in the correlated wave functions

built up from them. The inclusion of octupole correlations

immediately restores the reflection symmetry spontaneously

broken at the mean-field level and grants the use of a parity

label π for the GCM quantities.

The collective wave functions of Eq. (13) can be used to

express overlaps of operators between GCM wave functions

in a more convenient way

〈

�π
σ

∣

∣Ô
∣

∣�π ′

σ ′

〉

=

∫

dQdQ
′

Gπ ∗
σ (Q)O(Q, Q

′

)Gπ ′

σ ′ (Q
′

), (14)

with the kernels

O(Q, Q
′

) =

∫

dQ
′′

dQ
′′′

N− 1
2 (Q; Q

′′

)〈Q
′′

|Ô|Q
′′′

〉

×N− 1
2 (Q

′′′

; Q
′

) (15)

given in terms of the operational square root of the overlap

kernel that is defined by the property

N (Q; Q
′

) =

∫

dQ
′′

N
1
2 (Q; Q

′′

)N
1
2 (Q

′′

; Q
′

). (16)

The solution of Eq. (10) allows the calculation of physical

observables like the energy splitting between positive- and

negative-parity states as well as B(E1) and B(E3) transition

probabilities. In the present study time-reversal symmetry is

preserved and therefore only excited states with an average

angular momentum zero can be accounted for. Genuine 1−

and 3− states, however, will require to consider cranking HFB

states [31,41], a calculation that is out of the scope of the

present work. We assume here that the cranking rotational

energy of the 1− and 3− states is much smaller than the ex-

citation energy of the negative-parity bandhead and therefore

it can be neglected. For the reduced transition probabilities

B(E1, 1− → 0+) and B(E3, 3− → 0+) the rotational model

approximation for K = 0 bands has been used,

B(Eλ, λ− → 0+) =
e2

4π

∣

∣

〈

�π=−1
σ

∣

∣Ôλ

∣

∣�π=+1
σ=1

〉∣

∣

2
, (17)

where σ corresponds to the first GCM excited state of negative

parity. The electromagnetic transition operators Ô1 and Ô3

represent the dipole moment operator of Eq. (3) and the proton

component Q̂30,prot of the octupole operator, respectively. The

evaluation of the overlap is carried out using Eq. (14).

In Fig. 6 the collective probability amplitude

|Gπ
σ (Q20,Q30)|2 of Eq. (13), obtained from the solution

of the HW equation (10) are plotted. As a typical example,

results for the 146,150,154Sm isotopes and the Gogny-D1S EDF

are presented. For other nuclei and Gogny parametrizations,

the results look very similar. The left panels in Fig. 6

correspond to the ground-state wave functions (i.e., σ = 1

and π = +1), while the right panels correspond to the

lowest-lying π = −1 states σ = 3 for 146Sm and σ = 2 for

the others.

The ground-state collective probability amplitude

|Gπ=+1
σ=1 (Q20,Q30)|2 reaches a global maximum at Q30 = 0

pointing to the octupole-soft character of the ground states

in 146–154Sm. The spreading along the octupole direction

is large for 150,154Sm, indicating octupole softness in these

nuclei. For the negative-parity collective wave functions the
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FIG. 6. Collective wave functions squared (|Gσ (Q20, Q30)|2) for the ground state (left panels) and the lowest negative-parity state (right

panels) for the nuclei 146,150,154Sm. The contour lines (a succession of solid, long-dashed, and short-dashed lines) start at 90% of the maximum

value up to 10% of it. The two dotted-line contours correspond to the tail of the amplitude (5% and 1% of the maximum value).

maximum is always located at a nonzero value of Q30 as

could be anticipated from the parity-projection results. For
150,154Sm the wave function spreads out farther along Q30

than in previous cases in agreement with the octupole softness

of their ground states.

To have a more quantitative characterization of the col-

lective wave functions we have computed mean values of

relevant operators [see Eq. (14)]. The first is the average of

the quadrupole moment defined as

(Q̄20)πσ =
〈

�π
σ

∣

∣Q̂20

∣

∣�π
σ

〉

. (18)

