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We present the results of an analytical theory and numerical simulations of microscopic fields in
dipolar liquids. Fields within empty spherical cavities �cavity field� and within cavities with a probe
dipole �directing field� and the field induced by a probe dipole in the surrounding liquid �reaction
field� are considered. Instead of demanding the field produced by a liquid dielectric in a large-scale
cavity to coincide with the field of Maxwell’s dielectric, we continuously increase the cavity size to
reach the limit of a mesoscopic dimension and establish the continuum limit from the bottom up.
Both simulations and analytical theory suggest that the commonly applied Onsager formula for the
reaction field is approached from below, with increasing cavity size, by the microscopic solution. On
the contrary, the cavity and directing fields do not converge to the limit of Maxwell’s dielectric. The
origin of the disagreement between the standard electrostatics and the results obtained from
microscopic models is traced back to the failure of the former to account properly for the transverse
correlations between dipoles in molecular liquids. A new continuum equation is derived for the
cavity field and supported by numerical simulations. Experimental tests of the theoretical results are
suggested. © 2008 American Institute of Physics. �DOI: 10.1063/1.3006313�

I. INTRODUCTION

Maxwell1 used cavities carved in continuum to define
the electric field E inside dielectrics. Lorentz instead used
averages of microscopic fields over “physically infinitesi-
mal” volumes to derive material Maxwell’s equations.2 Both
approaches are different facets of the same question: How to
relate microscopic fields within dielectrics to the macro-
scopic �Maxwell� field. This question, which has many rami-
fications in condensed-matter physics,3 is certainly relevant
to theories of dielectrics since any mean-field theory of di-
electric response has to address the question of what is the
local field acting on a liquid permanent or induced dipole.
Debye’s approach to this question4 was to calculate the local
field as a sum of the macroscopic field E and the field of
liquid dipoles proportional, on average, to the dipolar polar-
ization P:

Eloc = E + �P , �1�

where the coefficient �, which we will call the “depolariza-
tion coefficient,” needs to be determined from dielectric
theories.

The polarization field P in Eq. �1� is related, on one
hand, to the dielectric constant and, on the other hand, to the
density of dipoles induced in the liquid,

P =
� − 1

4�
E = ��Eloc. �2�

Here, � is the number density and � is the molecular polar-
izability which is equal to the dipolar polarizability for in-
duced dipoles and to �m2 /3 for permanent dipoles m; � is
the inverse temperature. Only permanent dipole moments are

considered in the rest of our discussion and so the dipolar
polarizability is set equal to zero.

The equation for the local field follows from Eqs. �1�
and �2�,

Eloc = �1 − ����−1E . �3�

Also, the dielectric constant derived from Eqs. �1� and �2�,

� = 1 +
4���

1 − ���
, �4�

anticipates the possibility of a polarization catastrophe at
���=1. When ����1, the system becomes globally un-
stable, ��0, and transition to the ferroelectric phase is ex-
pected, i.e., a spontaneous creation of a net dipolar polariza-
tion without an external electric field. A relation similar to
Eq. �4� can be written for the k-dependent response. If ��k�
becomes negative at some values of k,5 the system is glo-
bally stable but becomes unstable to some excitations; polar-
ization waves6 and Cooper pairs3 are the examples.

The choice �=4� /3 corresponds to the Lorentz local
field4

Eloc = EL =
� + 2

3
E . �5�

While this choice of � is generally accepted in the theory of
ferromagnetism �Weis theory�, its counterpart for electric di-
poles leads to the Debye equation4 predicting ferroelectric
order at the dipolar density y=1,a�Electronic mail: dmitrym@asu.edu.
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y =
� − 1

� + 2
, �6�

where y= �4� /9���m2. Since many polar liquids are
paraelectric at y�1, alternative definition of the depolariza-
tion coefficient in Eq. �1� is required.

Onsager7 suggested that the depolarization coefficient
should decrease with increasing dielectric constant as fol-
lows:

���� = 4��2� + 1�−1, �7�

which results in the Onsager relation when substituted into
Eq. �4�:

y =
�� − 1��2� + 1�

9�
. �8�

Even though local correlations, incorporated into the Kirk-
wood factor gK,8 were missing from Onsager’s formulation,
the theory has enjoyed success because of the destructive
effect of molecular quadrupoles on the local dipolar order,
making the Kirkwood factor close to 1 for many molecular
liquids.4,8

The Onsager depolarization function ����, which coin-
cides with the Lorentz approach only at �=1, leads to the
local field equal to the field inside a physical spherical cavity
carved from the dielectric4 �cavity field Ec

cont�,

Eloc = Ec
cont =

3�

2� + 1
E . �9�

We will dub Ec
cont as the Maxwell cavity field throughout

below since it follows from the solution of the Maxwell ma-
terial equations for a spherical cavity in a uniformly polar-
ized dielectric.9,10

The Onsager formulation has eliminated the ferroelectric
transition from the theory. This result has been recently chal-
lenged by computer simulations which had produced ferro-
electric phase in model dipolar fluids.11–13 It was also found
that the result is sensitive to the boundary conditions em-
ployed in the simulation protocol,14 i.e., to the magnitude of
the depolarization field, a result known since the calculations
by Luttinger and Tisza15 of dipolar crystals. It is still not
entirely clear if these model results are transferable to mo-
lecular polar liquids.16–18

On the theoretical side, Ramshaw19 and Høye and Stell20

extended Debye’s equation to

� − 1

� + 2
= y�1 − ��/3�c̃110�0��−1, �10�

where c̃110�k� is the projection of the inverted-space direct
correlation function on the scalar product rotational
invariant.8 The existence of the ferroelectric transition,
�c̃110�0�=3, is then fully determined by the short-range di-
polar correlations21 which are still hard to determine accu-
rately by analytical techniques.22

An important question lingering behind many of these
developments, which has remained mostly unanswered, is to
what extent continuum electrostatics can be applied to the
calculation of the microscopic fields within dielectrics: Eloc,

Ec, and, in addition, the reaction field R central to the On-
sager theory and its applications to spectroscopy and
solvation.23 The local field Eloc is by definition a mean-field
construct and can in fact be different from the Onsager di-
recting field4,7 Ed. The latter is the difference of the total
microscopic field Emic acting on a dipole inside a dipolar
liquid and the reaction field R which does not contribute to
the torque rotating the dipole in the external field of the
dielectric experiment.

Both the local and directing fields might, in turn, differ
from the field inside a physical cavity. In the latter case, the
existence of a physical interface might modify the local den-
sity profile and/or dipolar correlations compared to the situ-
ation when a molecule within a homogeneous liquid is con-
sidered �Fig. 1�. The cavity field can in fact be defined as the
directing field in the limit of zero target dipole �m0 in Fig. 1�
inside the excluded volume, which is usually the repulsive
core of a target molecule.

This paper analyzes the distinctions between these dif-
ferent dielectric fields from the perspective of both the mi-
croscopic liquid-state theories and numerical simulations.
Apart from examining the microscopic fields in fluid dielec-
trics, our study allows us to gain insights into a more general
question of the convergence of the dielectric properties of
molecular liquids to those anticipated by the standard con-
tinuum electrostatics. The study thus asks the following
question: how far is the physical system of a fluid dielectric
from the mathematical construct of Maxwell’s dielectric?

