
Microscopic medical image
classification framework via deep
learning and shearlet transform

Hadi Rezaeilouyeh
Ali Mollahosseini
Mohammad H. Mahoor

Hadi Rezaeilouyeh, Ali Mollahosseini, Mohammad H. Mahoor, “Microscopic medical image classification
framework via deep learning and shearlet transform,” J. Med. Imag. 3(4), 044501 (2016),
doi: 10.1117/1.JMI.3.4.044501.



Microscopic medical image classification framework
via deep learning and shearlet transform

Hadi Rezaeilouyeh,* Ali Mollahosseini, and Mohammad H. Mahoor
University of Denver, Department of Electrical and Computer Engineering, 2155 East Wesley Avenue, Denver, Colorado 80208,
United States

Abstract. Cancer is the second leading cause of death in US after cardiovascular disease. Image-based com-
puter-aided diagnosis can assist physicians to efficiently diagnose cancers in early stages. Existing computer-
aided algorithms use hand-crafted features such as wavelet coefficients, co-occurrence matrix features, and
recently, histogram of shearlet coefficients for classification of cancerous tissues and cells in images. These
hand-crafted features often lack generalizability since every cancerous tissue and cell has a specific texture,
structure, and shape. An alternative approach is to use convolutional neural networks (CNNs) to learn the most
appropriate feature abstractions directly from the data and handle the limitations of hand-crafted features.
A framework for breast cancer detection and prostate Gleason grading using CNN trained on images along
with the magnitude and phase of shearlet coefficients is presented. Particularly, we apply shearlet transform
on images and extract the magnitude and phase of shearlet coefficients. Then we feed shearlet features
along with the original images to our CNN consisting of multiple layers of convolution, max pooling, and
fully connected layers. Our experiments show that using the magnitude and phase of shearlet coefficients as
extra information to the network can improve the accuracy of detection and generalize better compared to
the state-of-the-art methods that rely on hand-crafted features. This study expands the application of deep
neural networks into the field of medical image analysis, which is a difficult domain considering the limited
medical data available for such analysis. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3

.4.044501]
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1 Introduction

It is estimated that about 1,685,210 new cases of cancer will

occur in US during 2016.1 Prostate and breast cancers are the

second most dominant causes of death among cancers in

males and females, respectively.1 Cancer cells can transfer to

other tissues and develop new tumors. Hence, it is vital to diag-

nose and grade cancer in early stages and provide necessary

treatment. Histological analysis of tissue slides stained using

hematoxylin and eosin (H&E) is the main approach for cancer

detection and grading. This process involves a pathologist

examining large areas of benign tissue to finally detect the

areas of malignancy. Therefore, cancer detection is very time-

consuming and challenging. The Gleason grading system is

the main approach for prostate grading,2 which classifies the

prostate cancer as grades 1 to 5 with increasing malignancy

as the grade increases. The Gleason score is calculated using

the sum of the two most dominant Gleason grades inside a tissue

and ranges from 2 to 10. Patients with a combined score between

2 and 4 mostly survive while patients with a score of 8 to 10

have a higher mortality rate.2 Automating the cancer diagnosis

and the grading process can reduce the time needed by pathol-

ogists and remove the inter- and intraobserver variations.3

Automated medical image classification is an important

research area which utilizes different feature detection and rep-

resentation techniques. These features can be classified into

two main categories: hand-crafted and learned features. Hand-

crafted features are based on the pathologists’ approaches for

cancer diagnosis and grading. Pathologists scan tissue slides

and try to find symptoms of tumor progress including irregularly

shaped nuclei and lack of differentiation. Therefore, most of

automated histological analysis methods first segment the cell

nuclei, then extract features from cell nuclei and use them

for classification.4–6 For example, Boucheron et al.4 performed

image segmentation on histopathology images of breast and

used the extracted features for breast cancer detection. Farjam

et al.5 segmented the prostate glands and extracted structural fea-

tures from them and used them in a tree-structured algorithm for

automatic Gleason grading of prostate. Stotzka et al.6 used fea-

tures extracted from cell nuclei along with neural networks for

automatic grading of the prostate. Some other techniques that

used hand-crafted features are based on texture, color, and mor-

phological features.7–12 Jafari-Khouzani and Soltanian-Zadeh7

extracted energy and entropy from multiwavelets coefficients

and used them for the task of automatic Gleason grading of pros-

tate. They used the k-nearest neighbor algorithm to classify

images. Tabesh et al.8 extracted color, texture, and morphomet-

ric features from microscopic images of prostate and combined

them and used them for prostate cancer diagnosis and Gleason

grading. In an earlier study,9 we extracted features from multi-

decomposition levels of shearlet filters and used the histogram

of shearlet coefficients (HSCs) for the task of classification of

benign and malignant breast slides using support vector machine
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(SVM) and achieved 75% classification accuracy. We also used

HSC for prostate cancer detection of histological images10 and

magnetic resonance (MR) images11 and achieved 100% and

97% classification accuracy, respectively. In a recent study,12

we extracted multiple features from the histological images of

prostate cancer and used the multiple kernel learning (MKL)

algorithm for fusing the features. Then we used SVM equipped

with MKL for the classification of prostate slides with different

Gleason grades.