For negative-parity operators like the octupole or the dipole

moment, the above averages are zero by construction and

therefore a meaningful averaged quantity has to be defined

as

Ōπ
σ = 4

∫

Q30>0,Q
′
30>0

dQdQ′Gπ ∗
σ (Q)O(Q, Q

′

)Gπ
σ (Q

′

), (19)

where a restriction to positive values of the octupole moment

has been made. The average quadrupole Q̄
(+)
20 and octupole

Q̄
(+)
30 moments for the ground state (σ = 1) are listed in

Tables III and IV. The Q̄
(+)
20 moments follow a trend similar

to the one found within the HFB approximation, increasing

their values as more neutrons are added in a given isotopic

chain. However, the isotopic trend predicted for Q̄
(+)
30 is quite

different than the one predicted at the mean-field level. As

discussed in Sec. II, at the Gogny-HFB level only the N = 86

and 88 isotones 148,150Sm and 150,152Gd display nonvanishing

(static) octupole moments (see Tables I and II). Nevertheless,

after both projection onto π = +1 and dynamical (Q20,Q30)

fluctuations are considered at the 2D-GCM level, the octupole

deformation effects predicted for 148,150Sm and 150,152Gd

are reduced to more than half of their mean-field values.

At variance with the HFB results, the nuclei 146,152,154Sm

and 148,154,156Gd exhibit dynamical ground-state octupole

moments Q̄
(+)
30 ≈ 0.40–0.50b3/2. We conclude that, regardless

of the particular version of the Gogny-EDF employed, our 2D-

GCM calculations suggest a dynamical shape/phase transition

from weakly (146Sm and 148Gd) to well quadrupole deformed

(154Sm and 156Gd) ground states, as well as a transition to

an octupole vibrational regime in the considered Sm and Gd

nuclei.
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TABLE III. Dynamical quadrupole Q̄
(+)
20 , Q̄

(−)
20 (b) and octupole Q̄

(+)
30 , Q̄

(−)
30 (b3/2) moments corresponding to the first positive- and

negative-parity 2D-GCM states in the isotopes 146–154Sm. Results are given for both Gogny-D1S and Gogny-D1M EDFs.

Nucleus Q̄
(+)
20 Q̄

(+)
30 Q̄

(−)
20 Q̄

(−)
30 Q̄

(+)
20 Q̄

(+)
30 Q̄

(−)
20 Q̄

(−)
30

D1S D1M

146Sm 0.63 0.43 1.37 1.33 0.45 0.39 1.39 1.29
148Sm 2.28 0.54 2.01 1.77 2.93 0.52 2.10 1.65
150Sm 2.94 0.60 2.63 1.83 3.09 0.56 2.68 1.81
152Sm 5.48 0.51 3.81 1.72 5.28 0.50 3.63 1.74
154Sm 6.15 0.50 4.21 1.63 6.15 0.49 4.33 1.58

For the lowest-lying negative-parity states, the dynamical

octupole Q̄
(−)
30 and quadrupole Q̄

(−)
20 moments, computed with

the corresponding 2D-GCM states |�π=−1
σ=2 〉 or |�π=−1

σ=3 〉, are

also listed in Tables III and IV. It should be noted that the

largest values of the octupole deformations Q̄
(+)
30 and Q̄

(−)
30

always correspond to the N = 88 isotones 150Sm and 152Gd.

The values of the ground-state dipole moments D̄
(+)
0 are less

predictable than the averages of the quadrupole and octupole

moments discussed previously as the behavior of D0 for the

HFB states depends strongly upon the orbitals occupied and

those change rapidly with deformation. The comparison of

the dipole moments with available experimental data [1] is

presented in panels (a) and (b) of Fig. 7. In particular, the

comparison between the HFB results (see Tables I and II)

D̄
(+)
0 and experimental values clearly reveal the limitations

of the HFB approximation to predict dipole moments in this

region of the nuclear chart.

Another physical observable is the energy splitting between

the lowest-lying π = +1 and π = −1 states. The results for
146–154 Sm and 148–156Gd are compared in Fig. 8 with available

experimental 0+–1− and 0+–3− energy splittings [74]. As

already mentioned, in the present study we are not able to

account for genuine 1− and/or 3− states that require, for

example, the use of cranking HFB states [31,41]. With this

in mind and regardless of the Gogny-EDF employed, a rea-

sonable agreement between the theoretical and experimental

energy splittings is observed. The remaining discrepancies

imply that correlations other than (axial) quadrupole-octupole

fluctuations could also be required. In particular, the time-

odd components of the Gogny-EDF, incorporated throughout

cranking calculations, should be further investigated within the

present 2D-GCM framework. Let us mention that the results

are compatible with the ones obtained in Ref. [33] using a

1D collective Hamiltonian whose parameters are derived from

octupole constrained calculations. This is also the case with

the systematic calculations of Ref. [60] using a GCM with the

octupole degree of freedom as a generating coordinate.