II. CALCULATION OF FIELDS IN DIELECTRICS

A. Formalism

In order to set up the calculation of the dielectric re-
sponse in terms of microscopic properties of dielectrics, we
will consider the Gaussian generating functional for the di-
polar polarization field P:24,25

G�A� =� eA�P−�HB�	P��

0

	�P�r��DP . �11�

Asterisk between two vector fields refers to both the space
integration and tensor contraction. When asterisk connects

fields with tildes, as in Ẽ� P̃, this stands for the integration in
inverted space of the scalar product of two Fourier trans-

forms Ẽ and P̃ of the fields E and P, respectively. Further, in
Eq. �11�, HB�	P� is the Hamiltonian of the polarization fluc-

E
m0

d
E c

a) b)

E E0 0

FIG. 1. �a� Onsager’s directing field Ed inside a dipolar liquid and the �b�
cavity field Ec inside a physical cavity carved in the liquid placed in the
uniform external field E0. The local field Eloc �Eq. �3�� is a mean-field
approximation for Ed. m0 is the dipole moment of a target molecule.
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tuations 	P characterized by the response function of the
pure isotropic solvent �s�k�,

HB�	P� = 1
2 �	P̃�2 � �s

−1. �12�

The product of 	 functions in Eq. �11� excludes the polariza-
tion field, over which the functional integral is taken, from
some volume 
0 within the liquid.24 This volume can
specify the cavity in the dielectric for the cavity field calcu-
lations or the volume of a given target molecule for the cal-
culation of directing/microscopic fields in the bulk dielectric.
To combine these two possibilities, we will call the volume

0 the “solute volume.”

The constraint imposed on the polarization field to van-
ish from the solute space modifies the response function
from that of the pure solvent �s�k1� to a nonlocal response
function ��k1 ,k2� depending on two wave vectors.26 This
function is obtained by taking the second derivative of
ln�G�A�� in the auxiliary field A and setting A=0. The result
is

��k1,k2� = �s�k1�	k1,k2
− �corr�k1,k2� , �13�

where the correction response function �corr�k1 ,k2� accounts
for the effect of the solute excluding the polarization field
from its volume. This second component is given by the
following equation:

�corr�k1,k2� = ���k1��0�k1 − k2� · �s�k2� . �14�

Here, �0 is the Fourier transform of the step function limiting
the solute volume

�0�k� = �

0

eik·rdr �15�

and the response function ���k� is given as a sum of projec-

tions on longitudinal, JL= k̂k̂, and transverse, JT=1− k̂k̂, dy-
ads,

�� = JL��L + JT��T. �16�

Here and below, hats over bold characters denote unit vec-
tors. Further, in Eq. �16�, the scalar response functions ��L,T,

��L,T =
SL,T

SL,T − ��L,T , �17�

are given in terms of the structure factors of the longitudinal
and transverse polarization fluctuations, SL�k� and ST�k�, and
the response functions ��L,T are specified below.

The polarization structure factors �Fig. 2� enter the re-
sponse function of the homogeneous dipolar liquid in Eq.
�12� in the form of two orthogonal, longitudinal, and trans-
verse, projections,27

�s�k� =
3y

4�
�SL�k�JL + ST�k�JT� . �18�

The structure factor functions are obtained by averaging the
projections of unit dipole vectors ê j on an arbitrary chosen

wave vector k̂ according to the equations

SL�k� =
3

N
�	

i,j
�êi · k̂��k̂ · ê j�eirij·k
 ,

�19�

ST�k� =
3

2N
�	

i,j
��êi · ê j� − �ê · k̂��k̂ · ê j��eirij·k
 ,

where rij =ri−r j and N is the number of particles in a polar
liquid. Their k=0 values are related to the dielectric constant
as follows:8

SL�0� =
� − 1

3y�
,

�20�

ST�0� =
� − 1

3y
.

Equation �20� can be viewed as a microscopic definition
of the dielectric constant. This definition thus does not re-
quire assuming the locality of the response entering the elec-
trostatic constitutive relation �left-hand side of Eq. �2�� and
does not involve problems related to the dependence of the
result on the sample shape.28 In addition, the trace gK

= �1 /3��SL�0�+2ST�0�� is the Kirkwood g factor, and Eq.
�20� leads to the Kirkwood–Onsager equation

ygK =
�� − 1��2� + 1�

9�
. �21�

The projections ��L,T in the denominator in Eq. �17�
renormalize the dielectric response by excluding the dipolar
polarization field from the volume of the solvent. They can
be expressed through projections of the pair distribution
function of the homogeneous dipolar liquid on rotational
invariants,26

��L�k� = ��/3��

�

dr�h110�r�j0�kr� − 2h112�r�j2�kr�� ,

�22�

��T�k� = ��/3��

�

dr�h110�r�j0�kr� + h112�r�j2�kr�� .

Here, for a spherical solute of radius R0, 
� is the volume
outside of a sphere of the radius 2R1, where

0 4 8 12
kσ

0

2

4

6

S
L

,T
(k

)

(m
*
)
2

= 1.0

(m
*
)
2

= 2.5

T

L

FIG. 2. Longitudinal �L� and transverse �T� structure factors of the dipolar
hard-sphere liquid from numerical simulations at ��=0.8 and �m��2=2.5
�solid lines, �=53.7� and 1.0 �dashed lines, �=8.52�.
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R1 = R0 + /2 �23�

is the distance of the closest approach of the liquid molecule
of diameter  to the solute repulsive core. The functions
h110�r� and h112�r� in Eq. �22� are the projections of the
orientation-dependent pair distribution function of the homo-
geneous dipolar liquid on rotational invariants.8,29

The functions ��L,T, defined by Eq. �22�, are affected by
two types of correlations in the liquid, the short-range corre-
lations expressed by the projection h110�r� and, partially, by
h112�r� and long-range dipolar correlations represented by the
long-distance asymptote of h112�r�:8

�h112�r� �
�� − 1�2

4�y�

1

r3 . �24�

If the short-range correlations are neglected and only the
long-range asymptote of h112�r� is left in Eq. �22�, one easily
gets

��L�k� = − 2A�k�, ��T = A�k� , �25�

where

A�k� =
�� − 1�2

3�y

j1�2kR1�
2kR1

. �26�

Since integration in Eq. �22� extends beyond the distance
r�2R1, the short-range correlations do not contribute much
to the integral in Eq. �22� and approximation �25� is fulfilled
quite well even for the cavity size equal to that of the liquid
molecule �Fig. 3�a��. This approximation becomes increas-
ingly accurate with growing cavity �see Figs. 3�a� and 3�b��
making the replacement in Eq. �25� very accurate for most
practical calculations.

B. Cavity field

We now consider a spherical cavity inside a dielectric
liquid and use the response function from Eqs. �13� and �14�
to determine the cavity field. Considering dielectric placed in
a uniform external field E0, we can obtain the projection of
the field inside the cavity on the direction of that external
field, ê0=E0 /E0:

Ec = E0 + ê0 · T̃ � � � Ẽ0 · ê0. �27�

Here, Ẽ0=E0	k,0 is the Fourier transform of the external field

and T̃ is the Fourier transform of the dipole-dipole interac-
tion tensor excluding the hard core of the solute with the
radius of closest approach R1 �Eq. �23��:

T̃ = − 4�Dk
j1�kR1�

kR1
, �28�

where Dk=3k̂k̂−1 and jn�x� is the spherical Bessel function
of order n.

Substituting � from Eq. �13� to Eq. �27� one gets

Ec

E0
=

� + 2

3�
− ê0 · T̃ � �corr�k,0� · ê0. �29�

The first term in this equation is the Lorentz field4 �Eq. �5��
which appears in our formalism as the field inside small
cavities30 of size much smaller than the length of dipolar
correlations in the liquid. This result is in line with the defi-
nition of the Lorentz field used by Ramshaw.19 The opposite
limit of macroscopically large cavities turns out to be trickier
to derive.