Most of the methods mentioned above merge different hand-

crafted features to represent the texture of histopathology

images. These methods usually include some preprocessing

(e.g., segmentation) and the final classification result depends

on the accuracy of the previous steps. In addition, these hand-

crafted features are designed for a specific type of problem.

It is time-consuming to design a new set of features and they

are not easily applicable on different datasets. Furthermore,

some of these hand-crafted features have inherent limitations

that make them less efficient for complex tasks. A good example

would be the wavelet transform, which has been widely used for

different applications including cancer diagnosis and grading.5–8

Wavelets do not have directional sensitivity, which makes them

unsuitable for detecting directional features. That was the

motive for using shearlets instead of wavelets in our previous

studies9–12 and in this paper as well. On the other hand, recent

feature learning methods have gained a lot of attention due to the

success of deep neural networks methods in computer vision

applications. The advances in computational power and the

availability of large training databases also played an important

role in the development of deep neural networks.13 Deep learn-

ing (DL) is a subset of machine learning models that represents

high-level abstractions extracted directly from images using

nonlinear transformations.13,14 The main advantage of DL meth-

ods is their ability to form hierarchical representations of data by

deriving higher level features from lower level features using

nonlinear processing units.13 Therefore, despite hand-crafted

features, learned features do not need any preprocessing and

can easily be transferred to different applications since they are

data-driven.15 These methods often outperform traditional

approaches that use hand-crafted features.16–19 Cruz-Roa et al.15

proposed a three-layer convolutional neural network (CNN)

method for invasive ductal carcinoma detection in histopathol-

ogy images of breast cancer and compared their method with

hand-crafted features. They reported 6% improvement in the

classification accuracy when using their CNN. Liao et al.16 pro-

posed a stacked-independent subspace analysis DL framework

for prostate T2 MR image segmentation. They reported 3%

improvement in segmentation accuracy when using their DL

framework. Couture et al.17 proposed a sparse coding-based

hierarchical feature learning method for breast cancer detection

in histopathology images. They were able to increase the clas-

sification accuracy by 6% using their proposed feature learning

method. Cireşan et al.18 presented a DL method based on max

pooling for mitosis detection in histology images of breast

cancer. They won the International Conference on Pattern

Recognition 2012 competition. Li et al.19 used shearlet trans-

form and deep neural networks for image quality assessment.

They extracted features using the sum of subband shearlet coef-

ficients and used stacked autoencoders as their main neural net-

work building blocks. They used a softmax classifier to assess

the quality of images in their dataset. In this paper, we propose a

shearlet-based deep neural network method for breast cancer

detection and Gleason grading of prostate. To the best of our

knowledge, this is the first time that shearlet transform and

DL are employed together for medical image classification.

Our main contribution in this paper is threefold. First, we

propose using the phase of shearlet coefficients as a primary fea-

ture for general purpose microscopic medical image classifica-

tion. This is the first study that utilizes the phase of shearlets for

such applications. Shearlet transform20 is a directional multi-

scale representation system with affine properties which can

detect anisotropic features at different orientations and scales.

Most of the signal’s information is carried by the phase21 and

the phase features are invariant to noise and image contrast.22

However, since the phase information is nontrivial, it is difficult

to design and hand-craft phase features that work as a general

approach. This motivated us to further improve our proposed

method as follows. Second, we add the magnitude of shearlet

coefficients and the RGB images to the phase features. The mag-

nitude of shearlet coefficients is a direct representative of the

singularities in the image and the higher the magnitude, the

higher the possibility of an edge occurring in that location.23

The reason to include the RGB images is in the nature of

this problem. Since these images are H&E stained, the color

information is very important for breast cancer detection and

Gleason grading. As cancer happens and the grade increases,

the cell nuclei (stained blue) become larger and the cytoplasm

area (stained pink) shrinks. Therefore, we need to consider color

information as one of our primary features as well. Third, we

propose a deep neural network as an evolution process to

explore the aforementioned features (phase and magnitude of

shearlet coefficients and RGB images) and use them for cancer

detection and Gleason grading. Our CNN consists of multiple

layers of convolutions followed by max pooling along with fully

connected and dropout layers. In summary, our contributions are

listed below:

• Utilize phase of shearlet coefficients as a primary feature

for microscopic medical image classification.