In panels (a) and (b) of Fig. 9, the B(E1, 1− → 0+)

reduced transition probabilities of Eq. (17) are compared

with experimental data [1]. It is very satisfying to observe

how, without resorting to any effective charges, the predicted

B(E1, 1− → 0+) values in Sm nuclei follow the experimental

isotopic trend with a slight improvement in the case of the

Gogny-D1M EDF. In panels (c) and (d) of the same figure, we

compare the B(E3, 3− → 0+) transition rates of Eq. (17)]

with available data [73]. The predicted B(E3, 3− → 0+)

values reproduce quite well the experimental ones in the case

of 152,154Sm and 154,156Gd. However, from the comparison

between ours and the B(E1, 1− → 0+) and B(E3, 3− → 0+)

rates obtained in Refs. [33] and [60], we can conclude that

they are, to a large extent, not very sensitive to quadrupole

fluctuations.

In panels (a) and (b) of Fig. 10, the correlation energies

defined as the difference between the reference HFB ground-

state energy and the 2D-GCM one,

E2D−GCM
corr = E

g.s.

HFB − Eπ=+1
σ=1 , (20)

are plotted. The parity restoration correlation energies E
parproj
corr

of Eq. (8) are also included for comparison. The predicted

isotopic trends and quantitative values of E2D−GCM
corr are quite

similar for both Gogny-D1S and Gogny-D1M EDFs. The

correlation energies E2D−GCM
corr exhibit a relatively weak de-

pendence with neutron number with values oscillating between

1.74 and 2.09 MeV for Sm and between 1.83 and 2.17 MeV

for Gd nuclei. The smooth variation of the correlation energy

is, however, of the same order of magnitude as the rms for

the binding energy in modern nuclear mass tables [43] and

TABLE IV. The same as Table III but for the isotopes 148–156Gd.

Nucleus Q̄
(+)
20 Q̄

(+)
30 Q̄

(−)
20 Q̄

(−)
30 Q̄

(+)
20 Q̄

(+)
30 Q̄

(−)
20 Q̄

(−)
30

D1S D1M

148Gd 0.23 0.44 1.05 1.35 0.12 0.41 0.97 1.29
150Gd 2.46 0.52 1.78 1.74 2.53 0.47 1.57 1.65
152Gd 3.47 0.57 2.66 1.79 3.50 0.55 2.73 1.73
154Gd 5.72 0.50 3.75 1.74 5.50 0.49 3.31 1.68
156Gd 6.51 0.49 4.47 1.59 6.40 0.48 4.56 1.61
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FIG. 7. (Color online) The dynamical dipole moments provided

by the GCM calculations for the nuclei 146–154Sm and 148–156Gd are

shown, as functions of the neutron number, in panels (a) and (b).

Experimental dipole moments are taken from Ref. [1]. Results are

shown for both Gogny-D1S and Gogny-D1M EDFs.

therefore the dynamical octupole correlation energies should

be considered in improved versions of them.

A rough estimate of the contribution of the (Q20,Q30)

fluctuations to the correlation energies can be obtained by

subtracting to the total correlation energy the parity-projected

one. Those contributions range between 0.94 and 1.41 MeV for

Sm isotopes and between 0.94 and 1.56 MeV for Gd isotopes.

The oscillations are slightly larger than for the total correlation

energy.

To determine the contributions of each degree of freedom

in the results obtained we have also performed 1D GCM

calculations along each of the degrees of freedom. First, the

octupole moment has been used as a generating coordinate. For

each octupole moment considered, the quadrupole moment

corresponds to the minimum energy. The octupole moments

of the generating wave functions are taken in the range

−7b3/2 � Q30 � 7b3/2 and with a mesh size δQ30 = 0.25b3/2.

The 1D-GCM ansatz is

∣

∣�π
σ,1D−Q3

〉

=

∫

dQ30f
π
σ,1D−Q3(Q30)|�(Q30)〉 (21)

given in terms of the HFB states |�(Q30)〉. Note that no

quadrupole constraint is imposed in these calculations. From

the 1D-Q3 ground-state energies we can compute the 1D
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FIG. 8. Predicted energy splittings between the lowest lying

π = +1 and π = −1 2D-GCM states in 146–154Sm and 148–156Gd are

compared with the experimental 0+−1− and 0+−3− splittings [74].