For a spherical cavity, the Fourier transform of the cavity
step function �0�k� in Eq. �15� becomes

�0�k� = 4�R1
3 j1�kR1�

kR1
. �30�

Therefore, combining Eqs. �14�, �28�, and �30� and using Eq.
�20� in Eq. �18� to obtain �s�0�, one gets

Ec

E0
=

� + 2

3�
−

4R1

3�

� − 1

�
�

0

�

j1
2�kR1����T�k� − ��L�k��dk .

�31�

The presence of a cavity alters the response functions ��L,T

through ��L,T in the denominator of Eq. �17�; if this compo-
nent is neglected, the second integral in Eq. �31� vanishes,
resulting in the Lorentz field.

The continuum limit of a macroscopically large cavity is
now obtained by assuming that the functions ��L,T�k� do not
change in the range of k values, k�2� /R1, in which j1

2�kR1�
decays and, therefore, by replacing ��L,T�k� with their k=0
values, ��L,T�0�. This immediately leads to the result of con-
tinuum electrostatics:4

Ec
cont

E0
=

3

2� + 1
. �32�

Our formulation therefore contains two well-established
limits: the field inside small cavities, much smaller that the
length scale of dipolar correlations �Lorentz field�, and the

0

0.5

1

1.5

0 1 2 3 4 5
kσ

0

0.5

1

1.5

ε = 31

ε = 8.51

(a)

(b)

ε = 31

ε = 8.52

FIG. 3. Response functions −��L�k� /2 �dashed lines� and ��T�k� �dashed-
dotted line� calculated from Eq. �22� and compared to A�k� �solid line, see
Eqs. �25� and �26��. The upper curves are obtained at �=31, �m��2=2.0,
while the lower curves refer to �=8.52, �m��2=1.0; ��=0.8. The h110�k� and
h112�k� projections required for the integration in Eq. �22� have been ob-
tained from MC simulations. Panels �a� and �b� correspond to R0 /=0.5 and
1.5, respectively.
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field inside macroscopic cavities for which macroscopic
electrostatics apply �Eq. �32��. However, it is easy to realize
that there are problems with the derivation of Eq. �32� for
cavities of finite size. First, it is not clear if the k=0 limit can
be applied to both SL,T�k� and ��L,T�k� in Eq. �17� since
��L,T�k� decay on about the same scale of k as does j1

2�kR1� in
Eq. �31�. Second, whereas the longitudinal structure factor is
reasonably flat at small k values, the transverse structure fac-
tor decays very sharply from its k=0 value, approaching
delta function at the ferroelectric transition �Fig. 2�. The ap-
plication of the continuum limit to the transverse part of the
response is therefore not well justified. This problem is
clearly seen in the fact that ��T�k�−��L�k� can be rewritten as

��T�k� − ��L�k� =
��T

ST − ��T −
��L

SL − ��L . �33�

When Eq. �25� ���L�k�=−2A�k� and ��T=A�k�� is used in Eq.
�33�, the oscillatory function A�k� �Eq. �26�� becomes a part
of the integral. If now the continuum k=0 substitute is used
only for the denominators in Eq. �33�, one gets an alternative
“continuum limit” for the cavity field:

Ec
cont

E0
=

7�� + 1�2 + 8�

12��2� + 1�
. �34�

This cavity field does not decay to zero with increasing � but
instead saturates at 7/24, implying that the ability of a polar
liquid to screen the external field is not unlimited as Eq. �32�
would suggest.

The main result of this calculation is the realization that
the definition of the dielectric continuum is based on the
smallness of the ratio of the correlation length of dipolar
interactions in the liquid to the physical size of the cavity.
Since the dipolar correlation length depends on solvent po-
larity, in particular, for transverse response, the definition of
continuum for a given cavity size may vary depending on the
polarity range considered. In fact, the full calculation accord-
ing to Eq. �31� predicts branching between two continuum
solutions through a point of singularity.

Figure 4 shows the results of calculating the cavity field
from Eq. �31� using the response functions ��L,T from our
Monte Carlo �MC� simulations �points�. The range of nu-
merical calculations is limited since, with growing �, the
response function ��L�k� gains a real-axis singularity corre-
sponding to a real solution k� of the equation

SL�k�� − ��L�k�� = 0. �35�

The real-axis singularity signals the appearance of a non-
decaying polarization wave induced by the cavity and radi-
ally propagating from it through the entire liquid. This lon-
gitudinal polarization wave is terminated at the boundary of
a dielectric sample where it creates surface charges. In real-
ity, it may terminate at the surface of a polar domain of a
nanoscale dimension as suggested by Shelton’s hyper-
Rayleigh scattering experiments.16,17

Because of the real-axis singularity, numerical integra-
tion cannot be done in the range of parameters where a so-
lution k� in Eq. �35� exists. The integral should be replaced
with pole calculus, which requires an analytical solution for

��L�k�. This calculation, shown by the dashed lines in Fig. 4,
was done by using expressions �25� and �26� for ��L,T and
parametrized mean-spherical approximation �MSA� �Ref.
29� solution for SL,T�k�.31 This approximation corrects the
MSA polarization structure factors by requiring them to sat-
isfy the k=0 results given by Eq. �20�. The dielectric con-
stant at each dipole moment is taken from our MC simula-
tions.

The calculations done by both pole summation and by
numerical integration in the range of polarities before the
appearance of the singularity are in good agreement with
each other and with the numerical calculations using the re-
sponse functions from simulations �points in Fig. 4�. Only
pole summation applies after the singularity falls on the real
axis, and it shows a discontinuous drop of the cavity field to
the level close to the macroscopic solution given by Eq. �32�.

In order for the solution to switch to the ordinary mac-
roscopic limit, the singularity k� should be a part of the sam-
ple’s spectrum of wavenumbers. The spectrum of k is limited
to a discrete set of lattice values for a finite-size sample, and
it is hardly possible for k� to coincide with one of the lattice
vectors. Indeed, when continuous k integration in Eq. �12� is
replaced with the lattice sum according to the rule

� dk/�2��3 → L−3 	
n,l,m

, �36�

we do not observe a rising part of the cavity field �dashed-
dotted line in Fig. 4�. In Eq. �36�, L is the size of the cubic
lattice and the lattice wave vectors are �2� /L��n , l ,m. As
expected from this calculation, we in fact have not observed
switching to the ordinary continuum in our finite-size nu-
merical simulations �see below�.

C. Reaction field

The reaction field R is produced by the liquid polariza-
tion induced by the dipole moment m0 of a target molecule

0 10 20 30 40
ε

0

0.2

0.4

0.6

0.8

1

E
c/E

0

r
1

= 1.0
r
1

= 2.0

FIG. 4. Cavity field calculated from Eq. �31� with two cavity sizes indicated
by the distance of the closest approach, r1=R0 /+0.5, in the plot. The
points were obtained by numerical integration in Eq. �31� with SL,T�k� from
MC simulations �r1=1.0�, while the dashed lines refer to the calculations
using the parametrized MSA �Ref. 31�. The integral is calculated numeri-
cally before the appearance of the singularity on the real axis �Eq. �35�� and
by summation over the poles when the singularity falls on the axis. The two
methods give identical results when numerical integration is justified. The
upper and lower solid lines refer to two continuum limits, Eqs. �34� and
�32�, respectively. The dashed-dotted line refers to the lattice summation
�Eq. �36�� instead of continuous integration in Eq. �31� taken for a cubic cell
of N=108, r1=2.0.
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�solute, Fig. 1�. It is parallel to the dipole moment m0, re-
sulting in the free energy of dipole stabilization �solvation
chemical potential� �0s=−m0R /2. Since the response func-
tion of a polar liquid follows from the generating functional
in Eq. �11�, the reaction field can also be obtained from the
formalism outlined above after replacing the uniform exter-

nal field with the field of a point dipole Ẽ0. The chemical
potential of solvation �0s is then given by a simple relation,26

�0s =
3

2� + 1
���0s

L + �0s
T � , �37�

where the longitudinal and transverse components of the sol-
vation free energy are

− �0s
L,T = �3y/8���Ẽ0

L,T�2 � SL,T�k� . �38�

Here, as above, the asterisk implies the inverted-space inte-
gration.