• Empower magnitude of shearlet coefficients and RGB

images to support the phase features.

• Employ deep neural networks to explore the shearlet-

based image representations and RGB images and learn

features for image classification.

The proposed framework for microscopic medical image

classification is presented in Fig. 1. The remainder of this

paper is organized as follows. The proposed framework consist-

ing of shearlet transform and CNN is presented in Sec. 2. In

Sec. 3, the experimental setup and results along with the analysis

of the proposed framework are presented in detail. Finally in

Sec. 4, discussions and conclusions are presented.

2 Methodology

Prostate Gleason grading and breast cancer detection are mainly

based on texture features and characteristics of cancerous tissues

as shown in Fig. 2. It is noticeable that as the Gleason grade

increases [Fig. 2(b)], the texture becomes more detailed and

the epithelial cell nuclei grow in a random manner and spread

across the tissue. Therefore, we need an accurate and robust tex-

ture analysis technique. For this purpose, we propose to extract

our primary features from microscopic images using magnitude

and phase of shearlet coefficients and evolve these features

using DL techniques to make them more discriminative. In
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the following subsections, we will describe both shearlet trans-

form and DL in detail.

2.1 Shearlet Transform

Our proposed medical image analysis frameworks are based on

features extracted from the shearlet transform.20,24 Shearlet is a

multiscale expansion of traditional wavelet transform that is

efficiently developed to detect one- and two-dimensional (2-D)

directional features in images. Despite its predecessors, e.g.,

curvelet25 where the direction is defined using rotation, shearlet

defines the direction using shearing matrices, which makes

the discrete implementation of shearlets easier and also makes

the shearlet rotation-invariant.

The continuous shearlet transform20 is defined as the map-

ping for fϵR2

EQ-TARGET;temp:intralink-;e001;63;131SHΨfða; s; tÞ ≤ f;Ψa;s;t >; a > 0; sεR; tεR2; (1)

where the shearlets are defined as the following:

EQ-TARGET;temp:intralink-;e002;63;88Ψa;s;tðxÞ ¼ j detMa;sj−
1
2ΨðM−1

a;sx − tÞ; (2)

where Ma;s ¼
�

a
ffiffiffi

a
p

s

0
ffiffiffi

a
p

�

¼ BsAa, where Aa ¼
�

a 0

0
ffiffiffi

a
p

�

,

and Bs ¼
�

1 s

0 1

�

. Ma;s is the multiplication of an anisotropic

dilation matrix (Aa) and a shearing matrix ( Bs), which makes

the shearlets well localized. By incorporating the translation,

scale, and shear parameters, shearlet is able to detect directional

singularities and geometrical features of multidimensional data.

A recent implementation of shearlets called “fast finite

shearlet transform” (FFST)24 uses fast Fourier transform for

discrete implementation of shearlets in the frequency domain

and consequently produces complex shearlet coefficients. Since

we wanted to extract the phase of shearlet coefficients, we

utilized this implementation of shearlets in this paper. The

phase along with the magnitude of shearlet coefficients is then

fed to a deep neural network for automatic Gleason grading and

breast cancers diagnosis.

Shearlet has some interesting mathematical properties.26,27

Shearlets are well localized; they are compactly supported in

the frequency domain. They have parabolic scaling and each

element of shearlets is supported on a pair of trapezoids. They

have high directional sensitivity. Shearlets are spatially localized

Fig. 2 Prostate tissue samples with different Gleason grade: (a) grade 2 and (b) grade 5.

Fig. 1 Block diagram of our proposed framework consisting of the training and test phases.
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and optimally sparse. To summarize, shearlets form a tight frame

of well-localized waveforms at different scales and directions

and are optimally sparse for representing edges in the images.

These properties make the shearlet a well-suited tool for

detecting singularities in different cancerous tissues in micro-

scopic images.