Results are shown for the D1S parametrization of the Gogny force as

D1M ones are rather similar.
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FIG. 9. Theoretical and experimental transition rates

B(E1, 1− → 0+) [panels (a) and (b)] and B(E3, 3− → 0+)

[panels (c) and (d)] for the nuclei 146–154Sm and 148–156Gd. Results

are shown for the Gogny-EDFs D1S and D1M. Experimental results

for B(E1, 1− → 0+) rates are extracted from Ref. [1], while the

experimental B(E3, 3− → 0+) rates are taken from Ref. [73].

octupole correlation energy,

E1D−Q3
corr = E

g.s.

HFB − Eπ=+1
σ=1,1D−Q3. (22)
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FIG. 10. (Color online) The 2D-GCM correlation energies for

the nuclei 146–154Sm (a) and 148–156Gd (b) are shown as functions of

the neutron number. The correlation energies stemming from the

restoration of reflection symmetry are also included. Results are

shown for both Gogny-D1S and Gogny-D1M EDFs. For more details,

see main text.
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FIG. 11. (Color online) The sum (blue curve named 1D-Q2 + 1D-

Q3) of the correlation energies E1D−Q3
corr [Eq. (22)] (green curve named

1D-Q3) and E1D−Q2
corr [Eq. (24)] (red curve named 1D-Q2) is compared

with the correlation energy E2D−GCM
corr [Eq. (20)] (black curve named

2D-GCM) provided by the full 2D-GCM calculations in 146–154Sm and
148–156Gd. Results are shown for both Gogny-D1S and Gogny-D1M

EDFs. For more details, see main text.

This quantity is displayed in panels (a) to (d) of Fig. 11 for

the considered Sm and Gd nuclei. It has to be mentioned that

this type of calculations have been carried out for all possible

even-even nuclei with several parametrizations of the Gogny

force in Ref. [60].

In a second step, GCM calculations with the quadrupole

degree of freedom (Q30 = 0, that is, reflection symmetry is

preserved) as a generating coordinate have been performed.

The Q20 values used are in the interval −30b � Q20 � 30b

with δQ20 = 0.6b. The GCM wave functions

|�σ,1D−Q2〉 =

∫

dQ20fσ,1D−Q2(Q20)|�(Q20)〉 (23)

are defined in terms of the states |�(Q20)〉. The corresponding

correlation energy

E1D−Q2
corr = E

g.s.

HFB − Eσ=1,1D−Q2 (24)

is displayed in panels (a) to (d) of Fig. 11.

In panels (a) to (d) of Fig. 11, we compare the

sum E1D−Q2+1D−Q3
corr = E1D−Q3

corr + E1D−Q2
corr with the correlation

energies E2D−GCM
corr of Eq. (20). For the particular set of Sm and

Gd nuclei considered in the present study and regardless of

the Gogny-EDF employed, the correlation energies provided

by the full 2D-GCM are very well reproduced by the sum

of the ones obtained in the framework of the 1D-GCM

approximations (21) and (23). Obviously, this is far from

being a general statement and further explorations in other

regions of the nuclear chart, specially those showing shape

coexistence already at Q30 = 0 are required. Nevertheless, the

kind of decoupling observed in our results may be potentially

relevant to incorporate correlation energies stemming from

parity restoration and octupole fluctuations in large-scale

calculations of nuclear masses based on the Gogny-EDF (see,

for example, Ref. [53]), as well as in future fitting protocols

beyond the most recent D1M parametrization [43] of the

Gogny EDF.

V. CONCLUSIONS

Calculations have been carried out using the GCM method

and with the multipole moments Q20 and Q30 as generating

coordinates for several Sm and Gd isotopes and with different

parametrizations of the Gogny force. The results from different

parametrizations are very close to each other, indicating again

that the D1M parametrization of the Gogny force performs as

well as D1S in spectroscopic calculation. The comparison with

experimental data is fairly good both for excitation energies

and electromagnetic transition probabilities reassuring the

predictive power of the Gogny class of EDFs. Comparison of

the 2D GCM results with the outcome of previous 1D collective

Schrödinger equation calculations in the same region points to

a decoupling of the dynamics of the quadrupole and octupole

degrees of freedom. This conclusion is reinforced by the

comparison of the 2D correlation energies with the sum of

correlation energies along each of the degrees of freedom.

Correlation energies show a smooth behavior with neutron

number with differences between different isotopes as large

as 200 keV. Although these differences are small, they can be

relevant for theories aiming at providing accurate mass tables

for applications requiring accurate reaction rates that depend

on their energetic balance.
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