When the dipolar field is substituted into Eqs. �37� and
�38�, one gets for the reaction field R

R =
12ym0

�R1
2�2� + 1��0

�

j1
2�kR1��2�SL�k� + ST�k��dk . �39�

If the k dependence of the structure factors in Eq. �39� is
neglected, one arrives at the standard Onsager solution for
the reaction field,7

Rcont =
2m0

R1
3

� − 1

2� + 1
. �40�

Therefore, the continuum Onsager result is the k=0 limit of
the microscopic equations and no new solution occurs, in
contrast to the case with the cavity field.

The cavity radius is not specified in continuum models,
but the common practice suggests to use the hard-sphere ra-
dius R0 instead of the radius of the solvent-accessible sphere
R1 in Eq. �40�. Other parametrizations, commonly resulting
in effective radii between R0 and R1, are of course also pos-
sible. In particular, perturbation models of dipole
solvation32,33 suggest the following expression for the effec-
tive cavity radius:

Reff
−3 = 3�

0

�

g0s�r��dr/r4� , �41�

where g0s�r� is the solute-solvent radial pair distribution
function. The effective radius Reff�r1 ,��� as a function of r1

=R0 /+0.5 and the solvent reduced density �� were tabu-
lated in terms of simple polynomial functions in Refs. 33 and
34 by using the hard-sphere approximation for g0s�r� in Eq.
�41�.

D. Microscopic field

The local field Eloc defined in Eqs. �1�–�3� above repre-
sents the mean-field approximation for the directing field,
i.e., the field acting on a given dipole from a dielectric uni-
formly polarized by an external electric field. Following
Onsager,7 we will distinguish the directing field from the
actual microscopic electric field created by both the polar-
ized dielectric and the polarization induced in the surround-

ings by the target dipole itself, the Onsager reaction field.7

All these considerations are commonly applied to homoge-
neous polar liquids. We instead approach the problem here
from a somewhat more general perspective considering a
probe dipole m0 at the center of a spherical cavity with the
radius R0 immersed in a uniformly polarized dipolar liquid
�Fig. 1�.

Assuming that a weak external field produces a linear
perturbation of the system, it is straightforward to show that
the microscopic field Emic in the direction of the uniform
external field is a sum of the field created by the polarized
dielectric at the position of the molecule, Ed, and the average
projection of the reaction field R on the direction of the
external field ê0:

Emic = Ed + �ê0 · R
 . �42�

Here, the angular brackets denote a statistical average over
the perturbed Hamiltonian H=H0−M ·E0, where H0 is the
Hamiltonian of the system without the uniform external field
E0 and M is the total dipole moment of the system.

Since the reaction field is always parallel to the target’s
dipole, Onsager’s directing field Ed in Eq. �42� is responsible
for the torque rotating the dipole in an external electrical
field and is ultimately connected to the dielectric response.
Field Ed has the physical meaning of a “virtual” cavity field
when no real interface exists in the liquid. It should in prin-
ciple be distinguished from the actual cavity field Ec when
such an interface exists, even though these two fields are
often considered equal, as in the Onsager formulation �Eq.
�9��.

Since the reaction field is directed along m0 such that
R= fm0, one gets

Emic = Ed + f��m0
2/3�gK

�0�E0, �43�

where

gK
�0� = 1 +

m

m0
	
j�0

�m̂0 · m̂ j
0 �44�

and �¯
0 denotes an ensemble average in the absence of the
external field.

The term gK
�0� �Eq. �44�� determines the angular correla-

tion of the probe dipole with the dipoles in the dipolar sol-
vent. It becomes the Kirkwood g factor in the case of a
homogeneous liquid �m0=m�. By using the Maxwell cavity
field from Eq. �9� and the Onsager reaction field from Eq.
�40�, one can obtain the continuum prediction for the micro-
scopic field:

Emic

E0
=

3

2� + 1
+

2�� − 1�
2� + 1

�m0

m
�2� 

2R0
�3 ygK

�0�

�
, �45�

where �= �� /6��3 is the liquid packing fraction. In the case
of a homogeneous liquid with m0=m and 2R0= one can use
the Kirkwood–Onsager equation �Eq. �21�� with the result

Emic

E0
=

3

2� + 1
+

2�� − 1�2

9��
. �46�

This equation predicts that at large polarities the microscopic
field scales linearly with the dielectric constant with the
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slope 2 /9�. In the opposite limit of large cavities, the corre-
lation term gK

�0� is expected to tend to unity and the corre-
sponding continuum solution becomes

Emic

E0
=

3

2� + 1
+

2�� − 1�2

9��gK
�m0

m
�2� 

2R0
�3

. �47�

III. MONTE CARLO SIMULATIONS

The discussion above has focused on macroscopic sys-
tems in the thermodynamic limit N→�. Given different con-
tinuum limits achievable for the cavity field, it is not entirely
clear if periodic systems commonly employed in numerical
simulations35 can adequately describe the macroscopic limit
for dielectric fields in a system with long-range dipolar in-
teractions. The fact that simulations converge to a certain
limit at N→� does not necessarily guarantee that this is the
same limit as seen in the laboratory dielectric experiment.
Here, we present the results of MC simulations within the
standard protocol of periodically replicated simulation cell.

MC simulations have been carried out in the standard
NVT Metropolis algorithm, periodic boundary conditions,
and cutoff of the dipolar forces at the half of the cubic box
length. The dielectric constants of the homogeneous fluids
were calculated using Neumann’s formalism36 as imple-
mented in our previous studies.33 The initial configuration
was set up as a face-centered cubic lattice with random di-
polar orientations and varied number of particles, N. While
this configuration was directly used for the homogeneous
liquid simulations, the hard-sphere solute/cavity was
“grown” in the cell center for the cavity field simulations.
This was done starting from an initial diameter of 0.5 and
increasing the diameter at each step by 0.002, adjusting 
so as to ensure constant density ��=�3=0.8, and moving
and rotating the solvent particles according to the Metropolis
algorithm. After the solute/cavity was constructed, the initial
configuration was equilibrated for approximately 105–106

steps in parallel �using OPENMPI� assuring that each proces-
sor started from a different point along the Markov chain.
The parallel part of the program was implemented by run-
ning the same MC program on different processors sepa-
rately. A linear scaling with the number of processors was
achieved. The production runs of �1–5��106 steps were car-
ried out for each �m��2 and cavity size. Reaction field correc-
tions were used for the dipolar interactions to speed up the
simulations and were checked to give the results identical to
applying Ewald sums.