2.2 Features Extracted from Shearlet Transform

The success of a classification framework highly depends on

the choice of the feature representation method. In this paper,

we are interested in microscopic image classification, especially

in prostate Gleason grading and breast cancer diagnosis. Taking

another look at Fig. 2 highlights the changes that a tissue cell

goes through when the Gleason grade increases. As the Gleason

grade increases, epithelial cells randomly duplicate, disturbing

the normal structure of glands.4 The higher grade cells are

described by irregular morphology in nuclei, larger nuclei, and

less cytoplasm than lower grades as shown in Fig. 2. A similar

process happens to breast tissue when cancer develops. To re-

present these textural and morphological properties of the can-

cerous tissues, we apply the shearlet transform on microscopic

images and extract magnitude and phase of complex shearlet

coefficients and use them as our primary features. To better illus-

trate the effectiveness of the shearlet transform for microscopic

image classification, we show benign and malignant breast tis-

sue images along with their corresponding magnitude and phase

of shearlet coefficients from a single subband in Fig. 3. One can

Fig. 3 Sample images of breast tissue and their corresponding magnitude and phase of shearlet coef-
ficients from a single subband: (a) original benign, (b) original malignant, (c) magnitude of shearlets for
benign, (d) magnitude of shearlets for malignant, (e) phase of shearlets for benign, and (f) phase of shear-
lets for malignant.
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observe how the statistics of shearlet coefficients change as the

tissue transforms from benign to malignant. This effect is more

obvious in the magnitude of shearlet coefficients compared to

the phase of shearlet coefficients. This is because the magnitude

of shearlet coefficients is a direct representative of the singular-

ities in the image and the higher the magnitude, the higher the

possibility of an edge occurring in that location.23 One way to

represent statistical properties of shearlet coefficients is to

extract histograms from the magnitude of shearlet coefficients.

We previously used HSCs for breast cancer detection9 and pros-

tate cancer detection11 and Gleason grading.10,12 Figure 4 shows

the histogram of magnitude of shearlet coefficients for two

cases. Figure 4(a) shows the HSCs for a pair of benign and

malignant images, where they were correctly classified. The

shape and peaks of histograms are different for benign and

malignant images. Figure 4(b) shows a failed case where the

images were incorrectly classified using the HSC method.

The shape and the peaks of the histograms are very similar. One

possible reason is that the histogram does not include any infor-

mation on the local structure of the images.

The importance of phase in image processing and computer

vision has been investigated in previous studies.28–22 It was veri-

fied that most of the signal’s information is carried by the

phase21 and in some cases only the phase is enough to recon-

struct a signal.28 Also, the phase features are invariant to noise

and image contrast.22 However, since the phase information is

nontrivial, it is difficult to design and hand-craft phase features

that work as a general approach. For example, the histogram of

phase features does not sufficiently represent the changes in the

texture of an image since, despite magnitude, the phase does not

directly relate to strong edges. This motivated us to add the

phase information to the magnitude and learn features instead

of hand-crafting them in this paper. We extract the magnitude

and phase of shearlet coefficients as follows.

Assume we denote a complex shearlet coefficient by

cða; s; tÞ ¼ xþ iy, where x and y are the real and imaginary

parts of a complex shearlet coefficient and a, s, and t are the scale,

shear, and translation parameters of the shearlet transform, respec-

tively. We use the following equations to extract the magnitude

[magða; s; tÞ] and the phase [phaseða; s; tÞ] of the coefficients

EQ-TARGET;temp:intralink-;e003;63;119

magða; s; tÞ ¼ jcða; s; tÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

phaseða; s; tÞ ¼ ∡½cða; s; tÞ� ¼ tan−1
�y

x

�

: (3)

After we extracted the above features from each subband of

the shearlets, then we feed them to our deep neural network as

explained in Sec. 2.3.

2.3 Convolutional Neural Networks and Feature
Learning

Our primary features are magnitude and phase of shearlet coef-

ficients along with RGB data. As we previously explained,

hand-crafting the features is not a suitable method for complex

tasks (e.g., medical image analysis, where important clinical fea-

tures are used to represent objects such as cell nuclei). There-

fore, in the following, we propose our automatic feature learning

method based on deep neural networks.

Traditional machine learning methods have limited abilities

to analyze natural data that are represented in their raw form.

This is due to the fact that shallow classifiers need appropriate

feature extraction and representation techniques, which are sen-

sitive to the discriminative attributes of the input while invariant

to unimportant features (selectivity–invariance dilemma).29 On

the other hand, DL methods29–32 consist of multiple processing

layers to learn representations directly from raw data with multi-

ple levels of abstraction.29 For an image, the lower levels of

abstraction might correspond to the edges in the image, while

higher abstraction layers correspond to the objects in the image.