The calculation of microscopic fields in dielectrics from
numerical simulations requires caution in a proper treatment
of the corrections for the cutoff of long-range dipolar
interactions.36 The cavity field was calculated from the linear
response approximation:

Ec/E0 = 1 + ��/3��	Es · 	M
0 − Ecorr. �48�

Here, 	M is the fluctuation of the total dipole moment of the
simulation cell and 	Es is the fluctuation of the electric field
produced by the liquid dipoles, Es=	 jT j ·m j, where T j is the
dipolar tensor responsible for the electric field of dipole j at
the cavity center. The fact that a dipolar tensor with the re-

action field cutoff appears in the simulation protocol requires
the correction term Ecorr in Eq. �48�.

The microscopic field Emic was obtained from simula-
tions involving a probe dipole at the center of the cavity of
radius R0. The average projection of the liquid field at the
cavity center on the direction of the probe dipole results in
the reaction field response coefficient, f = �Es ·m̂0
0 /m0,
where �¯
0 implies an average over the configurations in
equilibrium with a target dipole m0 and in the absence of an
external electric field. The microscopic field follows from the
equation

Emic

E0
=

Ed

E0
+ ��m0

2/3�gK
�0��f + fcorr� , �49�

where the correction term fcorr accounts for the cutoff of the
dipolar interactions. The explicit equations for the correction
terms Ecorr and fcorr in Eqs. �48� and �49� are given in the
supplementary material.37 Further, the directing field Ed in
Eq. �49� is obtained from the simulated configurations with
the target dipole m0 by using Eq. �48�. Since dipolar corre-
lations around a target molecule are generally different from
those around a physical cavity, the directing field turned out
to deviate from the cavity field.

IV. RESULTS

A. Dielectric constant

The simulations performed here give access to the di-
electric constant of the fluid of dipolar hard spheres. While
they support the previously advocated idea of the existence
of the ferroelectric transition in dipolar fluids,11–13 our main
focus here is on the local field defined through the dielectric
constant by Eq. �3�.

Figure 5 shows the inverse of the susceptibility 4� / ��
−1� versus 1 /y. The Debye equation �Eq. �6�� is shown by
the dashed-dotted line and the Onsager result �Eq. �8�� is
given by the dashed line. As mentioned above, there is no
ferroelectric transition in the Onsager equation. In addition,
Fig. 5 shows the result of a perturbation expansion of the
dielectric constant in terms of the dipolar density y as de-
rived by Tani et al.,38

0.01 0.1 1 10

y
-1

0.01

0.1

1

10

χ−1

Onsager

DebyeMPTPT

FIG. 5. The inverse dielectric susceptibility �−1=4� / ��−1� vs 1 /y. The
points represent simulation data. The solid line refers to Eq. �51�, and the
dotted line refers to Eq. �50�. The remaining two lines are the continuum
results obtained from the Debye and Onsager equations, Eqs. �6� and �8�,
respectively. The solid line is obtained by fitting the parameter p in Eq. �51�
to the simulation data with the best-fit value of p=0.264.
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� − 1 = 3y + 3y2 + 3y3p . �50�

We also show the result of the modified perturbation formula
from Ref. 33,

� − 1 = 3y + 3y2 +
2

p2 �e3p3y3/2 − 1� . �51�

In Eqs. �50� and �51�, p is related to the three-particle per-
turbation integral I0s

�3� tabulated in Ref. 38: p= �9 /16�2�I0s
�3�

−1.
The analytical equations are compared to the data taken

from MC simulations �points in Fig. 5�. It is obvious that
both the Debye theory and the Onsager theory fail to predict
the results of simulations. On the contrary both the perturba-
tion theory �Eq. �50�� and modified perturbation theory
�MPT� �Eq. �51�� do very well for smaller values of �, while
the MPT covers all the simulation data in the range ��300.
The perturbation expansion from Ref. 38 results in p
=0.252 while the solid line in Fig. 5 is obtained using p as a
fitting parameter with a close best-fit value of p=0.264.

Using the data from simulations one can fit the depolar-
ization coefficient ���� in Eq. �4� as a function of the dielec-
tric constant. This representation of the data is more conve-
nient than using the dielectric constant itself since ���� tends
to a constant limit with increasing polarity instead of diverg-
ing, as is the case with �. A cubic Padé form was found to
give a reasonable fit of the simulation data as shown in
Fig. 6,

���� = A
1 + a1� + b1�3

1 + a2� + b2�3 , �52�

where the fitting parameters are A=6.106, a1=0.1701, b1

=0.000 064 2, a2=0.7054, and b2=0.000 393. The function
���� from the Onsager model �Eq. �7�, dashed line in Fig. 6�
decays too fast compared to simulations, and the Debye
theory would predict a constant value of ����=4� /3. Taken
together, Eqs. �4� and �52� give ��y� in the entire paraelectric
phase of the dipolar fluid by solving the equation

� = 1 +
3y

1 − �3y/4������
, �53�

which is, however, less convenient than the direct application
of Eq. �51�.

The function ���� saturates to unity at �→�, suggesting
that the ferroelectric transition occurs at y�= �4� /3�p� with
p�=1.0. This value for p� is somewhat lower in comparison
to p�=1.256 reported by Weis39 and might be a result of a
particular mean-field form of � in Eq. �53� used to represent
the results. The representation in terms of ��y� is not very
convenient since it does not saturate to a clear limit. This
function can, however, be useful for attempts to build mean-
field theories of dipolar, also magnetic, systems and we pro-
vide here a fit of the simulation results to a Padé form:

��y� =
4�

3

1 + 0.008 967 9y

1 + 0.923 704y − 0.019 673 5y2 , �54�

which applies to the range 0�y�4.

B. Cavity field

The simulation results for fields inside cavities of differ-
ent sizes are shown in Fig. 7. All curves share the same basic
dependence on polarity, showing a slow, almost linear in-
crease with � after an initial drop. This behavior is qualita-
tively similar to what has been obtained from the analytical
theory in Fig. 4. However, the simulation results show no
discontinuous drop at intermediate values of �. Instead, the
curves obtained by increasing the cavity size seem to level
off and approach the continuum expression derived in Eq.
�34� �solid line in Fig. 7�.

There is, however, an indication that the cavity field
might fall below the new continuum limit in Eq. �34� for
specific values of �R0 ,�.40 This observation can be seen in
the inset in Fig. 8 which shows a slight decrease in the cavity
field for R0 /�6 and high values of �. For smaller dielectric
constants, this decrease in the cavity field is never observed.

There does appear some dependence on the number of
particles used in the simulation when calculating the cavity
field. Thus, separate simulations were used, increasing the
number of particles each time and extrapolating to the N
→� value. These extrapolated values for the cavity field are
given in Table I in the supplementary material37 with the
corresponding number of particles used in each simulation
given in the footnotes. Since extrapolation inevitably intro-
duces errors, data at a given number N of particles in the
simulation box were used in Figs. 7 and 8.
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FIG. 6. The depolarization coefficient ���� as a function of the dielectric
constant � for a dipolar fluid at ��=0.8. The solid line is the fit to the
simulation data �points� to Eq. �52�. The dashed line is the Onsager result in
Eq. �7�.

0 20 40 60 80 100
ε

0

1

2

3

4

E
c/E

0

FIG. 7. The cavity field calculated from MC simulations with varying cavity
size: r1=1.0 �N=108, circles�, 1.5 �N=108, squares�, 2.0 �N=256, left tri-
angles�, 3.0 �N=256, right triangles�, and 5.5 �N=500, up triangles�. The
solid line corresponds to the new continuum expression given in Eq. �34�,
while the dashed line refers to the standard Maxwell result �Eq. �32��.
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Cavity fields obtained from the simulations clearly con-
tradict the expectations from Maxwell’s electrostatics. This
contradiction might have two possible origins. First, it might
be possible that the results obtained from simulations of pe-
riodic systems converge to some limit as the number of par-
ticles is increased, but this limit is different from that for a
macroscopic system. We cannot investigate this possibility
by current simulations. On the other hand, Maxwell’s elec-
trostatics is in fact a boundary condition problem. If the
boundary conditions on the surface of dipolar liquids are
different from those implicitly anticipated in deriving Max-
well’s equations, one can get a different solution even in the
limit of cavities much larger than the size of the liquid par-
ticles when conditions of macroscopic electrostatics are ex-
pected to apply. In order to investigate this second possibil-
ity, we have looked at the orientational structure of the liquid
dipoles at the cavity/liquid interface.

We have studied the distance dependence of the second-
rank orientational order parameter defined in terms of the
projection of the unit dipole vector ê j on the unit radius
vector r̂=r /r:

p2�r� = �	
j

P2�r̂ · ê j�	�r j − r�
 . �55�

Here, P2�x� is the second Legendre polynomial. We found
that, with increasing polarity, the surface dipoles increasingly
tend to orient orthogonal to the surface normal,40 a behavior
well documented for two-dimensional dipolar fluids41 and
cavities in force field water.42 This orientational pattern re-
sults in overscreening of the external field, leading to the
electric field from the first solvation shell directed opposite
to the external field �Fig. 9�. This overscreening is compen-
sated by a positive field from the second solvation shell. The
compensation is far from complete for small cavities, indi-
cating that formation of a cavity field is a nonlocal event
involving several solvation shells �Fig. 9�. For larger cavities
�not shown here�, the fields of the two first solvation shells
makes almost the entire cavity field such that the solvent
response is more local. Still, overscreening present for large
cavities implies that the continuum picture of an abruptly

terminated polarization is inadequate at the length scale of
two solvation shells. Even though one can argue that this
scale is way below the scales considered by the macroscopic
electrostatics, the simulations show that it is on this length
scale where the polarization response is formed, while the
rest of the liquid contributes relatively little to the net result.
Therefore, a correct account of dipolar correlations on that
microscopic length scale is critical for capturing the result,
and it is in this incorrect account of surface correlations
where the standard electrostatics fails.

C. Reaction field

The simulation results for the reaction field inside cavi-
ties of different sizes are shown in Fig. 10 and listed in Table
II in the supplementary material.37 The simulated points fall
significantly below the continuum result when R0 is used for
the cavity radius in Eq. �40�. In addition, the microscopic
reaction field does not saturate at ��1 but instead keeps
increasing approximately linearly with �.43 Nevertheless, the
reaction field from simulations seems to get closer to the
continuum Onsager result with increasing cavity size, and
there are no dramatic qualitative discrepancies between the
continuum and microscopic results, in contrast to the situa-
tion with the cavity field.
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FIG. 8. The cavity field calculated directly from simulations �Eq. �48�� as a
function of the cavity radius R0 /. The insrt is an expanded section at large
R0. The points represent �m��2=0.5 �circles�, 1.0 �squares�, 2.0 �diamonds�,
and 3.0 �up triangles�. The corresponding values of � are 3.54, 8.52, 30.64,
and 93.66.
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FIG. 9. The correlator �	E ·	M
0 /3 from Eq. �48� calculated from MC
simulations for the dipoles in the first solvation shell surrounding the cavity
�circles�, from the second solvation shell �squares�, and from the entire
simulation box �open triangles�. The sum of contributions from the first and
second solvation shells is indicated by open diamonds. The cavity radius is
R1 /=1.0.
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FIG. 10. Reaction field calculated from the continuum electrostatics �Eq.
�40�� �solid line marked “Onsager,” R0 is used for the cavity radius� and
from Eq. �39� �filled points� with the effective radius Reff �Eq. �41�� used in
place of R1: R0=0.5 �circles�, 1.0 �squares�, and 1.5 �triangles�. The open
points correspond to the MC simulation data for the same R0 values as the
closed points. The dotted line applies Eq. �39� at R0 /=0.5 with R1 used for
the cavity radius. The dashed lines connect the points and the structure
factors from MC simulations were used for k integration in Eq. �39�.
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The direct calculation of R by using Eq. �39� yields the
reaction field qualitatively reproducing the results of the
simulations but quantitatively too low. The reason for the
deviation is well understood:44 cutting out the polarization
field from the solute volume in Eq. �11� does not incorporate
the fact that other liquid fields, e.g., density, must also be
zero inside the cavity. In particular, the coupling of the local
density field around the cavity with the polarization field
accounts for a stronger reaction field. This deficiency can be
remedied in the mean-field fashion by replacing the radius of
the closest approach R1 in Eq. �39� with the effective radius
Reff from Eq. �41�. This approach in fact gives results very
close to the simulations �closed points in Fig. 10�. Since the
structure factors in such calculations are well approximated
by the parametrized MSA solution,31 the problem of calcu-
lating the reaction field in dipolar fluids from Eq. �39� re-
duces to a simple quadrature. A slight downward deviation of
the analytical results from the simulations at high � may be
due to an effective decrease in the density of the liquid in
contact with the cavity at high polarities in comparison with
the result for the binary hard-sphere mixture.43

D. Microscopic field

Simulations of the microscopic field at the position of a
probe dipole were done here at m0=m and varying dipole m�

and the cavity radius R0. The results are listed in Table II in
the supplementary material37 and illustrated in Fig. 11 where
Emic /E0 calculated from Eq. �49� �points� are plotted against
�. The simulation results are compared to the continuum pre-
dictions for the homogeneous liquid �Eq. �46�� and to Eq.
�47� for the heterogeneous configuration with the cavity ra-
dius exceeding that of the solvent. The results for the homo-
geneous continuum �Eq. �46�� compare fairly well with the
simulations. However, the continuum field is predicted to fall
off rather sharply with increasing the cavity size, which is
not supported by the simulations. The overall decay of the
simulated microscopic field is much slower due to the cavity
field much exceeding Maxwell’s result at large � �Fig. 7�
and, in addition, a fairly weak decay of gK

�0� with increasing
cavity size �Table II in the supplementary material37�.

V. DISCUSSION

Condensed materials made of dipolar particles, indepen-
dently of composition and phase, are often described by ma-
terial Maxwell’s equations.9 These are a very successful
mathematical construct which includes several components.
First, the Maxwell macroscopic field in the absence of free
charges satisfies the equation

div E = − 4� div P . �56�

This relation comes as a mathematical property of the dipolar
tensor used to build the Maxwell field from the external field
E0 and the field of the bulk polarization:

E�r� = E0 − �4�/3�P�r� + �
�r−r���	

T�r − r�� · P�r��dr�.

�57�

Here, the second term eliminates the singularity of T�r� at
r→0 when Eq. �57� is used in the bulk.36,45 Second, one
needs the electrostatic constitutive relation,45 that is, the pro-
portionality between E�r� and P�r� �left-hand side of Eq.
�2��, to arrive from Eq. �56� to the Poisson equation ��=0 in
the absence of free charges.

The constitutive relation assumes locality of the liquid
response which does not hold at microscopic distances re-
quiring a convolution with a nonlocal response function
which can be expressed in terms of a k-dependent dielectric
constant.5,46–50 This convolution relation then replaces a
simple proportionality which, however, is restored in in-
verted space. The convenience of working in inverted space
requires, however, considering the longitudinal and trans-
verse polarization responses separately, with quite different
qualitative behavior of the corresponding response functions
�Fig. 2�. The symmetry breaking between the properties of
the longitudinal and transverse responses is a basic conse-
quence of the Coulomb law and its multipole expansion10

�Eq. �57�� and has nothing to do with specific molecular
interactions within dipolar systems.51 This qualitative differ-
ence between the two types of response is the cause of many
peculiarities of fields inside dielectrics which we have ob-
served here since different fields carry different weights of
the longitudinal and transverse components �see below�.