CNNs30 are feed-forward networks consisting of consecutive

pairs of convolutional and pooling layers along with fully

connected layers. They are especially designed for inputs rep-

resented as 2-D data (e.g., images). The input data first go

through pairs of convolution and pooling layers. Convolution

layers apply 2-D convolution on their inputs using rectangular

filters, which are applied in different positions of the input. The

convolution layer sums the responses from previous layer, adds

a bias term, and drives the result through a nonlinear activation

function. This process is repeated with different weights to cre-

ate multiple feature maps. The output of the convolutional layer

then usually passes through a pooling layer, which is a down-

sampling technique and results in translation-invariant features.

After a few pairs of convolution and pooling layers, one or more

fully connected layers combine the outputs into a feature vector.

The final layer is a fully connected layer with one neuron per

class (two for breast cancer diagnosis and four for Gleason grad-

ing), which are activated by a softmax classifier. Throughout the

whole process, the weights are optimized by minimizing the

misclassification error using stochastic gradient descent method.

Fig. 4 HSCs for (a) correctly classified benign and malignant pair, and (b) incorrectly classified pair.
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The building blocks of our proposed deep neural network are

presented in Fig. 5. Figure 6 shows the architecture of our CNN.

The description of each layer in our CNN is presented in the

following:

1. Convolutional layer (conv): This layer applies a 2-D con-

volution on the input feature maps using 64 Gaussian

filters of size 5 × 5 initialized with a standard deviation

of 0.0001 and bias of zero. It steps 2 pixels between

each filter application. The output then goes through a

nonlinear rectified linear unit (ReLU) function, which

is defined as fðzÞ ¼ maxðz; 0Þ. This nonlinear activa-
tion function is important since it lets the network learn

abstracts using a small number of nodes. Otherwise,

Fig. 5 Block diagram of our deep neural network. The inputs are RGB images, magnitude of shearlet
coefficients from decomposition levels 1 to 5 (Mag1 to Mag5), and phase of shearlet coefficients from
decomposition levels 1 to 5 (Phase1 to Phase5). Then they go through separate CNNs and the results
are concatenated using a fully connected layer, which sends the final evolved features to softmax for
classification.

Fig. 6 Architecture of our CNN. The input is a 120 × 120 patch and can be either RGB or magnitude or
phase of shearlet coefficients. Then three layers of convolution and pooling are applied on the input back
to back to extract abstracts from the input. Finally, a fully connected layer combines the outputs of
convolution filters and sends out a single feature vector with the size of 64.
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if a linear function was used, the entire network would

be equivalent to a single-layer neural network.

2. Max-pooling layer: The purpose of the pooling layer is

to combine similar features into one; therefore, it is

a feature dimension reduction technique. It calculates

the maximum of a local patch of units inside a 3 × 3

region of input feature map and steps 2 pixels between

pooling regions. This makes the learned features

invariant to shifts and distortions.

3. Local response normalization (LRN): Performs nor-

malization on local input regions by dividing each

input by ½1þ α
n
ðPix

2
i Þ�β, where xi is the i 0th input,

n ¼ 3 is the size of local region, α ¼ 5 × 10−5, and

β ¼ 0.75.

4. Fully connected layer: Also known as inner product

this is one of the top layers of a CNN architecture. It

connects all the neurons in the previous layer to all the

neurons it has. It does not have any spatial informa-

tion. It takes the output of pooling layers as input

and combines them into a feature vector, similar to

a multilayer perceptron network.

5. Dropout: Dropout regularization33 randomly disables

portion of neurons in the training set. This prevents

the overfitting of learning results to the structure of the

network. In this paper, we chose the dropout threshold

to be 0.7.

6. Classification layer: The final layer of CNN is a fully

connected layer with one neuron per class (two for

breast cancer diagnosis and four for Gleason grading),

which is activated by the softmax classifier. Given the

training labels, it gives the accuracy of the classification.

3 Experiments and Results

In this section, first we describe our data preprocessing in detail.

Then we explain our feature extraction using shearlets transform

and CNN structure and parameters. Finally, we present our

results and compare them with the state-of-the-art methods

based on hand-crafted features.

3.1 Datasets and Data Preparation

We used two microscopic medical imaging datasets for our

experiments. The first set was the University of California,

Santa Barbara Biosegmentation Benchmark dataset.34 This data-

set contained 58 H&E-stained histopathology images of breast

tissue. Out of 58 total images, there were 26 malignant images

and 32 benign images. The second dataset was the prostate

Gleason grading dataset used by Jafari-Khouzani and Soltanian-

Zadeh.7 This dataset contained 100 H&E images of prostate

tissue samples. The images were of grades 2 to 5 and the mag-

nification was 100 with different sizes. All of the images were

captured in equal conditions of light. This dataset contained 21,

20, 32, and 27 images of grades 2, 3, 4, and 5, respectively.