Solving the Poisson equation for problems involving im-
purities �solvation� and interfaces requires imposing dielec-
tric boundary conditions, which come as a second, indepen-
dent of Eqs. �56� and �57�, part of the theory. In Maxwell’s
dielectric, those are obtained by assuming that dipolar polar-
ization abruptly terminates at the interface, thus creating a
surface charge i equal to the polarization component normal
to the interface, i= Pn.4 This assumption might be of un-
equal relevance for different media. While it is probably
more adequate for solid and amorphous materials with re-
stricted freedom of dipolar rotations, it might be less appli-
cable to fluid dielectrics where dipolar orientations are rear-
ranged in response to the creation of the interface.52 If the
orientational dipolar structure of the liquid interface is sig-
nificantly different from the abrupt discontinuity of Max-
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FIG. 11. Microscopic field at the position of the dipole m0 at the center of a
spherical cavity of radius R0. The results at different � were obtained for
R0 /=0.5 �circles�, 1.0 �squares�, and 1.5 �diamonds� using Eq. �49�. The
solid line refers to the continuum prediction for the homogeneous liquid
�Eq. �46��, while dashed and dashed-dotted lines refer to R0 /=1.0 and
R0 /=1.5, respectively, obtained from Eq. �47�.
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well’s dielectric, the boundary conditions of the Poisson
equation might change, generating a new continuum solution
at a large length scale.

In order to examine the applicability of Maxwell’s
boundary conditions to fluid dielectrics we have attempted
here a bottom-up approach to the problem by starting with
well-defined microscopic response functions of pure dipolar
liquids �Eqs. �18�–�21��. We then derived the continuum
limit from microscopic equations instead of assuming that
polar liquids should become Maxwell’s dielectric at a large
length scale. This latter assumption is a starting point of
many previous approaches to liquid dielectrics.28,53 By using
this alternative approach we got a glimpse at the central
question of this study: whether and how fast fluid dielectrics
approach Maxwell’s dielectric with increasing the length
scale. It turned out that there is no uniform answer to this
question as it depends on the property at hand.

From three dielectric fields considered here and in prin-
ciple observable in the laboratory �Ed, Ec, R� the reaction
field R seems to be best understood in terms of the standard
electrostatics. There is a good physical reason for that. The
dielectric response is fully determined by the properties of
the solute and two response functions of the dipolar liquid,
longitudinal and transverse �Fig. 2�. From these two, the lon-
gitudinal function is flat at low k values and the transverse
function is increasingly sharp with increasing dielectric con-
stant. The longitudinal response is therefore described rea-
sonably well by the standard electrostatics replacing the re-
sponse function by its k=0 value. The applicability of the
same approximation to the transverse response is question-
able and is increasingly so with increasing liquid polarity.

The reaction field arises as a sum of longitudinal and
transverse contributions to the solvation chemical potential
�Eq. �37��. The continuum limit predicts the dominance of
the longitudinal over transverse response, with the weights
2:1 independent of �.26 This splitting would still suggest a
possibility of a nonstandard solution when the transverse part
of the response deviates from the continuum prediction at
large �. What happens instead is that the transverse compo-
nent of the response is essentially eliminated when the full k
integration of the structure factors is used in Eq. �37� instead
of the continuum limit.26 The overall polar response to a
dipolar solute is therefore mostly longitudinal, and that ex-
plains the qualitatively adequate performance of the Onsager
formula. The response is completely longitudinal by symme-
try in the case of ion solvation, and that is why the celebrated
Born54 formula for solvation of a spherical ion is mostly a
reliable approximation. The result is much less sensitive to
the choice of the cavity radius compared to the dipole case,
which is why the Born equation has received such enormous
popularity in solution and computational chemistry.

The situation becomes radically different when one turns
to the calculation of the cavity/directing field. As we have
shown above, Eq. �31� becomes Maxwell’s cavity field �Eq.
�32�� if the continuum limit k=0 is taken in the response
functions ��L,T�k�. One needs to note that ��T�0�=3� / �2�
+1� and ��L�0�=3 / �2�+1�. Therefore, this standard con-
tinuum limit suggests that deviations of the field inside a
finite-size cavity from the Lorentz field applicable to an in-

finitely small cavity are determined by the transverse re-
sponse. This latter is not adequately described by its con-
tinuum limit and that is the physical reason behind the
problems we encountered here with the Maxwell cavity field.
The simple algebraic transformation in Eq. �33� eliminates
this dominance of the transverse response and allows a more
reliable transition to continuum. The resulting cavity field
�Eq. �34�� then turns out to be fairly close to the Lorentz field
�see the solid and dashed lines in Fig. 12�.

Even though these arguments are easy to understand, the
analytical development has produced an unexpected result of
a real-axis singularity in the response functions,26,40 showing
that the solution might switch to Maxwell’s result at high �.
This singularity signals the appearance of a macroscopic lon-
gitudinal polarization wave, making the solution sensitive to
the conditions at the boundary of a macroscopic sample, as is
the case with the standard Maxwell equations. Whether this
polarization instability corresponds to polarized domain for-
mation, seen in some laboratory16,17 and computer55 experi-
ments, remains to be established. We have observed, how-
ever, that one needs to replace the continuous inverted-space
integral with a lattice sum in order to avoid the real-axis
singularity and maintain the “new continuum” solution. This
procedure in fact constitutes a certain order in taking the
thermodynamic, N→�, and continuum, k→0, limits. The
new continuum appears when the continuum limit is fol-
lowed by the thermodynamic limit: limN→� limk→0¯, while
Maxwell’s dielectric appears at large � from the switched
order of two limits: limk→0 limN→�¯. There is nothing in the
theory that stipulates how these limits should be taken and,
therefore, the right approach to continuum should be decided
by laboratory measurements.
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FIG. 12. The local Eloc /E0 field �Eq. �3�� �circles�, the cavity field Ec /E0

�squares�, and the directing field Ed /E0 �closed triangles� vs � for R0 /
=0.5. The solid line indicates the new continuum cavity field �Eq. �34��, the
dashed line is the Lorentz local field �Eq. �5��, and the dashed-dotted line is
the Maxwell cavity field �Eq. �9��. The lower panel is an expanded section at
small �.
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Before suggesting experimental tests in Sec. VI, we will
comment on the comparison of the local, directing, and cav-
ity fields from our simulations. Figure 12 compares the cav-
ity, Ec, directing, Ed, and local, Eloc, fields. The cavity size in
Fig. 12 is taken equal to that of the liquid particles in order to
include the local field in the comparison. The local field
�Eqs. �1� and �3�� is a mean-field construct, whereas the cav-
ity and directing fields include all dipolar correlations with-
out relying on the mean-field approximation. As is seen, all
three are reasonably close at ��3 and then start to deviate
from each other. The directing field first follows the Lorentz
field �Fig. 12�b�� but then turns upward and starts to increase
with � faster than the cavity field. The local field is consis-
tently below the other two at large �, testifying to the long-
known fact that mean-field models do not describe high-
polarity dielectrics22 �Eq. �10��.

VI. EXPERIMENTAL TESTS

Fields within fluid dielectrics have received significant
attention from experiment over many decades of studying
dielectric materials.56 While the local field is a theoretical
construct of mean-field models, the directing �Ed�, reaction
�R�, and cavity �Ec� fields are real physical entities subject to
experimental determination. The directing field is respon-
sible for the torque rotating the dipole in linear or nonlinear
dielectric experiments. The cavity field is probably harder to
measure since one needs a small probe dipole within a large
cavity to avoid altering the nature of orientational dipolar
correlations at the cavity surface. However, our results sug-
gest a fairly low sensitivity of the directing field to the mag-
nitude of the target dipole m0.

Figure 13 shows the results of simulations in which the
directing field was calculated versus the target dipole m0; the
limit m0=0 corresponds to the cavity field. In order to un-
derstand this plot, one needs to compare the effective cou-
pling between the liquid dipoles, �m��2=1.0, with the effec-
tive solute-solvent coupling, �m0 /m��m��2� /R1�3=m0 /8m.
It is seen that the solute-solvent interaction energy becomes
comparable to that between the solvent dipoles at the end of
the scale of m0 /m values shown in Fig. 13. The directing
field is about four times larger than the cavity field at that
point. The plot also indicates that solute-solvent interactions
below roughly 40% of the solvent-solvent interaction ener-
gies give directing fields fairly close to the cavity field.

Therefore a sufficiently small dipole inside an impurity can
be used to experimentally measure the cavity field.

The reaction field has probably been most studied ex-
perimentally since it can be directly related to the spectral
shift of a dipolar optical probe dissolved in the liquid.23,57

The general consensus in the literature is that the Onsager
formula gives a qualitatively correct grasp of the problem,
although the cavity size required to solvate a molecular
probe is poorly defined and the use of the van der Waals
volume for that purpose gives an overestimated value for the
shift. In addition, the calculation of the temperature depen-
dence of the spectral shift using the dielectric constant gives
inadequate results since microscopic models are required to
gain access to the solvation entropy.44 Further, saturation of
the polar response is not reached in a fast fashion predicted
by the Onsager formula, which has some consequences for
the solvation dynamics.58 These subtleties aside, the basic
electrostatic predictions, the increase in the reaction field
with increasing solvent polarity and a linear scaling with
m0

2 /Reff
3 , have been supported by the experimental evidence.

This statement is also in line with our present and previous26

findings which have not revealed fundamental difficulties
with the application of the standard electrostatics to the re-
action field.

The situation is quite different with the cavity and direct-
ing fields for the reasons discussed above. The standard re-
sult predicts that the cavity field essentially disappears be-
cause of screening in a high-polarity Maxwell dielectric �Eq.
�32��. On the contrary, it tends to a constant in the mesos-
copic analytical model �Eq. �34�� and rises with � as is seen
in numerical simulations. Therefore, effectively no torque is
expected to act on a probe dipole within a cavity carved in
Maxwell’s dielectric, while a substantial torque should re-
main if a polar liquid follows our present findings.

When asking how to test these results one might turn to
the substantial experimental database on the cavity field pro-
duced by induced dipoles. This cavity field is probed by the
intensity of an optical transition through the interaction of
the transition dipole with the electric field of the radiation
source.59–61 However, the range of dielectric constants
�squared refractive index� available in such experiments is
very limited and, more importantly, that problem is physi-
cally distinct from our present agenda in which new solu-
tions arise from orientational correlations of permanent mo-
lecular dipoles. Physically, induced dipoles are oriented
along the field, while the orientational correlations between
the permanent dipoles are only weakly perturbed by an ex-
ternal field. From this viewpoint, we are not aware of experi-
mental effort to access the cavity field in strongly polar liq-
uids. Here we provide some relations which can be used to
interpret the results of laboratory measurements.

We first want to mention that the overall free energy of a
uniformly polarized dielectric with Nc cavities in it does not
depend on which solution for the cavity field is realized.
From our microscopic response function �Eq. �13�� we find
that the free energy �F of polarizing the dielectric is

0 5 10
m

0
/m

0

1

2
E

d/E
0

FIG. 13. Directing field vs the target dipole moment m0 /m. Points are simu-
lations data at �m��2=1.0, R0 /=1.5; the dotted line connects the points.
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�F = − 1
2E0 · �Ml + Mc� . �58�

Here, Ml is the overall dipole moment of the uniformly po-
larized liquid with the polarization P before the cavities were
introduced and Mc=−3PVc / �3�+1� is the dipole moment of
Nc cavities occupying the overall volume Vc. This dipole
moment is consistent with the solution of the Maxwell
equations,4 and thus our microscopic theory reproduces elec-
trostatic results for the polarization free energy. From this
equations, the standard arguments suggest that the dielectric
constant of the liquid with cavities ��mix� is given as

�mix = ��1 + xc
3�� − 1�
2� + 1

�−1

, �59�

where xc is the volume fraction of the cavities. Equation �59�
appears to be the low-concentration limit of the Maxwell
theory of dielectric mixtures.56 Since the result is insensitive
to the local cavity field, one has to introduce probe dipoles
m0 to probe the directing field Ed.

Once the probe dipoles m0 are introduced inside the
cavities, the time-dependent polarization of the mixture in
response to a periodic external field E0�t�=E0 exp�i�t� can
be given as

Pmix�t� = P�t� + Pc�t� + �Nc/V��m0�t�
 , �60�

where P�t� is the polarization of the homogeneous liquid and
Pc�t� is the polarization due to cavities.

The probe dipoles are assumed to be sufficiently dilute
so they do not interact. Their relaxation can be easily found
from the linear response approximation,62

�m0�t�
 = ��m0
2/3�Ed���ei�t�1 − i���− ��� , �61�

where ��−�� is the Fourier–Laplace transform of the nor-
malized correlation function,

��t� = m0
−2�m0�t� · m0�0�
 , �62�

and Ed��� is the directing field at the frequency �. Combin-
ing Eqs. �59�–�61�, one finds for the frequency-dependent
response of the mixture

�mix
−1 ��� = ����−1�1 + xc

3����� − 1�
2���� + 1

�
− 8�m0

��2xc�Ed���/E0��1 + i��0�−1, �63�

where the Debye form ����=1 / ��0
−1+ i�� has been assumed

for the rotational dynamics of the probe dipole and �m0
��2

=�m0
2 / �2R0�3. From this equation, dielectric measurements

of mixtures can potentially be used to get access to the mag-
nitude of the directing field acting on a probe dipole.

VII. CONCLUSIONS

In conclusion, we have studied the cavity, directing, and
reaction fields in liquid dielectrics by means of liquid-state
theories and numerical simulations. Instead of demanding
that the fields produced by liquid dielectrics in large-scale
cavities must coincide with the fields produced by Maxwell’s
dielectric, we continuously increased the size of the spherical
cavity to reach the continuum limit. Both simulations and
analytical theory suggest that the commonly applied Onsager

formula for the reaction field is approached from below by
the microscopic solution with the increasing cavity size. On
the contrary, the cavity and directing fields do not converge
to the limit of Maxwell’s dielectric. Instead, the cavity field
obtained from simulations tends, with increasing cavity size,
to the limit derived from our analytical theory. The origin of
the disagreement between the continuum reached from mi-
croscopic models and that calculated from the standard elec-
trostatics is traced back to the failure of the latter to account
properly for the transverse correlations between the dipoles
in molecular liquids. Among other things, this observation
implies that experimental setups avoiding the transverse re-
sponse �e.g., the familiar plane capacitor� will not detect
qualitative inconsistencies with the Maxwell electrostatics.
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