Each image had a single grade. The images were graded by

expert pathologists who provided the ground truth data.

Since our CNN experiments needed a large amount of data,

we augmented both datasets. For this purpose, we performed

mirroring, patches, rotation, and scaling of the images. For

mirroring, we used three mirroring scenarios (horizontal, verti-

cal, and horizontal and vertical). For rotation, we rotated each

image 10 times with a rotation randomly chosen between 10 deg

and 90 deg. For scaling, we resized each image by a factor of 2.

For extracting patches out of images, we extracted them from

top left, top right, bottom left, bottom right, and center of the

image, each half the size of the original image. We also com-

bined the above operations to further augment the datasets.

Overall, we were able to augment each original image to 104

images. Therefore, we had 6032 augmented breast tissue images

and 10,400 augmented prostate tissue images. Throughout this

whole process, since we had different size images, we resized

the images to 128 × 128 pixels for normalization purposes.

Figure 7 shows all 104 augmented images of a sample breast

tissue image.

3.2 Experimental Setup

We had two types of primary features. One was the RGB

images, which were extracted as explained in Sec. 3.1. The

other primary features were shearlet features, which were

extracted as explained next.

3.2.1 Shearlet feature extraction

To apply shearlet transform on images, we utilized the FFST

MATLAB® toolbox provided by Häuser and Steidl.24 We

chose five scales (decomposition levels) for shearlet. The first

decomposition level was a low-pass filtered version of input.

We chose eight directions for the second and third levels and

16 directions for the fourth and fifth levels which led to 8, 8,

16, and 16 subbands, respectively. Therefore, overall we had

1þ 8þ 8þ 16þ 16 ¼ 49 subbands of shearlets. All these sub-

bands were of the same size as the input image (150 × 150). We

followed the procedure explained in Sec. 3.1 to extract the

magnitude [magða; s; tÞ] and phase [phaseða; s; tÞ] of shearlet
coefficients from each subband and fed them to our CNN

framework.

3.2.2 Convolutional neural networks framework and

feature evolution

As we explained in Sec. 2.3, our CNN consisted of

three layers of convolution and max-pooling. For convolutional

layers, we initialized 64 Gaussian filters of size 5 × 5 with a

standard deviation of 0.0001 and bias of zero. The step between

each filter application was 2 pixels. We used an ReLU function

as the activation function. For max-pooling layer, we applied it

on local patch of units inside a 3 × 3 region of input feature map

with a 2 pixels step between pooling regions. We used an LRN

layer to normalize local input regions. We used fully connected

layers for concatenating the outputs of CNNs.

We used the stochastic gradient descent algorithm with the

momentum of 0.9 and the weight decay of 0.05 in all experi-

ments. We used mini-batches of 32 samples due to the large

size of the network and the memory limitations. All models

were initialized with the learning rate of 0.001. These hyper-

parameters were empirically found based on the performance

of validation set over onefold of Gleason grading. The same

hyperparameters were used for the breast cancer experiment.

We also used dropout layers to prevent the overfitting of the

results to the structure of the CNN. The dropout threshold value
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of 0.7 was found to be the best based on the classification accu-

racy on validation set.

Our primary input features were RGB, magnitude, and phase

of shearlet coefficients. Figure 5 shows the overall structure of

our deep neural network. Mag1 to Mag5 were the magnitude of

shearlet coefficients from decomposition levels 1 to 5, respec-

tively. Phases 1 to 5 were the phase of shearlet coefficients from

decomposition level 1 to 5, respectively. We fed each one of our

inputs (RGB, Mag1 to Mag5, and phases 1 to 5) to a separate

CNN. The reason for separating RGB from shearlet data was

because they were of a different nature and, therefore, needed

separate processing. We separated the magnitude and phase of

shearlets for the same reason. We also processed shearlet coef-

ficients from different decomposition levels independently

because different decomposition levels represent features from

different scales.

Figure 8 visualizes the shearlet feature evolution as they go

through each convolutional layer. Figures 8(a) and 8(b) show the

first convolution layer output features for the first and third

decomposition level shearlet coefficients, respectively. The third

decomposition level shearlet coefficients represent more details

in the images with more directional sensitivity. Figures 8(c) and

8(d) show the same shearlet coefficients out of the second con-

volution. After the second convolution, the features become

more distinguishable.

3.3 Results

We evaluated our proposed microscopic image classification

framework for two tasks: breast cancer diagnosis and prostate

Gleason grading. Although both tasks contain similar input data

(H&E images), they are different in nature. One is to distinguish

cancerous from noncancer cells, while the other (i.e., Gleason

grading) is to evaluate how advanced the cancer is. Also,

they belong to different human tissues, therefore, the physiologi-

cal and textural information are different. We evaluated our

method against these different tasks to show the generality

and applicability of our method.

For each classification task, RGB images and extracted

shearlet features from input images were fed to our CNN frame-

work with the parameters explained in Sec. 3.2.2. For cross val-

idation, we used a fivefold cross-validation technique. We

divided our original datasets (nonaugmented) into five sets

and used four sets for training and one for testing. We repeated

this five times and reported the average classification accuracy.

We used the augmentation process during the training. The final

network is evaluated on the original images only. Therefore, all

images pertaining to a given case are either in the training or test

set (not in both). We had three different scenarios for CNN

experiments. In the first scenario, we used only RGB data as

input. In the second scenario, we combined RGB and magnitude

of shearlets and used them as input. Lastly, we combined RGB,

magnitude, and phase of shearlets and used them as input to

CNN. This helped us understand the contribution of each feature

set separately and when combined together. We were able to

significantly increase the classification accuracy (by 13% for

breast cancer diagnosis and 8% for Gleason grading) by com-

bining RGB and magnitude of shearlets. We further improved

the results by including phase information as well. To evaluate

the performance of our deep neural network, we compared the

results with the state-of-the-art methods based on hand-crafted

features using SVM. For SVM, we tried different kernels (linear,

polynomial, and RBF) with different parameters (polynomial

order of 1, 2, and 3 for polynomial kernel and sigma values

Fig. 7 Augmented images of a sample breast tissue image from our dataset.
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between 1 and 10,000 for Gaussian radial basis function kernel)

and chose the best kernel and parameters for each experiment.

Our experiments showed that CNN outperforms the hand-

crafted feature extraction methods.

Table 1 shows the classification results for breast cancer

diagnosis using our deep neural network method and state-of-

the-art methods. In addition to the classification accuracy, we

have also reported the sensitivity, specificity, F-1 score, and area

under the curve (AUC) as performance metrics. Table 1 shows the

average values of the each metric along with the standard devia-

tion values over fivefolds. It is obvious from the table that by

including the magnitude and phase of shearlet coefficients we

achieved higher performance metrics. Table 1 also shows the breast

cancer classification results using hand-crafted features. These

results show the superiority of our proposed method over hand-

crafted feature extraction methods for breast cancer detection.

Table 2 shows the classification results for automatic

Gleason grading using our deep neural network method and

Fig. 8 Feature evolution: (a) first convolutional layer output features for magnitude of shearlet coeffi-
cients from first decomposition level, (b) first convolutional layer output features for magnitude of shearlet
coefficients from third decomposition level, (c) second convolutional layer output features for magnitude
of shearlet coefficients from first decomposition level, and (d) third (last) convolutional layer output fea-
tures for magnitude of shearlet coefficients from third decomposition level.

Table 1 Classification results for breast cancer detection (mean� std).

Method Sensitivity Specificity F -1 Score AUC Accuracy

RGB 0.91� 0.08 0.59� 0.09 0.76� 0.05 0.68� 0.02 0.71� 0.02

RGB + magnitude of shearlets 1 0.62� 0.10 0.84� 0.03 0.78� 0.01 0.84� 0.01

RGB + magnitude + phase of shearlets 1 0.72� 0.10 0.89� 0.03 0.82� 0.01 0.86� 0.03

Boucheron et al.4 — — — — 0.74

Rezaeilouyeh et al.9 0.93� 0.09 0.60� 0.10 0.79� 0.06 0.74� 0.02 0.74� 0.09

Note: Bold values indicate the best results.
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state-of-the-art hand-crafted feature extraction methods. Similar

to breast cancer diagnosis, by including the magnitude and

phase of shearlet coefficients we improved the classification

accuracy. Table 2 also shows the Gleason grading classification

results using hand-crafted features. For Jafari-Khouzani and

Soltanian-Zadeh,7 we extracted the energy and entropy of multi-

wavelets and used them as features in the SVM classifier. For the

wavelet packet35 and co-occurrence matrix36 features, we used

MATLAB®.37 We used the MATLAB’s® image processing and

wavelet toolbox for this purpose. These results show the advan-

tage of our proposed method over state-of-the-art hand-crafted

feature extraction methods for Gleason grading.

The receiver operating characteristic (ROC) curve for breast

cancer diagnosis is shown in Fig. 9. In this figure, we compare

hand-crafted feature extraction method9 with the best results

from our deep CNN method. An ROC curve depicts the true

positive rate against the false positive rate for different thresh-

olds. It can be observed from Fig. 9 and based on their AUC

values that our CNN method outperforms the best hand-crafted

feature extraction method.9

We also report the confusion matrix (%) for the automatic

Gleason grading experiments in Tables 3 and 4. Table 3 shows

the confusion matrix for Gleason grading using the best hand-

crafted feature extraction method,7 while Table 4 shows the con-

fusion matrix using our best CNN-based method. A confusion

matrix is a table that is used to visualize the performance of

a classifier using true and predicted labels. Since we have

four classes in Gleason grading (grades 1 to 4), our confusion

matrix is 4 × 4. It is noticeable that using our proposed method

the misclassified cases only belong to Gleason grade 5. This is in

accordance with the pathologists diagnosis since distinguishing

grade 5 from grade 4 is the most difficult task in Gleason

grading.8 Our CNN method is 15% better than hand-crafted

Table 2 Classification results for Gleason grading (mean� std).

Method Sensitivity Specificity F -1 Score AUC Accuracy

RGB 0.80� 0.02 0.91� 0.01 0.71� 0.01 0.72� 0.02 0.76� 0.06

RGB + magnitude of shearlets 0.84� 0.01 0.91� 0.02 0.81� 0.03 0.79� 0.02 0.84� 0.04

RGB + magnitude + phase of shearlets 0.89� 0.01 0.94� 0.01 0.85� 0.02 0.84� 0.01 0.88� 0.05

Jafari-Khouzani and Soltanian-Zadeh7 0.82� 0.01 0.91� 0.02 0.73� 0.02 0.78� 0.02 0.83� 0.09

Rezaeilouyeh et al.10 0.78� 0.03 0.91� 0.01 0.69� 0.03 0.74� 0.01 0.78� 0.11

Wavelet packet35 0.82� 0.02 0.92� 0.01 0.73� 0.01 0.74� 0.02 0.78� 0.07

Co-occurrence matrix36 0.81� 0.01 0.92� 0.01 0.72� 0.02 0.73� 0.02 0.77� 0.09

Note: Bold values indicate the best results.

Fig. 9 ROC curves for breast cancer diagnosis experiment using
the best hand-crafted feature extraction method9 and our best deep
neural network results.

Table 3 Confusion matrix (%) for Gleason grading experiment using
the best hand-crafted feature extraction method7.

True label

Grade 2 Grade 3 Grade 4 Grade 5

Grade 2 100 0 0 0

Grade 3 0 100 0 0

Grade 4 0 3 97 0

Grade 5 0 33 26 41

Predicted label

Table 4 Confusion matrix (%) for Gleason grading experiment using
our deep neural network.

True label

Grade 2 Grade 3 Grade 4 Grade 5

Grade 2 100 0 0 0

Grade 3 0 100 0 0

Grade 4 0 0 100 0

Grade 5 7 0 37 56

Predicted label
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features in distinguishing between grades 4 and 5 (41% versus

56%). In addition, using hand-crafted feature extraction meth-

ods,7 there are some misclassifications between grades 4 and 3

in addition to grades 4 and 5, which proves the advantage of

our method.

4 Discussions and Conclusions

Early diagnosis of cancer and grading its severity are very

important tasks that can save a patients’ life. Automating this

process can help pathologists to have a faster and more reliable

diagnosis. Most of the automatic cancer diagnosis and grading

techniques use hand-crafted features that need to be fine-tuned

for different tasks.

In this paper, we proposed a framework for automatic breast

cancer detection and prostate Gleason grading. First, we

extracted the magnitude and phase of complex shearlet coeffi-

cients from the histological images. Shearlet transform is a mul-

tiscale directional system that has proven itself suitable for

texture analysis of microscopic images in our previous studies.

Then we combined the shearlet features with imagery data and

used them to train CNNs. This feature learning process further

enhanced the features and made them more discriminative. Then

we used softmax classifier to distinguish different microscopic

images. We were able to achieve high-classification accuracy on

both breast cancer and Gleason grading datasets using our pro-

posed method. We also compared our method against state-of-

the-art methods that use hand-crafted features. We were able to

outperform those methods in both cases.

One of the main advantages of our method is that it does not

make any assumptions beforehand about the visual features of

cancerous tissues. We consider shearlet transform as a general

mathematical tool and extract features without any hand-craft-

ing. Our deep neural network takes care of the feature learning

task. Future work includes exploring the possibility of using

deeper architectures for CNN and also expanding the applica-

tions of our method to different medical image analysis tasks.
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